Skip to main content

Renal Amyloidosis

  • Chapter
  • First Online:
Amyloidosis

Part of the book series: Contemporary Hematology ((CH))

  • 1098 Accesses

Abstract

The kidney is one of the most frequently affected organs in several types of systemic amyloidosis. Amyloid nephropathy is diagnosed by Congo red positivity of kidney tissue and by the presence of non-branching, randomly oriented fibrils that are 8–12 nm in diameter and evident by electron microscopy. Amyloid deposits can occur in the mesangium, glomerular capillary loops, tubulo-interstitium, and/or vasculature of the kidney. Amyloid nephropathy is typically characterized by nephrotic syndrome and progression to end-stage renal disease. The rate of decline in kidney function is variable and can be slowed by treatments that reduce the production of amyloidogenic precursor proteins or new amyloid deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kyle RA, Gertz MA. Primary systemic amyloidosis: clinical and laboratory features in 474 cases. Semin Hematol. 1995;32:45–59.

    PubMed  CAS  Google Scholar 

  2. Skinner M, Sanchorawala V, Seldin DC, et al. High-dose melphalan and autologous stem-cell transplantation in patients with AL amyloidosis: an 8-year study. Ann Intern Med. 2004;140:85–93.

    PubMed  CAS  Google Scholar 

  3. Obici L, Perfetti V, Palladini G, Moratti R, Merlini G. Clinical aspects of systemic amyloid diseases. Biochimica et Biophysica Acta 2005;1753:11–22.

    Article  PubMed  CAS  Google Scholar 

  4. Lachmann HJ, Goodman HJ, Gilbertson JA, et al. Natural history and outcome in systemic AA amyloidosis. N Engl J Med. 2007;356:2361–71.

    Article  PubMed  CAS  Google Scholar 

  5. Picken MM. Immunoglobulin light and heavy chain amyloidosis AL/AH: renal pathology and differential diagnosis. Contrib Nephrol. 2007;153:135–55.

    Article  PubMed  CAS  Google Scholar 

  6. Benson MD, James S, Scott K, Liepnieks JJ, Kluve-Beckerman B. Leukocyte chemotactic factor 2: a novel renal amyloid protein. Kidney Int. 2008;74:218–22.

    Article  PubMed  CAS  Google Scholar 

  7. Merrimen JL, Alkhudair WK, Gupta R. Localized amyloidosis of the urinary tract: case series of nine patients. Urology. 2006;67:904–9.

    Article  PubMed  CAS  Google Scholar 

  8. Nakamoto Y, Hamanaka S, Akihama T, Miura AB, Uesaka Y. Renal involvement patterns of amyloid nephropathy: a comparison with diabetic nephropathy. Clin Nephrol. 1984;22:188–94.

    PubMed  CAS  Google Scholar 

  9. Vigushin DM, Gough J, Allan D, et al. Familial nephropathic systemic amyloidosis caused by apolipoprotein AI variant Arg26. Q J Med. 1994;87:149–54.

    PubMed  CAS  Google Scholar 

  10. Booth DR, Tan SY, Booth SE, et al. Hereditary hepatic and systemic amyloidosis caused by a new deletion/insertion mutation in the apolipoprotein AI gene. J Clin Invest. 1996;97:2714–21.

    Article  PubMed  CAS  Google Scholar 

  11. Gregorini G, Izzi C, Obici L, et al. Renal apolipoprotein A-I amyloidosis: a rare and usually ignored cause of hereditary tubulointerstitial nephritis. J Am Soc Nephrol. 2005;16:3680–6.

    Article  PubMed  CAS  Google Scholar 

  12. Westermark P, Sletten K, Eriksson M. Morphologic and chemical variation of the kidney lesions in amyloidosis secondary to rheumatoid arthritis. Lab Invest. 1979;41:427–31.

    PubMed  CAS  Google Scholar 

  13. Fogo A, Qureshi N, Horn RG. Morphologic and clinical features of fibrillary glomerulonephritis versus immunotactoid glomerulopathy. Am J Kidney Dis. 1993;22:367–77.

    PubMed  CAS  Google Scholar 

  14. Bridoux F, Hugue V, Coldefy O, et al. Fibrillary glomerulonephritis and immunotactoid (microtubular) glomerulopathy are associated with distinct immunologic features. Kidney Int. 2002;62:1764–75.

    Article  PubMed  CAS  Google Scholar 

  15. Rosenstock JL, Markowitz GS, Valeri AM, Sacchi G, Appel GB, D’Agati VD. Fibrillary and immunotactoid glomerulonephritis: distinct entities with different clinical and pathologic features. Kidney Int. 2003;63:1450–61.

    Article  PubMed  Google Scholar 

  16. Katzmann JA, Abraham RS, Dispenzieri A, Lust JA, Kyle RA. Diagnostic performance of quantitative kappa and lambda free light chain assays in clinical practice. Clin Chem. 2005;51:878–81.

    Article  PubMed  CAS  Google Scholar 

  17. Akar H, Seldin DC, Magnani B, et al. Quantitative serum free light chain assay in the diagnostic evaluation of AL amyloidosis. Amyloid 2005;12:210–5.

    Article  PubMed  CAS  Google Scholar 

  18. Dispenzieri A, Kyle R, Merlini G, et al. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia. 2009;23:215–24.

    Article  PubMed  CAS  Google Scholar 

  19. Looi LM. An investigation of the protein components of amyloid using immunoperoxidase and permanganate methods on tissue sections. Pathology 1986;18:137–40.

    Article  PubMed  CAS  Google Scholar 

  20. Veeramachaneni R, Gu X, Herrera GA. Atypical amyloidosis: diagnostic challenges and the role of immunoelectron microscopy in diagnosis. Ultrastruct Pathol. 2004;28: 75–82.

    Article  PubMed  Google Scholar 

  21. Obici L, Palladini G, Giorgetti S, et al. Liver biopsy discloses a new apolipoprotein A-I hereditary amyloidosis in several unrelated Italian families. Gastroenterology 2004;126:1416–22.

    Article  PubMed  Google Scholar 

  22. Carone FA, Epstein FH. Nephrogenic diabetes insipidus caused by amyloid disease. Evidence in man of the role of the collecting ducts in concentrating urine. Am J Med. 1960;29:539–44.

    Article  PubMed  CAS  Google Scholar 

  23. Asmundsson P, Snaedal J. Persistent water diuresis in renal amyloidosis. A case report. Scand J Urol Nephrol. 1981;15:77–9.

    Article  PubMed  CAS  Google Scholar 

  24. Ekelund L. Radiologic findings in renal amyloidosis. AJR Am J Roentgenol. 1977;129:851–3.

    PubMed  CAS  Google Scholar 

  25. Apter S, Zemer D, Terhakopian A, et al. Abdominal CT findings in nephropathic amyloidosis of familial Mediterranean fever. Amyloid 2001;8:58–64.

    Article  PubMed  CAS  Google Scholar 

  26. Dikman SH, Churg J, Kahn T. Morphologic and clinical correlates in renal amyloidosis. Hum Pathol. 1981;12:160–9.

    Article  PubMed  CAS  Google Scholar 

  27. Fadia A, Casserly LF, Sanchorawala V, et al. Incidence and outcome of acute renal failure complicating autologous stem cell transplantation for AL amyloidosis. Kidney Int. 2003;63:1868–73.

    Article  PubMed  Google Scholar 

  28. Leung N, Slezak JM, Bergstralh EJ, et al. Acute renal insufficiency after high-dose melphalan in patients with primary systemic amyloidosis during stem cell transplantation. Am J Kidney Dis. 2005;45:102–11.

    Article  PubMed  CAS  Google Scholar 

  29. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Int Med. 1999;130:461–70.

    PubMed  CAS  Google Scholar 

  30. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41.

    Article  PubMed  CAS  Google Scholar 

  31. Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. N Engl J Med. 2003;349:583–96.

    Article  PubMed  CAS  Google Scholar 

  32. Yan SD, Zhu H, Zhu A, et al. Receptor-dependent cell stress and amyloid accumulation in systemic amyloidosis. Nat Med. 2000;6:643–51.

    Article  PubMed  CAS  Google Scholar 

  33. Sousa MM, Du Yan S, Fernandes R, Guimaraes A, Stern D, Saraiva MJ. Familial amyloid polyneuropathy: receptor for advanced glycation end products-dependent triggering of neuronal inflammatory and apoptotic pathways. J Neurosci. 2001;21:7576–86.

    PubMed  CAS  Google Scholar 

  34. Keeling J, Teng J, Herrera GA. AL-amyloidosis and light-chain deposition disease light chains induce divergent phenotypic transformations of human mesangial cells. Lab Invest. 2004;84:1322–38.

    Article  PubMed  CAS  Google Scholar 

  35. Brenner DA, Jain M, Pimentel DR, et al. Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ Res. 2004;94:1008–10.

    Article  PubMed  CAS  Google Scholar 

  36. Liao R, Jain M, Teller P, et al. Infusion of light chains from patients with cardiac amyloidosis causes diastolic dysfunction in isolated mouse hearts. Circulation. 2001;104: 1594–97.

    PubMed  CAS  Google Scholar 

  37. Sousa MM, Cardoso I, Fernandes R, Guimaraes A, Saraiva MJ. Deposition of transthyretin in early stages of familial amyloidotic polyneuropathy: evidence for toxicity of nonfibrillar aggregates. Am J Pathol. 2001;159:1993–2000.

    Article  PubMed  CAS  Google Scholar 

  38. Lobato L, Beirao I, Guimaraes SM, et al. Familial amyloid polyneuropathy type I (Portuguese): distribution and characterization of renal amyloid deposits. Am J Kidney Dis. 1998;31:940–46.

    Article  PubMed  CAS  Google Scholar 

  39. Snanoudj R, Durrbach A, Gauthier E, et al. Changes in renal function in patients with familial amyloid polyneuropathy treated with orthotopic liver transplantation. Nephrol Dial Transplant. 2004;19:1779–85.

    Article  PubMed  Google Scholar 

  40. Dember LM, Sanchorawala V, Seldin DC, et al. Effect of dose-intensive intravenous melphalan and autologous blood stem-cell transplantation on al amyloidosis-associated renal disease. Ann Int Med. 2001;134:746–53.

    PubMed  CAS  Google Scholar 

  41. Palladini G, Lavatelli F, Russo P, et al. Circulating amyloidogenic free light chains and serum N-terminal natriuretic peptide type B decrease simultaneously in association with improvement of survival in AL. Blood. 2006;107:3854–8.

    Article  PubMed  CAS  Google Scholar 

  42. Glassock RJ. Prophylactic anticoagulation in nephrotic syndrome: a clinical conundrum. J Am Soc Nephrol. 2007;18:2221–5.

    Article  PubMed  Google Scholar 

  43. Dember LM. Emerging treatment approaches for the systemic amyloidoses. Kidney Int. 2005;68:1377–90.

    Article  PubMed  Google Scholar 

  44. Girnius S, Seldin DC, Skinner M, et al. Hepatic response after high-dose melphalan and stem cell transplantation in patients with AL amyloidosis associated liver disease. Haematologica 2009;94:1029–32.

    Article  PubMed  CAS  Google Scholar 

  45. Batts ED, Sanchorawala V, Hegerfeldt Y, Lazarus HM. Azotemia associated with use of lenalidomide in plasma cell dyscrasias. Leuk Lymphoma 2008;49:1108–15.

    Article  PubMed  CAS  Google Scholar 

  46. Sanchorawala V, Wright DG, Rosenzweig M, et al. Lenalidomide and dexamethasone in the treatment of AL amyloidosis: results of a phase 2 trial. Blood 2007;109:492–6.

    Article  PubMed  CAS  Google Scholar 

  47. Palladini G, Perfetti V, Obici L, et al. Association of melphalan and high-dose dexamethasone is effective and well tolerated in patients with AL (primary) amyloidosis who are ineligible for stem cell transplantation. Blood 2004;103:2936–8.

    Article  PubMed  CAS  Google Scholar 

  48. Jaccard A, Moreau P, Leblond V, et al. High-dose melphalan versus melphalan plus dexamethasone for AL amyloidosis. N Engl J Med. 2007;357:1083–93.

    Article  PubMed  CAS  Google Scholar 

  49. Dispenzieri A, Lacy MQ, Zeldenrust SR, et al. The activity of lenalidomide with or without dexamethasone in patients with primary systemic amyloidosis. Blood. 2007;109:465–70.

    Article  PubMed  CAS  Google Scholar 

  50. Comenzo RL. Managing systemic light-chain amyloidosis. J Natl Compr Canc Netw. 2007;5:179–87.

    PubMed  CAS  Google Scholar 

  51. Leung N, Dispenzieri A, Fervenza FC, et al. Renal response after high-dose melphalan and stem cell transplantation is a favorable marker in patients with primary systemic amyloidosis. Am J Kidney Dis. 2005;46:270–7.

    Article  PubMed  CAS  Google Scholar 

  52. Elkayam O, Hawkins PN, Lachmann H, Yaron M, Caspi D. Rapid and complete resolution of proteinuria due to renal amyloidosis in a patient with rheumatoid arthritis treated with infliximab. Arthritis Rheum. 2002;46:2571–3.

    Article  PubMed  Google Scholar 

  53. Mpofu S, Teh LS, Smith PJ, Moots RJ, Hawkins PN. Cytostatic therapy for AA amyloidosis complicating psoriatic spondyloarthropathy. Rheumatology (Oxford) 2003;42: 362–6.

    Article  CAS  Google Scholar 

  54. Ravindran J, Shenker N, Bhalla AK, Lachmann H, Hawkins P. Case report: response in proteinuria due to AA amyloidosis but not Felty’s syndrome in a patient with rheumatoid arthritis treated with TNF-alpha blockade. Rheumatology (Oxford) 2004;43:669–72.

    Article  CAS  Google Scholar 

  55. Gottenberg JE, Merle-Vincent F, Bentaberry F, et al. Anti-tumor necrosis factor alpha therapy in fifteen patients with AA amyloidosis secondary to inflammatory arthritis: a followup report of tolerability and efficacy. Arthritis Rheum. 2003;48:2019–24.

    Article  PubMed  CAS  Google Scholar 

  56. Kisilevsky R, Lemieux LJ, Fraser PE, Kong X, Hultin PG, Szarek WA. Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer’s disease. Nat Med. 1995;1:143–8.

    Article  PubMed  CAS  Google Scholar 

  57. Kisilevsky R. The relation of proteoglycans, serum amyloid P and apo E to amyloidosis current status, 2000. Amyloid 2000;7:23–5.

    Article  PubMed  CAS  Google Scholar 

  58. Dember LM, Hawkins PN, Hazenberg BP, et al. Eprodisate for the treatment of renal disease in AA amyloidosis. N Engl J Med. 2007;356:2349–60.

    Article  PubMed  CAS  Google Scholar 

  59. Dember LM. Modern treatment of amyloidosis: unresolved questions. J Am Soc Nephrol. 2009;20:469–72.

    Article  PubMed  Google Scholar 

  60. Ericzon BG, Larsson M, Herlenius G, Wilczek HE. Report from the Familial Amyloidotic Polyneuropathy World Transplant Registry (FAPWTR) and the Domino Liver Transplant Registry (DLTR). Amyloid 2003;10 Suppl 1:67–76.

    PubMed  Google Scholar 

  61. Holmgren G, Ericzon BG, Groth CG, et al. Clinical improvement and amyloid regression after liver transplantation in hereditary transthyretin amyloidosis. Lancet 1993;341:1113–6.

    Article  PubMed  CAS  Google Scholar 

  62. Zeldenrust S, Gertz M, Uemichi T, et al. Orthotopic liver transplantation for hereditary fibrinogen amyloidosis. Transplantation 2003;75:560–61.

    Article  PubMed  CAS  Google Scholar 

  63. Mousson C, Heyd B, Justrabo E, et al. Successful hepatorenal transplantation in hereditary amyloidosis caused by a frame-shift mutation in fibrinogen Aalpha-chain gene. Am J Transplant. 2006;6:632–5.

    Article  PubMed  CAS  Google Scholar 

  64. Gillmore JD, Booth DR, Rela M, et al. Curative hepatorenal transplantation in systemic amyloidosis caused by the Glu526Val fibrinogen alpha-chain variant in an English family. QJM. 2000;93:269–75.

    Article  PubMed  CAS  Google Scholar 

  65. Gillmore JD, Stangou AJ, Tennent GA, et al. Clinical and biochemical outcome of hepatorenal transplantation for hereditary systemic amyloidosis associated with apolipoprotein AI Gly26Arg. Transplantation 2001;71:986–92.

    Article  PubMed  CAS  Google Scholar 

  66. Carvalho MJ, Lobato L, Ventura A, et al. Remission of proteinuria following liver transplantation for familial amyloid polyneuropathy TTR met30. Transplant Proc. 2000;32:2664–6.

    Article  PubMed  CAS  Google Scholar 

  67. Chen N, Lau H, Kong L, et al. Pharmacokinetics of lenalidomide in subjects with various degrees of renal impairment and in subjects on hemodialysis. J Clin Pharmacol. 2007;47:1466–75.

    Article  PubMed  CAS  Google Scholar 

  68. Chanan-Khan AA, Kaufman JL, Mehta J, et al. Activity and safety of bortezomib in multiple myeloma patients with advanced renal failure: a multicenter retrospective study. Blood. 2007;109:2604–6.

    Article  PubMed  CAS  Google Scholar 

  69. Casserly LF, Fadia A, Sanchorawala V, et al. High-dose intravenous melphalan with autologous stem cell transplantation in AL amyloidosis-associated end-stage renal disease. Kidney Int. 2003;63:1051–7.

    Article  PubMed  CAS  Google Scholar 

  70. Leung N, Griffin MD, Dispenzieri A, et al. Living donor kidney and autologous stem cell transplantation for primary systemic amyloidosis (AL) with predominant renal involvement. Am J Transplant. 2005;5:1660–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dember, L.M. (2010). Renal Amyloidosis. In: Gertz, M., Rajkumar, S. (eds) Amyloidosis. Contemporary Hematology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-631-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-631-3_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-630-6

  • Online ISBN: 978-1-60761-631-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics