Skip to main content

Pathogenesis of Systemic Amyloidoses

  • Chapter
  • First Online:
Amyloidosis

Abstract

Systemic amyloid diseases are complex entities, in which an intricate interplay between multiple factors is responsible for protein misfolding and deposition, with consequent cell and organ dysfunction. The chapter provides an overview of major past and recent advancements in the study of the molecular bases of protein misfolding diseases. Many questions are still open, notably the molecular mechanisms underlying tissue targeting and organ dysfunction remain elusive. However, the use of a multidisciplinary approach has allowed making important steps towards the clarification of the pathogenic mechanisms, opening the way for the study of new targeted therapies. It is now clear that interactions with the environment, along with inherent biochemical and biophysical properties, determine the fate of an amyloidogenic protein in vivo. During the years, the concept of a direct toxicity of protein aggregates has emerged, and the pathogenic role of fibrils and prefibrillar species and the pathways through which the damage occurs have been objects of intense investigation, leading to a deeper—although not yet complete—understanding of the molecular events behind organ dysfunction and to the development of new paradigms in the treatment of systemic amyloidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. N Engl J Med. 2003;349:583–96.

    Article  PubMed  CAS  Google Scholar 

  2. Westermark P, Benson MD, Buxbaum JN, et al. A primer of amyloid nomenclature. Amyloid 2007;14:179–83.

    Article  PubMed  CAS  Google Scholar 

  3. Dobson CM. Protein folding and misfolding. Nature 2003;426:884–90.

    Article  PubMed  CAS  Google Scholar 

  4. Relini A, Rolandi R, Bolognesi M, et al. Ultrastructural organization of ex vivo amyloid fibrils formed by the apolipoprotein A-I Leu174Ser variant: an atomic force microscopy study. Biochim Biophys Acta 2004;1690:33–41.

    Article  PubMed  CAS  Google Scholar 

  5. Serpell LC, Sunde M, Benson MD, Tennent GA, Pepys MB, Fraser PE. The protofilament substructure of amyloid fibrils. J Mol Biol. 2000;300:1033–9.

    Article  PubMed  CAS  Google Scholar 

  6. Chiti F, Webster P, Taddei N, et al. Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci USA. 1999;96:3590–4.

    Article  PubMed  CAS  Google Scholar 

  7. Ventura S, Zurdo J, Narayanan S, et al. Short amino acid stretches can mediate amyloid formation in globular proteins: the Src homology 3 (SH3) case. Proc Natl Acad Sci USA. 2004;101:7258–63.

    Article  PubMed  CAS  Google Scholar 

  8. Trovato A, Chiti F, Maritan A, Seno F. Insight into the structure of amyloid fibrils from the analysis of globular proteins. PLoS Comput Biol. 2006;2:e170.

    Article  PubMed  CAS  Google Scholar 

  9. Monsellier E, Chiti F. Prevention of amyloid-like aggregation as a driving force of protein evolution. EMBO Rep. 2007;8:737–42.

    Article  PubMed  CAS  Google Scholar 

  10. Chiti F, Dobson CM. Amyloid formation by globular proteins under native conditions. Nat Chem Biol. 2009;5:15–22.

    Article  PubMed  CAS  Google Scholar 

  11. Merlini G, Bellotti V. Lysozyme: a paradigmatic molecule for the investigation of protein structure, function and misfolding. Clin Chim Acta 2005;357:168–72.

    Article  PubMed  CAS  Google Scholar 

  12. Wetzel R. Domain stability in immunoglobulin light chain deposition disorders. Adv Protein Chem. 1997;50:183–242.

    Article  PubMed  CAS  Google Scholar 

  13. Davis DP, Gallo G, Vogen SM, et al. Both the environment and somatic mutations govern the aggregation pathway of pathogenic immunoglobulin light chain. J Mol Biol. 2001;313:1021–34.

    Article  PubMed  CAS  Google Scholar 

  14. Bellotti V, Mangione P, Merlini G. Review: immunoglobulin light chain amyloidosis–the archetype of structural and pathogenic variability. J Struct Biol. 2000;130:280–9.

    Article  PubMed  CAS  Google Scholar 

  15. Perfetti V, Casarini S, Palladini G, et al. Analysis of V(lambda)-J(lambda) expression in plasma cells from primary (AL) amyloidosis and normal bone marrow identifies 3r (lambdaIII) as a new amyloid-associated germline gene segment. Blood 2002;100:948–53.

    Article  PubMed  CAS  Google Scholar 

  16. Comenzo RL, Zhang Y, Martinez C, Osman K, Herrera GA. The tropism of organ involvement in primary systemic amyloidosis: contributions of Ig V(L) germ line gene use and clonal plasma cell burden. Blood 2001;98:714–20.

    Article  PubMed  CAS  Google Scholar 

  17. Abraham RS, Geyer SM, Price-Troska TL, et al. Immunoglobulin light chain variable (V) region genes influence clinical presentation and outcome in light chain-associated amyloidosis (AL). Blood 2003;101:3801–8.

    Article  PubMed  CAS  Google Scholar 

  18. Abraham RS, Geyer SM, Ramirez-Alvarado M, Price-Troska TL, Gertz MA, Fonseca R. Analysis of somatic hypermutation and antigenic selection in the clonal B cell in immunoglobulin light chain amyloidosis (AL). J Clin Immunol. 2004;24:340–53.

    Article  PubMed  CAS  Google Scholar 

  19. Solomon A, Frangione B, Franklin EC. Bence Jones proteins and light chains of immunoglobulins. Preferential association of the V lambda VI subgroup of human light chains with amyloidosis AL (lambda). J Clin Invest. 1982;70:453–60.

    Article  PubMed  CAS  Google Scholar 

  20. Perfetti V, Ubbiali P, Vignarelli MC, et al. Evidence that amyloidogenic light chains undergo antigen-driven selection. Blood 1998;91:2948–54.

    PubMed  CAS  Google Scholar 

  21. Benson MD, Kincaid JC. The molecular biology and clinical features of amyloid neuropathy. Muscle Nerve 2007;36:411–23.

    Article  PubMed  CAS  Google Scholar 

  22. Ando Y, Ueda M. Novel methods for detecting amyloidogenic proteins in transthyretin related amyloidosis. Front Biosci. 2008;13:5548–58.

    Article  PubMed  CAS  Google Scholar 

  23. Connors LH, Lim A, Prokaeva T, Roskens VA, Costello CE. Tabulation of human transthyretin (TTR) variants, 2003. Amyloid 2003;10:160–84.

    Article  PubMed  CAS  Google Scholar 

  24. Bellotti V, Chiti F. Amyloidogenesis in its biological environment: challenging a fundamental issue in protein misfolding diseases. Curr Opin Struct Biol. 2008;18:771–9.

    Article  PubMed  CAS  Google Scholar 

  25. Sitia R, Braakman I. Quality control in the endoplasmic reticulum protein factory. Nature 2003;426:891–4.

    Article  PubMed  CAS  Google Scholar 

  26. Sato T, Susuki S, Suico MA, et al. Endoplasmic reticulum quality control regulates the fate of transthyretin variants in the cell. EMBO J. 2007;26:2501–12.

    Article  PubMed  CAS  Google Scholar 

  27. Sorgjerd K, Ghafouri B, Jonsson BH, Kelly JW, Blond SY, Hammarstrom P. Retention of misfolded mutant transthyretin by the chaperone BiP/GRP78 mitigates amyloidogenesis. J Mol Biol. 2006;356:469–82.

    Article  PubMed  CAS  Google Scholar 

  28. Sekijima Y, Wiseman RL, Matteson J, et al. The biological and chemical basis for tissue-selective amyloid disease. Cell 2005;121:73–85.

    Article  PubMed  CAS  Google Scholar 

  29. Bergstrom J, Gustavsson A, Hellman U, et al. Amyloid deposits in transthyretin-derived amyloidosis: cleaved transthyretin is associated with distinct amyloid morphology. J Pathol. 2005;206:224–32.

    Article  PubMed  CAS  Google Scholar 

  30. Lavatelli F, Perlman DH, Spencer B, et al. Amyloidogenic and associated proteins in systemic amyloidosis proteome of adipose tissue. Mol Cell Proteomics 2008;7: 1570–83.

    Article  PubMed  CAS  Google Scholar 

  31. Olsen KE, Sletten K, Westermark P. Extended analysis of AL-amyloid protein from abdominal wall subcutaneous fat biopsy: kappa IV immunoglobulin light chain. Biochem Biophys Res Commun. 1998;245:713–6.

    Article  PubMed  CAS  Google Scholar 

  32. Picken MM, Gallo GR, Pruzanski W, Frangione B. Biochemical characterization of amyloid derived from the variable region of the kappa light chain subgroup III. Arthritis Rheum. 1990;33:880–4.

    Article  PubMed  CAS  Google Scholar 

  33. Westermark P, Westermark GT. Purification of transthyretin and transthyretin fragments from amyloid-rich human tissues. Methods Mol Biol. 2005;299:255–60.

    PubMed  CAS  Google Scholar 

  34. Gustavsson A, Jahr H, Tobiassen R, Jacobson DR, Sletten K, Westermark P. Amyloid fibril composition and transthyretin gene structure in senile systemic amyloidosis. Lab Invest. 1995;73:703–8.

    PubMed  CAS  Google Scholar 

  35. Ihse E, Stangou AJ, Heaton ND, et al. Proportion between wild-type and mutant protein in truncated compared to full-length ATTR: an analysis on transplanted transthyretin T60A amyloidosis patients. Biochem Biophys Res Commun. 2009;379:846–50.

    Article  PubMed  CAS  Google Scholar 

  36. Ihse E, Ybo A, Suhr O, Lindqvist P, Backman C, Westermark P. Amyloid fibril composition is related to the phenotype of hereditary transthyretin V30M amyloidosis. J Pathol. 2008;216:253–61.

    Article  PubMed  CAS  Google Scholar 

  37. Kingsbury JS, Theberge R, Karbassi JA, Lim A, Costello CE, Connors LH. Detailed structural analysis of amyloidogenic wild-type transthyretin using a novel purification strategy and mass spectrometry. Anal Chem. 2007;79:1990–8.

    Article  PubMed  CAS  Google Scholar 

  38. Westermark P, Bergstrom J, Solomon A, Murphy C, Sletten K. Transthyretin-derived senile systemic amyloidosis: clinicopathologic and structural considerations. Amyloid 2003;10 Suppl 1:48–54.

    PubMed  CAS  Google Scholar 

  39. Lim A, Prokaeva T, Connor LH, Falk RH, Skinner M, Costello CE. Identification of a novel transthyretin Thr59Lys/Arg104His. A case of compound heterozygosity in a Chinese patient diagnosed with familial transthyretin amyloidosis. Amyloid 2002;9:134–40.

    PubMed  CAS  Google Scholar 

  40. Stoppini M, Mangione P, Monti M, et al. Proteomics of beta2-microglobulin amyloid fibrils. Biochim Biophys Acta 2005;1753:23–33.

    Article  PubMed  CAS  Google Scholar 

  41. Giorgetti S, Stoppini M, Tennent GA, et al. Lysine 58-cleaved beta2-microglobulin is not detectable by 2D electrophoresis in ex vivo amyloid fibrils of two patients affected by dialysis-related amyloidosis. Protein Sci. 2007;16:343–9.

    Article  PubMed  CAS  Google Scholar 

  42. Obici L, Franceschini G, Calabresi L, et al. Structure, function and amyloidogenic propensity of apolipoprotein A-I. Amyloid 2006;13:191–205.

    Article  PubMed  CAS  Google Scholar 

  43. Connors LH, Jiang Y, Budnik M, et al. Heterogeneity in primary structure, post-translational modifications, and germline gene usage of nine full-length amyloidogenic kappa1 immunoglobulin light chains. Biochemistry 2007;46:14259–71.

    Article  PubMed  CAS  Google Scholar 

  44. Merlini G, Mastanduno M, Moy PW, Hauschka PV, Osserman EF. Molecular heterogeneity and gamma-carboxyglutamic acid content of Bence-Jones proteins: possible relevance to amyloidogenicity. In: Glenner GG, Osserman EF, Benditt EP, Calkins E, Cohen AS, Zucker-Franklin D, editors. Amyloidosis. New York: Plenum; 1986, pp. 25–34.

    Google Scholar 

  45. Haass C, De Strooper B. The presenilins in Alzheimer’s disease–proteolysis holds the key. Science 1999;286:916–9.

    Article  PubMed  CAS  Google Scholar 

  46. Miller DL, Papayannopoulos IA, Styles J, et al. Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer’s disease. Arch Biochem Biophys. 1993;301:41–52.

    Article  PubMed  CAS  Google Scholar 

  47. Lim A, Prokaeva T, McComb ME, Connors LH, Skinner M, Costello CE. Identification of S-sulfonation and S-thiolation of a novel transthyretin Phe33Cys variant from a patient diagnosed with familial transthyretin amyloidosis. Protein Sci. 2003;12:1775–85.

    Article  PubMed  CAS  Google Scholar 

  48. Kingsbury JS, Klimtchuk ES, Theberge R, Costello CE, Connors LH. Expression, purification, and in vitro cysteine-10 modification of native sequence recombinant human transthyretin. Protein Expr Purif. 2007;53:370–7.

    Article  PubMed  CAS  Google Scholar 

  49. Morante S. The role of metals in beta-amyloid peptide aggregation: X-Ray spectroscopy and numerical simulations. Curr Alzheimer Res. 2008;5:508–24.

    Article  PubMed  CAS  Google Scholar 

  50. Drago D, Bolognin S, Zatta P. Role of metal ions in the abeta oligomerization in Alzheimer’s disease and in other neurological disorders. Curr Alzheimer Res. 2008;5:500–7.

    Article  PubMed  CAS  Google Scholar 

  51. Zatta P, Drago D, Zambenedetti P, et al. Accumulation of copper and other metal ions, and metallothionein I/II expression in the bovine brain as a function of aging. J Chem Neuroanat. 2008;36:1–5.

    Article  PubMed  CAS  Google Scholar 

  52. Hamazaki H. Ca(2+)-dependent binding of human serum amyloid P component to Alzheimer’s beta-amyloid peptide. J Biol Chem. 1995;270:10392–4.

    PubMed  CAS  Google Scholar 

  53. Tennent GA, Lovat LB, Pepys MB. Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis. Proc Natl Acad Sci USA. 1995;92:4299–303.

    Article  PubMed  CAS  Google Scholar 

  54. Pepys MB. Pathogenesis, diagnosis and treatment of systemic amyloidosis. Philos Trans R Soc Lond B Biol Sci. 2001;356:203–10; discussion 10–1.

    Article  PubMed  CAS  Google Scholar 

  55. Gallo G, Wisniewski T, Choi-Miura NH, Ghiso J, Frangione B. Potential role of apolipoprotein-E in fibrillogenesis. Am J Pathol. 1994;145:526–30.

    PubMed  CAS  Google Scholar 

  56. Kisilevsky R. The relation of proteoglycans, serum amyloid P and apo E to amyloidosis current status, 2000. Amyloid 2000;7:23–5.

    Article  PubMed  CAS  Google Scholar 

  57. Ohashi K, Kawai R, Hara M, Okada Y, Tachibana S, Ogura Y. Increased matrix metalloproteinases as possible cause of osseoarticular tissue destruction in long-term haemodialysis and beta 2-microglobulin amyloidosis. Virchows Arch. 1996;428:37–46.

    Article  PubMed  CAS  Google Scholar 

  58. Ancsin JB. Amyloidogenesis: historical and modern observations point to heparan sulfate proteoglycans as a major culprit. Amyloid 2003;10:67–79.

    Article  PubMed  CAS  Google Scholar 

  59. Kisilevsky R. Review: amyloidogenesis-unquestioned answers and unanswered questions. J Struct Biol. 2000;130:99–108.

    Article  PubMed  CAS  Google Scholar 

  60. Elimova E, Kisilevsky R, Ancsin JB. Heparan sulfate promotes the aggregation of HDL-associated serum amyloid A: evidence for a proamyloidogenic histidine molecular switch. FASEB J. 2009;23:3436–48.

    Google Scholar 

  61. McCubbin WD, Kay CM, Narindrasorasak S, Kisilevsky R. Circular-dichroism studies on two murine serum amyloid A proteins. Biochem J. 1988;256:775–83.

    PubMed  CAS  Google Scholar 

  62. Fraser PE, Nguyen JT, Chin DT, Kirschner DA. Effects of sulfate ions on Alzheimer beta/A4 peptide assemblies: implications for amyloid fibril-proteoglycan interactions. J Neurochem. 1992;59:1531–40.

    Article  PubMed  CAS  Google Scholar 

  63. McLaurin J, Franklin T, Zhang X, Deng J, Fraser PE. Interactions of Alzheimer amyloid-beta peptides with glycosaminoglycans effects on fibril nucleation and growth. Eur J Biochem. 1999;266:1101–10.

    Article  PubMed  CAS  Google Scholar 

  64. Castillo GM, Cummings JA, Yang W, et al. Sulfate content and specific glycosaminoglycan backbone of perlecan are critical for perlecan’s enhancement of islet amyloid polypeptide (amylin) fibril formation. Diabetes 1998;47:612–20.

    Article  PubMed  CAS  Google Scholar 

  65. Yamamoto S, Yamaguchi I, Hasegawa K, et al. Glycosaminoglycans enhance the trifluoroethanol-induced extension of beta 2-microglobulin-related amyloid fibrils at a neutral pH. J Am Soc Nephrol. 2004;15:126–33.

    Article  PubMed  CAS  Google Scholar 

  66. Suk JY, Zhang F, Balch WE, Linhardt RJ, Kelly JW. Heparin accelerates gelsolin amyloidogenesis. Biochemistry 2006;45:2234–42.

    Article  PubMed  CAS  Google Scholar 

  67. McLaughlin RW, De Stigter JK, Sikkink LA, Baden EM, Ramirez-Alvarado M. The effects of sodium sulfate, glycosaminoglycans, and Congo red on the structure, stability, and amyloid formation of an immunoglobulin light-chain protein. Protein Sci. 2006;15:1710–22.

    Article  PubMed  CAS  Google Scholar 

  68. Calamai M, Kumita JR, Mifsud J, et al. Nature and significance of the interactions between amyloid fibrils and biological polyelectrolytes. Biochemistry 2006;45:12806–15.

    Article  PubMed  CAS  Google Scholar 

  69. Motamedi-Shad N, Monsellier E, Torrassa S, Relini A, Chiti F. Kinetic analysis of amyloid formation in the presence of heparan sulfate: faster unfolding and change of pathway. J Biol Chem. 2009;284:29921–34.

    Google Scholar 

  70. Inoue S, Kuroiwa M, Saraiva MJ, Guimaraes A, Kisilevsky R. Ultrastructure of familial amyloid polyneuropathy amyloid fibrils: examination with high-resolution electron microscopy. J Struct Biol. 1998;124:1–12.

    Article  PubMed  CAS  Google Scholar 

  71. Elimova E, Kisilevsky R, Szarek WA, Ancsin JB. Amyloidogenesis recapitulated in cell culture: a peptide inhibitor provides direct evidence for the role of heparan sulfate and suggests a new treatment strategy. FASEB J. 2004;18:1749–51.

    PubMed  CAS  Google Scholar 

  72. Li JP, Galvis ML, Gong F, et al. In vivo fragmentation of heparan sulfate by heparanase overexpression renders mice resistant to amyloid protein A amyloidosis. Proc Natl Acad Sci USA. 2005;102:6473–7.

    Article  PubMed  CAS  Google Scholar 

  73. Kisilevsky R, Lemieux LJ, Fraser PE, Kong X, Hultin PG, Szarek WA. Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer’s disease. Nat Med. 1995;1:143–8.

    Article  PubMed  CAS  Google Scholar 

  74. Ancsin JB, Kisilevsky R. The heparin/heparan sulfate-binding site on apo-serum amyloid A. Implications for the therapeutic intervention of amyloidosis. J Biol Chem. 1999;274:7172–81.

    Article  PubMed  CAS  Google Scholar 

  75. Dember LM, Hawkins PN, Hazenberg BP, et al. Eprodisate for the treatment of renal disease in AA amyloidosis. N Engl J Med. 2007;356:2349–60.

    Article  PubMed  CAS  Google Scholar 

  76. Goldsbury C, Kistler J, Aebi U, Arvinte T, Cooper GJ. Watching amyloid fibrils grow by time-lapse atomic force microscopy. J Mol Biol. 1999;285:33–9.

    Article  PubMed  CAS  Google Scholar 

  77. Zhu M, Souillac PO, Ionescu-Zanetti C, Carter SA, Fink AL. Surface-catalyzed amyloid fibril formation. J Biol Chem. 2002;277:50914–22.

    Article  PubMed  CAS  Google Scholar 

  78. Linse S, Cabaleiro-Lago C, Xue WF, et al. Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci USA. 2007;104:8691–6.

    Article  PubMed  CAS  Google Scholar 

  79. Relini A, Canale C, De Stefano S, et al. Collagen plays an active role in the aggregation of beta2-microglobulin under physiopathological conditions of dialysis-related amyloidosis. J Biol Chem. 2006;281:16521–9.

    Article  PubMed  CAS  Google Scholar 

  80. Harris DL, King E, Ramsland PA, Edmundson AB. Binding of nascent collagen by amyloidogenic light chains and amyloid fibrillogenesis in monolayers of human fibrocytes. J Mol Recognit. 2000;13:198–212.

    Article  PubMed  CAS  Google Scholar 

  81. Meng X, Fink AL, Uversky VN. The effect of membranes on the in vitro fibrillation of an amyloidogenic light-chain variable-domain SMA. J Mol Biol. 2008;381:989–99.

    Article  PubMed  CAS  Google Scholar 

  82. Pepys MB. Amyloidosis. Annu Rev Med. 2006;57:223–41.

    Article  PubMed  CAS  Google Scholar 

  83. Yan SD, Zhu H, Zhu A, et al. Receptor-dependent cell stress and amyloid accumulation in systemic amyloidosis. Nat Med. 2000;6:643–51.

    Article  PubMed  CAS  Google Scholar 

  84. Sousa MM, Du Yan S, Fernandes R, Guimaraes A, Stern D, Saraiva MJ. Familial amyloid polyneuropathy: receptor for advanced glycation end products-dependent triggering of neuronal inflammatory and apoptotic pathways. J Neurosci. 2001;21:7576–86.

    PubMed  CAS  Google Scholar 

  85. Rogers J, Webster S, Lue LF, et al. Inflammation and Alzheimer’s disease pathogenesis. Neurobiol Aging 1996;17:681–6.

    Article  PubMed  CAS  Google Scholar 

  86. Cecchi C, Pensalfini A, Baglioni S, et al. Differing molecular mechanisms appear to underlie early toxicity of prefibrillar HypF-N aggregates to different cell types. Febs J. 2006;273:2206–22.

    Article  PubMed  CAS  Google Scholar 

  87. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007;8:101–12.

    Article  PubMed  CAS  Google Scholar 

  88. Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ. Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol. 2006;572:477–92.

    Article  PubMed  CAS  Google Scholar 

  89. Klyubin I, Walsh DM, Lemere CA, et al. Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo. Nat Med. 2005;11:556–61.

    Article  PubMed  CAS  Google Scholar 

  90. Cleary JP, Walsh DM, Hofmeister JJ, et al. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci. 2005;8:79–84.

    Article  PubMed  CAS  Google Scholar 

  91. Walsh DM, Selkoe DJ. Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett. 2004;11:213–28.

    Article  PubMed  CAS  Google Scholar 

  92. Palladini G, Lavatelli F, Russo P, et al. Circulating amyloidogenic free light chains and serum N-terminal natriuretic peptide type B decrease simultaneously in association with improvement of survival in AL. Blood 2006;107:3854–8.

    Article  PubMed  CAS  Google Scholar 

  93. Andersson K, Olofsson A, Nielsen EH, Svehag SE, Lundgren E. Only amyloidogenic intermediates of transthyretin induce apoptosis. Biochem Biophys Res Commun. 2002;294:309–14.

    Article  PubMed  CAS  Google Scholar 

  94. Lambert MP, Barlow AK, Chromy BA, et al. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA. 1998;95:6448–53.

    Article  PubMed  CAS  Google Scholar 

  95. Sakono M, Zako T. Amyloid oligomers: formation and toxicity of Abeta oligomers. FEBS J. 2010;277:1348–58.

    Google Scholar 

  96. Hartley DM, Walsh DM, Ye CP, et al. Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci. 1999;19:8876–84.

    PubMed  CAS  Google Scholar 

  97. Sousa MM, Cardoso I, Fernandes R, Guimaraes A, Saraiva MJ. Deposition of transthyretin in early stages of familial amyloidotic polyneuropathy: evidence for toxicity of nonfibrillar aggregates. Am J Pathol. 2001;159:1993–2000.

    Article  PubMed  CAS  Google Scholar 

  98. Palladini G, Campana C, Klersy C, et al. Serum N-terminal pro-brain natriuretic peptide is a sensitive marker of myocardial dysfunction in AL amyloidosis. Circulation 2003;107:2440–5.

    Article  PubMed  CAS  Google Scholar 

  99. Carulla N, Caddy GL, Hall DR, et al. Molecular recycling within amyloid fibrils. Nature 2005;436:554–8.

    Article  PubMed  CAS  Google Scholar 

  100. Monis GF, Schultz C, Ren R, et al. Role of endocytic inhibitory drugs on internalization of amyloidogenic light chains by cardiac fibroblasts. Am J Pathol. 2006;169:1939–52.

    Article  PubMed  CAS  Google Scholar 

  101. Caughey B, Lansbury PT. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci. 2003;26:267–98.

    Article  PubMed  CAS  Google Scholar 

  102. Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT, Jr. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 2002;418:291.

    Article  PubMed  CAS  Google Scholar 

  103. Lashuel HA, Lansbury PT, Jr. Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Q Rev Biophys. 2006;39:167–201.

    Article  PubMed  CAS  Google Scholar 

  104. Brenner DA, Jain M, Pimentel DR, et al. Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ Res. 2004;94:1008–10.

    Article  PubMed  CAS  Google Scholar 

  105. Shi J, Guan J, Jiang B, Brenner DA, Del Monte F, Ward JE, Connors LH, Sawyer DB, Semigran MJ, Macgillivray TE, Seldin DC, Falk R, Liao R. Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38alpha MAPK pathway. Proc Natl Acad Sci USA. 2010;107:4188–93.

    Google Scholar 

  106. Sousa MM, do Amaral JB, Guimaraes A, Saraiva MJ. Up-regulation of the extracellular matrix remodeling genes, biglycan, neutrophil gelatinase-associated lipocalin, and matrix metalloproteinase-9 in familial amyloid polyneuropathy. FASEB J. 2005;19:124–6.

    PubMed  CAS  Google Scholar 

  107. Teixeira PF, Cerca F, Santos SD, Saraiva MJ. Endoplasmic reticulum stress associated with extracellular aggregates. Evidence from transthyretin deposition in familial amyloid polyneuropathy. J Biol Chem. 2006;281:21998–2003.

    Article  PubMed  CAS  Google Scholar 

  108. Santos SD, Cardoso I, Magalhaes J, Saraiva MJ. Impairment of the ubiquitin-proteasome system associated with extracellular transthyretin aggregates in familial amyloidotic polyneuropathy. J Pathol. 2007;213:200–9.

    Article  PubMed  CAS  Google Scholar 

  109. Casas S, Gomis R, Gribble FM, Altirriba J, Knuutila S, Novials A. Impairment of the ubiquitin-proteasome pathway is a downstream endoplasmic reticulum stress response induced by extracellular human islet amyloid polypeptide and contributes to pancreatic beta-cell apoptosis. Diabetes 2007;56:2284–94.

    Article  PubMed  CAS  Google Scholar 

  110. Zabel C, Sagi D, Kaindl AM, et al. Comparative proteomics in neurodegenerative and non-neurodegenerative diseases suggest nodal point proteins in regulatory networking. J Proteome Res. 2006;5:1948–58.

    Article  PubMed  CAS  Google Scholar 

  111. Rekas A, Adda CG, Andrew Aquilina J, et al. Interaction of the molecular chaperone alphaB-crystallin with alpha-synuclein: effects on amyloid fibril formation and chaperone activity. J Mol Biol. 2004;340:1167–83.

    Article  PubMed  CAS  Google Scholar 

  112. Raman B, Ban T, Sakai M, et al. AlphaB-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid beta-peptide and beta2-microglobulin. Biochem J. 2005;392:573–81.

    Article  PubMed  CAS  Google Scholar 

  113. Lee S, Carson K, Rice-Ficht A, Good T. Small heat shock proteins differentially affect Abeta aggregation and toxicity. Biochem Biophys Res Commun. 2006;347:527–33.

    Article  PubMed  CAS  Google Scholar 

  114. Waudby CA, Knowles TP, Devlin GL, Skepper JN, Ecroyd H, Carver JA, Welland ME, Christodoulou J, Dobson CM, Meehan S. The interaction of alphaB-crystallin with mature alpha-synuclein amyloid fibrils inhibits their elongation. Biophys J. 2010;98:843–51.

    Google Scholar 

  115. Dispenzieri A, Kyle RA, Gertz MA, et al. Survival in patients with primary systemic amyloidosis and raised serum cardiac troponins. Lancet 2003;361:1787–9.

    Article  PubMed  CAS  Google Scholar 

  116. Wechalekar A, Merlini G, Gillmore JD, et al. Role of NT-ProBNP to assess the adequacy of treatment response in AL amyloidosis. Blood 2008;112:596–7.

    Article  CAS  Google Scholar 

  117. Pepys MB, Herbert J, Hutchinson WL, et al. Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature 2002;417:254–9.

    Article  PubMed  CAS  Google Scholar 

  118. Tojo K, Sekijima Y, Kelly JW, Ikeda S. Diflunisal stabilizes familial amyloid polyneuropathy-associated transthyretin variant tetramers in serum against dissociation required for amyloidogenesis. Neurosci Res. 2006;56:441–9.

    Article  PubMed  CAS  Google Scholar 

  119. Sekijima Y, Kelly JW, Ikeda S. Pathogenesis of and therapeutic strategies to ameliorate the transthyretin amyloidoses. Curr Pharm Design. 2008;14:3219–30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lavatelli, F., Palladini, G., Merlini, G. (2010). Pathogenesis of Systemic Amyloidoses. In: Gertz, M., Rajkumar, S. (eds) Amyloidosis. Contemporary Hematology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-631-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-631-3_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-630-6

  • Online ISBN: 978-1-60761-631-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics