Skip to main content

Aryl Hydrocarbon Receptor-Mediated Carcinogenesis and Modulation by Dietary Xenobiotic and Natural Ligands

  • Chapter
  • First Online:
Bioactive Compounds and Cancer

Key Points

1. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor of the helix-loop-helix/PAS family. Many compounds interact with the AhR including xenobiotic (“xeno” = foreign) polycyclic aromatic hydrocarbons (PAH) and dioxins, endogenous ligands, and natural bioactive compounds. The activation of the AhR leads to increased expression of Phase I enzymes at xenobiotic responsive elements (XRE) and production of chemically reactive species known to induce cancer. Conversely, activation of the AhR leads to decreased expression of the tumor-suppressor genes p16 and BRCA-1.

2. Data from both animal and human studies suggest that the persistent activation of the AhR may be a risk factor and promote various types of cancer. In particular, PAH appear to preferentially induce mammary tumors in preclinical models. Natural modulators of the AhR include the phytoalexin resveratrol, the indole compounds indole-3-carbinol (I3C) and its condensation product 3,3-diindolylmethane (DIM), several flavonoids, and catechins.

3. Data from cell culture and animal studies suggest that at relatively low concentration (∼10 μM), DIM may exert antagonistic protective effects, whereas at higher levels (∼100 μM), it may exert agonistic effects and activate the expression of P450. Animal studies reported that the compound I3C may also promote tumor development. The therapeutic properties of these compounds may be influenced by various factors including cell context, timing of exposure, concentration, and relative binding affinity for the AhR.

4. Both the bioavailability and pharmacokinetics of AhR ligands from phytochemicals may influence the therapeutic values of preventative strategies based on AhR antagonists.

5. Although further investigations are necessary to assess the potential benefits of AhR-based strategies against cancer, it is suggested that several phytochemicals may exert protective effects and reduce the risk of toxicity and cancer through competitive transformation of the AhR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perdew, G.H. (2008) Ah receptor binding to its cognate response element is required for dioxin-mediated toxicity. Toxicol Sci 106, 301–03.

    Article  CAS  PubMed  Google Scholar 

  2. Hankinson, O. (2005) Role of coactivators in transcriptional activation by the aryl hydrocarbon receptor. Arch Biochem Biophys 433, 379–86.

    Article  CAS  PubMed  Google Scholar 

  3. Matthews, J., Wihlén, B., Thomsen, J., and Gustafsson, J.A. (2005) Aryl hydrocarbon receptor-mediated transcription: Ligand-dependent recruitment of estrogen receptor alpha to 2,3,7,8-tetrachlorodibenzo-p-dioxin-responsive promoters. Mol Cell Biol 25, 5317–28.

    Article  CAS  PubMed  Google Scholar 

  4. Hestermann, E.V., and Brown, M. (2003) Agonist and chemopreventative ligands induce differential transcriptional cofactor recruitment by aryl hydrocarbon receptor. Mol Cell Biol 23, 7920–25.

    Article  CAS  PubMed  Google Scholar 

  5. Safe, S. (2001) Molecular biology of the Ah receptor and its role in carcinogenesis. Toxicol Lett 120, 1–7.

    Article  CAS  PubMed  Google Scholar 

  6. Hayes, J.D., Kelleher, M.O., and Eggleston, I.M. (2008) The cancer chemopreventive actions of phytochemicals derived from glucosinolates. Eur J Nutr 47, 73–88.

    Article  CAS  PubMed  Google Scholar 

  7. Ruddon, R. (1995) Cancer Biology. 3rd ed., New York: Oxford University Press.

    Google Scholar 

  8. Hankinson, O. (1995) The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol 35, 307–40.

    Article  CAS  PubMed  Google Scholar 

  9. Hahn, M.E. (2002) Aryl hydrocarbon receptors: Diversity and evolution. Chem Biol Interact 141, 131–60.

    Article  CAS  PubMed  Google Scholar 

  10. Steenland, K., Bertazzi, P., Baccarelli, A., and Kogevinas, M. (2004) Dioxin revisited: Developments since the 1997 IARC classification of dioxin as a human carcinogen. Environ Health Perspect 112, 1265–68.

    Article  CAS  PubMed  Google Scholar 

  11. Miao, W., Hu, L., Scrivens, P.J., and Batist, G. (2005) Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: Direct cross-talk between phase I and II drug-metabolizing enzymes. J Biol Chem 280, 20340–48.

    Article  CAS  PubMed  Google Scholar 

  12. Köhle, C., and Bock, K.W. (2006) Activation of coupled Ah receptor and Nrf2 gene batteries by dietary phytochemicals in relation to chemoprevention. Biochem Pharmacol 72, 795–805.

    Article  PubMed  CAS  Google Scholar 

  13. Nebert, D.W., and Karp, C.L. (2008) Endogenous functions of the Aryl hydrocarbon receptor: Intersection of cytochromeP450 (CYP1)-metabolized eicosanoids and AHR biology. J Biol Chem, Aug 18 [Epub ahead of print] PMID: 18713746.

    PubMed  Google Scholar 

  14. Zhang, N., and Walker, M.K. (2007) Crosstalk between the aryl hydrocarbon receptor and hypoxia on the constitutive expression of cytochrome P4501A1 mRNA. Cardiovasc Toxicol 7, 282–90.

    Article  CAS  PubMed  Google Scholar 

  15. Baba, T., Mimura, J., Nakamura, N., Harada, N., Yamamoto, M., Morohashi, K., and Fujii-Kuriyama, Y. (2005) Intrinsic function of the aryl hydrocarbon (dioxin) receptor as a key factor in female Reproduction. Mol Cell Biol 22, 10040–51.

    Article  CAS  Google Scholar 

  16. Pocar, P., Fischer, B., Klonisch, T., and Hombach-Klonisch, S. (2005) Molecular interactions of the aryl hydrocarbon receptor and its biological and toxicological relevance for reproduction. Reproduction 129, 379–89.

    Article  CAS  PubMed  Google Scholar 

  17. Wormke, M., Stoner, M., Saville, B., and Safe, S. (2000) Crosstalk between estrogen receptor alpha and the aryl hydrocarbon receptor in breast cancer cells involves unidirectional activation of proteasomes. FEBS Lett 478, 109–12.

    Article  CAS  PubMed  Google Scholar 

  18. Fujimoto, J., Sakaguchi, H., Aoki, I., Khatun, S., Toyoki, H., and Tamaya, T. (2000) Steroid receptors and metastatic potential in endometrial cancers. J Steroid Biochem Mol Biol 75, 209–12.

    Article  CAS  PubMed  Google Scholar 

  19. Fujimoto, J., Sakaguchi, H., Aoki, I., Toyoki, H., and Tamaya, T. (2002) Clinical implications of the expression of estrogen receptor-alpha and -beta in primary and metastatic lesions of uterine endometrial cancers. Oncology 62, 269–77.

    Article  CAS  PubMed  Google Scholar 

  20. Park, S., Dong, B., and Matsumura, F. (2007) Rapid activation of c-Src kinase by dioxin is mediated by the Cdc37-HSP90 complex as part of Ah receptor signaling in MCF10A cells. Biochemistry 46, 899–908.

    Article  CAS  PubMed  Google Scholar 

  21. Ohtake, F., Takeyama, K., Matsumoto, T. et al. (2003) Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature 423, 545–50.

    Article  CAS  PubMed  Google Scholar 

  22. Rüegg, J., Swedenborg, E., Wahlström, D. et al. (2008) The transcription factor aryl hydrocarbon receptor nuclear translocator functions as an estrogen receptor beta-selective coactivator, and its recruitment to alternative pathways mediates antiestrogenic effects of dioxin. Mol Endocrinol 2, 304–16.

    Google Scholar 

  23. Haarmann-Stemmann, T., Bothe, H., and Abel, J. (2008) Growth factors, cytokines and their receptors as downstream targets of arylhydrocarbon receptor (AhR) signaling pathways. Biochem Pharmacol, Sep 20. [Epub ahead of print] PMID: 18848820.

    PubMed  Google Scholar 

  24. Fritsche, E., Schafer, C., Calles, C. et al. (2007) Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proc Natl Acad Sci U S A 104, 8851–56.

    Article  CAS  PubMed  Google Scholar 

  25. Johansson, C.C., Yndestad, A., Enserink, J.M. et al. (2004) The epidermal growth factor-like growth factor amphiregulin is strongly induced by the adenosine 30,50-onophosphate pathway in various cell types. Endocrinology 145, 5177–84.

    Article  CAS  PubMed  Google Scholar 

  26. Peng, X.H., Karna, P., Cao, Z., Jiang, B.H., Zhou, M., and Yang, L. (2006) Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1alpha signal pathways increases resistance to apoptosis by up-regulating survivin gene expression. J Biol Chem 281, 25903–14.

    Article  CAS  PubMed  Google Scholar 

  27. Puga, A., Barnes, S.J., Dalton, T.P., Chang, C., Knudsen, E.S., and Maier, M.A. (2000) Aromatic hydrocarbon receptor interaction with the retinoblastoma protein potentiates repression of E2F-dependent transcription and cell cycle arrest. J Biol Chem 275, 2943–50.

    Article  CAS  PubMed  Google Scholar 

  28. Huang, G., and Elferink, C.J. (2005) Multiple mechanisms are involved in Ah receptor-mediated cell cycle arrest. Mol Pharmacol 67, 88–96.

    Article  CAS  PubMed  Google Scholar 

  29. Marlowe, J.L., and Puga, A. (2005) Aryl hydrocarbon receptor, cell cycle regulation, toxicity, and tumorigenesis. J Cell Biochem 96, 1174–84.

    Article  CAS  PubMed  Google Scholar 

  30. Ray, S.S., and Swanson, H.I. (2004) Dioxin-induced immortalization of normal human keratinocytes and silencing of p53 and p16INK4a. J Biol Chem 279, 27187–93.

    Article  CAS  PubMed  Google Scholar 

  31. Puga, A., Nebert, D.W., and Carrier, F. (1992) Dioxin induces expression of c-fos and c-jun proto-oncogenes and a large increase in transcription factor AP-1. DNA Cell Biol 11, 269–81.

    Article  CAS  PubMed  Google Scholar 

  32. Hockings, J.K., Degner, S.C., Morgan, S.S., Kemp, M.Q., and Romagnolo, D.F. (2008) Involvement of a specificity proteins-binding element in regulation of basal and estrogen-induced transcription activity of the BRCA1 gene. Breast Cancer Res 10, R29.

    Article  PubMed  CAS  Google Scholar 

  33. Degner, S.C., Kemp, M.Q., Hockings, J.K., and Romagnolo, D.F. (2007) Cyclooxygenase-2 promoter activation by the aromatic hydrocarbon receptor in breast cancer mcf-7 cells: Repressive effects of conjugated linoleic acid. Nutr Cancer 59, 248–57.

    Article  CAS  PubMed  Google Scholar 

  34. Degner, S.C., Papoutsis, A.J., Selmin, O., and Romagnolo, D.F. (2009) Targeting of aryl hydrocarbon receptor-mediated activation of COX-2 expression by the indole-3-carbinol metabolite 3,3-diindolylmethane in breast cancer cells. J Nutr 139, 26–32.

    CAS  PubMed  Google Scholar 

  35. Moennikes, O., Loeppen, S., Buchmann, A. et al. (2004) A constitutively active dioxin/aryl hydrocarbon receptor promotes hepatocarcinogenesis in mice. Cancer Res 64, 4707–10.

    Article  CAS  PubMed  Google Scholar 

  36. Yang, X., Solomon, S., Fraser, L.R. et al. (2008) Constitutive regulation of CYP1B1 by the aryl hydrocarbon receptor (AhR) in pre-malignant and malignant mammary tissue. J Cell Biochem 104, 402–17.

    Article  CAS  PubMed  Google Scholar 

  37. Harstad, E.B., Guite, C.A., Thomae, T.L., and Bradfield, C.A. (2006) Liver deformation in Ahr-null mice: Evidence for aberrant hepatic perfusion in early development. Mol Pharmacol 69, 1534–41.

    Article  CAS  PubMed  Google Scholar 

  38. Fernandez-Salguero, P., Pineau, T., Hilbert, D.M. et al. (1995) Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science 268, 722–26.

    Article  CAS  PubMed  Google Scholar 

  39. Shimizu, Y., Nakatsuru, Y., Ichinose, M. et al. (2000) Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A 97, 779–82.

    Article  CAS  PubMed  Google Scholar 

  40. Fritz, W.A., Lin, T.M., and Peterson, R.E. (2008) The aryl hydrocarbon receptor (AhR) inhibits vanadate-induced vascular endothelial growth factor (VEGF) production in TRAMP prostates. Carcinogenesis 29, 1077–82.

    Article  CAS  PubMed  Google Scholar 

  41. Papaconstantinou, A.D., Shanmugam, I., Shan, L. et al. (2006) Gene expression profiling in the mammary gland of rats treated with 7,12-dimethylbenz[a]anthracene. Int J Cancer 118, 17–24.

    Article  CAS  PubMed  Google Scholar 

  42. Currier, N., Solomon, S.E., Demicco, E.G. et al. (2005) Oncogenic signaling pathways activated in DMBA-induced mouse mammary tumors. Toxicol Pathol 33, 726–37.

    Article  CAS  PubMed  Google Scholar 

  43. McDougal, A., Wilson, C., and Safe, S. (1997) Inhibition of 7,12-dimethylbenz[a]anthracene-induced rat mammary tumor growth by aryl hydrocarbon receptor agonists. Cancer Lett 120, 53–63.

    Article  CAS  PubMed  Google Scholar 

  44. Trombino, A.F., Near, R.I., Matulka, R.A. et al. (2000) Expression of the aryl hydrocarbon receptor/transcription factor (AhR) and AhR-regulated CYP1 gene transcripts in a rat model of mammary tumorigenesis. Breast Cancer Res Treat 63, 117–31.

    Article  CAS  PubMed  Google Scholar 

  45. Liehr, J.G., and Ricci, M.J. (1996) 4-Hydroxylation of estrogens as marker of human mammary tumors. Proc Natl Acad Sci U S A 93, 3294–96.

    Article  CAS  PubMed  Google Scholar 

  46. Kociba, R.J., Keyes, D.G., Beyer, J.E. et al. (1978) Results of a two-year chronic toxicity and oncogenicity study of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. Toxicol Appl Pharmacol 46, 279–303.

    Article  CAS  PubMed  Google Scholar 

  47. Nebert, D.W. (1989) The Ah locus: Genetic differences in toxicity, cancer, mutation, and birth defects. Crit Rev Toxicol 20, 153–74.

    Article  CAS  PubMed  Google Scholar 

  48. Anderson, L.M., Ruskie, S., Carter, J., Pittinger, S., Kovatch, R.M., and Riggs, C.W. (1995) Fetal mouse susceptibility to transplacental carcinogenesis: Differential influence of Ah receptor phenotype on effects of 3-methylcholanthrene, 12-dimethylbenz[a]anthracene, and benzo[a]pyrene. Pharmacogenetics 5, 364–72.

    Article  CAS  PubMed  Google Scholar 

  49. Yu, Z., Loehr, C.V., Fischer, K.A. et al. (2006) In utero exposure of mice to dibenzo[a,l]pyrene produces lymphoma in offspring: Role of the aryl hydrocarbon receptor. Cancer Res 66, 755–62.

    Article  CAS  PubMed  Google Scholar 

  50. Castro, D.J., Löhr, C.V., Fischer, K.A., Pereira, C.B., and Williams, D.E. (2008) Lymphoma and lung cancer in offspring born to pregnant mice dosed with dibenzo[a,l]pyrene: The importance of in utero vs. lactational exposure. Toxicol Appl Pharmacol, Sep 24. [Epub ahead of print].

    PubMed  Google Scholar 

  51. Jenkins, S., Rowell, C., Wang, J., and Lamartiniere, C.A. (2007) Prenatal TCDD exposure predisposes for mammary cancer in rats. Reprod Toxicol 23, 391–96.

    Article  CAS  PubMed  Google Scholar 

  52. Hayashi, S., Watanabe, J., Nakachi, K., Eguchi, H., Gotoh, O., and Kawajiri, K. (1994) Interindividual difference in expression of human Ah receptor and related P450 genes. Carcinogenesis 15, 801–06.

    Article  CAS  PubMed  Google Scholar 

  53. Koliopanos, A., Kleeff, J., Xiao, Y. et al. (2002) Increased arylhydrocarbon receptor expression offers a potential therapeutic target for pancreatic cancer. Oncogene 21, 6059–70.

    Article  CAS  PubMed  Google Scholar 

  54. Chang, J.T., Chang, H., Chen, P.H., Lin, S.L., and Lin, P. (2007) Requirement of aryl hydrocarbon receptor overexpression for CYP1B1 up-regulation and cell growth in human lung adenocarcinomas. Clin Cancer Res 13, 38–45.

    Article  CAS  PubMed  Google Scholar 

  55. Lin, P., Chang, H., Tsai, W.T. et al. (2003) Overexpression of aryl hydrocarbon receptor in human lung carcinomas. Toxicol Pathol 31, 22–30.

    Article  CAS  PubMed  Google Scholar 

  56. Martinez, V., Kennedy, S., Doolan, P. et al. (2008) Drug metabolism-related genes as potential biomarkers: Analysis of expression in normal and tumour breast tissue. Breast Cancer Res Treat 110, 521–30.

    Article  CAS  PubMed  Google Scholar 

  57. Mulero-Navarro, S., Carvajal-Gonzalez, J.M., Herranz, M. et al. (2006) The dioxin receptor is silenced by promoter hypermethylation in human acute lymphoblastic leukemia through inhibition of Sp1 binding. Carcinogenesis 27, 1099–104.

    Article  CAS  PubMed  Google Scholar 

  58. Shin, A., Shrubsole, M.J., Rice, J.M. et al. (2008) Meat intake, heterocyclic amine exposure, and metabolizing enzyme polymorphisms in relation to colorectal polyp risk. Cancer Epidemiol Biomarkers Prev 17, 320–29.

    Article  CAS  PubMed  Google Scholar 

  59. Bin, P., Leng, S., Cheng, J. et al. (2008) Association of aryl hydrocarbon receptor gene polymorphisms and urinary 1-hydroxypyrene in polycyclic aromatic hydrocarbon-exposed workers. Cancer Epidemiol Biomarkers Prev 17, 1702–08.

    Article  CAS  PubMed  Google Scholar 

  60. Kim, J.H., Kim, H., Lee, K.Y. et al. (2007) Aryl hydrocarbon receptor gene polymorphisms affect lung cancer risk. Lung Cancer 56, 9–15.

    Article  PubMed  Google Scholar 

  61. Chen, D., Tian, T., Wang, H. et al. (2008) Association of human aryl hydrocarbon receptor gene polymorphisms with risk of lung cancer among cigarette smokers in a Chinese population. Pharmacogenet Genomics, Sep 24. [Epub ahead of print].

    Google Scholar 

  62. Tsuchiya, Y., Nakajima, M., Itoh, S., Iwanari, M., and Yokoi, T. (2003) Expression of aryl hydrocarbon receptor repressor in normal human tissues and inducibility by polycyclic aromatic hydrocarbons in human tumor-derived cell lines. Toxicol Sci 72, 253–59.

    Article  CAS  PubMed  Google Scholar 

  63. Zudaire, E., Cuesta, N., Murty, V. et al. (2008) The aryl hydrocarbon receptor repressor is a putative tumor suppressor gene in multiple human cancers. J Clin Invest 118, 640–50.

    CAS  PubMed  Google Scholar 

  64. Schlezinger, J.J., Liu, D., Farago, M., Seldin, D.C., Belguise, K., Sonenshein, G.E., and Sherr, D.H. (2006) A role for the aryl hydrocarbon receptor in mammary gland tumorigenesis. Biol Chem 387, 1175–87.

    Article  CAS  PubMed  Google Scholar 

  65. Russo, J., Tahin, Q., Lareef, M.H., Hu, Y.-F., and Russo, I.H. (2002) Neoplastic transformation of human breast epithelial cells by estrogens and chemical carcinogens. Environ Mol Mutagen 39, 254–63.

    Article  CAS  PubMed  Google Scholar 

  66. Hecht, S.S. (2002) Tobacco smoke carcinogens and breast cancer. Environ Mol Mutagen 39, 119–26.

    Article  CAS  PubMed  Google Scholar 

  67. Hattemer-Frey, H.A., and Travis, C.C. (1991) Benzo-a-pyrene: Environmental partitioning and human exposure. Toxicol Ind Health 7, 141–57.

    CAS  PubMed  Google Scholar 

  68. Burchiel, S.W., and Luster, M.I. (2001) Signaling by environmental polycyclic aromatic hydrocarbons in human lymphocytes. Clin Immunol 98, 2–10.

    Article  CAS  PubMed  Google Scholar 

  69. Menzie, C.A., Potocki, B.B., and Santodonato, J. (1992) Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 26, 1278–84.

    Article  CAS  Google Scholar 

  70. Lodovici, M., Dolara, P., Casalini, C., Ciappellano, S., and Testolin, G. (1995) Polycyclic aromatic hydrocarbon contamination in the Italian diet. Food Addit Contam 12, 703–13.

    Article  CAS  PubMed  Google Scholar 

  71. Jakszyn, P., Agudo, A., Ibáñez, R. et al. (2004) Development of a food database of nitrosamines, heterocyclic amines, and polycyclic aromatic hydrocarbons. J Nutr 134, 2011–14.

    CAS  PubMed  Google Scholar 

  72. Sram, R.J., and Binkova, B. (2000) Molecular epidemiology studies on occupational and environmental exposure to mutagens and carcinogens. Environ Health Perspect 108(suppl 1), 451–60.

    Article  Google Scholar 

  73. Ibáñez, R., Agudo, A., Berenguer, A. et al. (2005) Dietary intake of polycyclic aromatic hydrocarbons in a Spanish population. J Food Prot 68, 2190–95.

    PubMed  Google Scholar 

  74. Huff, J., Lucier, G., and Tritscher, A. (1994) Carcinogenicity of TCDD: Experimental, mechanistic, and epidemiologic evidence. Annu Rev Pharmacol Toxicol 34, 343–72.

    Article  CAS  PubMed  Google Scholar 

  75. Hahn, M.E. (2002) Aryl hydrocarbon receptors: Diversity and evolution. Chem Biol Interact 141, 131–60.

    Article  CAS  PubMed  Google Scholar 

  76. Kogevinas, M. (2001) Human health effects of dioxins: Cancer, reproductive and endocrine system effects. Hum Reprod Update 7, 331–39.

    Article  CAS  PubMed  Google Scholar 

  77. Gilpin, R.K., Wagel, D.J., and Solch, J.G. (2003) Production, distribution, and fate of polychlorinated dibenzo-p-dioxins, dibenzofurans, and related organohalogens in the environment. In: Schecter, A. and Gasiewicz, T.A., eds. Dioxins and Health. Hoboken, NJ: Wiley, 89–136.

    Google Scholar 

  78. Fries, G.F. (1995) A review of the significance of animal food products as potential pathways of human exposures to dioxins. J Anim Sci 73, 1639–50.

    CAS  PubMed  Google Scholar 

  79. Liem, A.K., Furst, P., and Rappe, C. (2000) Exposure of populations to dioxins and related compounds. Food Addit Contam 17, 241–59.

    Article  CAS  PubMed  Google Scholar 

  80. Schecter, G., Frank, S., Riedel, K., Meger-Kossien, I., and Renner, T. (2000) Biomonitoring of exposure to polycyclic aromatic hydrocarbons of nonoccupationally exposed person. Cancer Epidemiol Biomarkers Prev 9, 373–80.

    Google Scholar 

  81. Hooper, K., Petreas, M.X., Chuvakova, T. et al. (1998) Analysis of breast milk to assess exposure to chlorinated contaminants in Kazakstan: High levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in agricultural villages of southern Kazakstan. Environ Health Perspect 106, 797–806.

    CAS  PubMed  Google Scholar 

  82. Weiss, J., Papke, O., Bignert, A. et al. (2003) Concentrations of dioxin and other organochlorines (PCBs, DDTs, HCHs) in human milk from Seveso, Milan and a Lombardian rural area in Italy: A study performed 25 years after the heavy dioxin exposure in Seveso. Acta Paediatr 92, 467–72.

    Article  CAS  PubMed  Google Scholar 

  83. Fattore, E., Fanelli, R., Turrini, A., and di Domenico, A. (2006) Current dietary exposure to polychlorodibenzo-p-dioxins, polychlorodibenzofurans, and dioxin-like polychlorobiphenyls in Italy. Mol Nutr Food Res 50, 915–21.

    Article  CAS  PubMed  Google Scholar 

  84. Revich, B., Aksel, E., Ushakova, T. et al. (2001) Dioxin exposure and public health in Chapaevsk, Russia. Chemosphere 43, 951–66.

    Article  CAS  PubMed  Google Scholar 

  85. Safe, S. (1993) Toxicology, structure-function relationship, and human and environmental health impacts of polychlorinated biphenyls: Progress and problems. Environ Health Perspect 100, 259–68.

    Article  CAS  PubMed  Google Scholar 

  86. Krüger, T., Long, M., and Bonefeld-Jørgensen, E.C. (2008) Plastic components affect the activation of the aryl hydrocarbon and the androgen receptor. Toxicology 246, 112–23.

    Article  PubMed  CAS  Google Scholar 

  87. Arisawa, K., Takeda, H., and Mikasa, H. (2005) Background exposure to PCDDs/PCDFs/PCBs and its potential health effects: A review of epidemiologic studies. J Med Invest 52, 10–21.

    Article  PubMed  Google Scholar 

  88. Thundiyil, J.G., Solomon, G.M., and Miller, M.D. (2007) Transgenerational exposures: Persistent chemical pollutants in the environment and breast milk. Pediatr Clin North Am 54, 81–101.

    Article  PubMed  Google Scholar 

  89. Solomon, G.M., and Weiss, P.M. (2002) Chemical contaminants in breast milk: Time trends and regional variability. Environ Health Perspect 110, A339–A47.

    Article  CAS  PubMed  Google Scholar 

  90. Lu, Y.F., Santostefano, M., Cunningham, B.D., Threadgill, M.D., and Safe, S. (1995) Identification of 3-methoxy-4-nitroflavone as a pure aryl hydrocarbon (Ah) receptor antagonist and evidence for more than one form of the nuclear Ah receptor in MCF-7 human breast cancer cells. Arch Biochem Biophys 316, 470–77.

    Article  CAS  PubMed  Google Scholar 

  91. Gasiewicz, T.A., Kende, A.S., Rucci, G., Whitney, B., and Willey, J.J. (1996) Analysis of structural requirements for Ah receptor antagonist activity: Ellipticines, flavones, and related compounds. Biochem Pharmacol 52, 1787–803.

    Article  CAS  PubMed  Google Scholar 

  92. Gasiewicz, T.A., Henry, E.C., and Collins, L.L. (2008) Expression and activity of aryl hydrocarbon receptors in development and cancer. Crit Rev Eukaryot Gene Expr 18, 279–321.

    Article  CAS  PubMed  Google Scholar 

  93. Merchant, M., Arellano, L., and Safe, S. (1990) The mechanism of action of alpha- naphthoflavone as an inhibitor of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced CYP1A1 gene expression. Arch Biochem Biophys 281, 84–89.

    Article  CAS  PubMed  Google Scholar 

  94. Wilhelmsson, A., Whitelaw, M.L., Gustafsson, J.A., and Poellinger, L. (1994) Agonistic and antagonistic effects of a-naphthoflavone on dioxin receptor function: Role of the basic region helix-loop-helix dioxin receptor partner factor. Arnt J Biol Chem 269, 19028–33.

    CAS  Google Scholar 

  95. Jeffy, B.D., Chen, E.J., Gudas, J.M., and Romagnolo, D.F. (2000) Disruption of cell cycle kinetics by benzo[a]pyrene: Inverse expression patterns of BRCA-1 and p53 in MCF-7 cells arrested in S and G2. Neoplasia 2, 460–70.

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, S., Qin, C., and Safe, S.H. (2003) Flavonoids as aryl hydrocarbon receptor agonists/antagonists: Effects of structure and cell context. Environ Health Perspect 111, 1877–82.

    Article  CAS  PubMed  Google Scholar 

  97. Denison, M.S., and Nagy, S.R. (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenousand endogenous chemicals. Annu Rev Pharmacol Toxicol 43, 309–34.

    Article  CAS  PubMed  Google Scholar 

  98. Park, E.J., and Pezzuto, J.M. (2002) Botanicals in cancer chemoprevention. Cancer Metastasis Rev 21, 231–55.

    Article  CAS  PubMed  Google Scholar 

  99. Bode, A.M., and Dong, Z. (2004) Targeting signal transduction pathways by chemopreventive agents. Mutat Res 555, 33–51.

    Article  CAS  PubMed  Google Scholar 

  100. Signorell, P., and Ghidoni, R. (2005) Resveratrol as an anticancer nutrient: Molecular basis, open questions and promises. J Nutr Biochem 16, 449–66.

    Article  CAS  Google Scholar 

  101. Banerjee, S., Bueso-Ramos, C., and Aggarwal, B.B. (2002) Suppression of 7,12 dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: Role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9. Cancer Res 62, 4945–54.

    CAS  PubMed  Google Scholar 

  102. Jang, M., Cai, L., and Udeani, G.O. (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275, 218–20.

    Article  CAS  PubMed  Google Scholar 

  103. Amakura, Y., Tsutsumi, T., Sasaki, K., Yoshida, T., and Maitani, T. (2003) Screening of the inhibitory effect of vegetable constituents on the aryl hydrocarbon receptor-mediated activity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biol Pharm Bull 26, 1754–60.

    Article  CAS  PubMed  Google Scholar 

  104. de Medina, P., Casper, R., Savouret, J.F., and Poirot, M. (2005) Synthesis and biological properties of new stilbene derivatives of resveratrol as new selective aryl hydrocarbon modulators. J Med Chem 48, 287–91.

    Article  PubMed  CAS  Google Scholar 

  105. Chen, Y., Tseng, S.H., Lai, H.S., and Chen, W.J. (2004) Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice. Surgery 36, 57–66.

    Article  Google Scholar 

  106. Gehm, B.D., McAndrews, J.M., Chien, P.Y., and Jameson, J.L. (1997) Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci U S A 94, 14138–43.

    Article  CAS  PubMed  Google Scholar 

  107. Fustier, P., Le Corre, L., Chalabi, N., Vissac-Sabatier, C., Communal, Y., Bignon, Y.J., and Bernard-Gallon, D.J. (2003) Resveratrol increases BRCA1 and BRCA2 mRNA expression in breast tumour cell lines. Br J Cancer 89, 168–72.

    Article  CAS  PubMed  Google Scholar 

  108. Kim, Y.S., and Milner, J.A. (2005) Targets for indole-3-carbinol in cancer prevention. J Nutr Biochem 16, 65–73.

    Article  CAS  PubMed  Google Scholar 

  109. Wortelboer, H.M., van der Linden, E.C., de Kruif, C.A. et al. (1992) Effects of indole-3-carbinol on biotransformation enzymes in the rat: In vivo changes in liver and small intestinal mucosa in comparison with primary hepatocyte cultures. Food Chem Toxicol 30, 589–99.

    Article  CAS  PubMed  Google Scholar 

  110. Bjeldanes, L.F., Kim, J.Y., Grose, K.R., Bartholomew, J.C., and Bradfield, C.A. (1991) Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: Comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc Natl Acad Sci USA 88, 9543–47.

    Article  CAS  PubMed  Google Scholar 

  111. Jellinck, P.H., Forkert, P.G., Riddick, D.S., Okey, A.B., Michnovicz, J.J., and Bradlow, H.L. (1993) Ah receptor binding properties of indole carbinols and induction of hepatic estradiol hydroxylation. Biochem Pharmacol 45, 1129–36.

    Article  CAS  PubMed  Google Scholar 

  112. Fenwick, G.R., Heaney, R.K., and Mullin, W.J. (1983) Glucosinolates and their breakdown products in food and food plants. Crit Rev Food Sci Nutr 18, 123–201.

    CAS  PubMed  Google Scholar 

  113. Wattenberg, L.W., and Loub, W.D. (1978) Inhibition of polycyclic aromatic hydrocarbon-induced neoplasia by naturally occurring indoles. Cancer Res 38, 1410–13.

    CAS  PubMed  Google Scholar 

  114. Fong, A.T., Hendricks, J.D., Dashwood, R.H., Van Winkle, S., Lee, B.C., and Bailey, G.S. (1988) Modulation of diethylnitrosamine-induced hepatocarcinogenesis and O6-ethylguanine formation in rainbow trout by indole-3-carbinol, beta naphthoflavone, and Aroclor 1254. Toxicol Appl Pharmacol 96, 93–100.

    Article  CAS  PubMed  Google Scholar 

  115. Bradlow, H.L., Michnovicz, J., Telang, N.T., and Osborne, M.P. (1991) Effects of dietary indole-3-carbinol on estradiol metabolism and spontaneous mammary tumors in mice. Carcinogenesis 12, 1571–74.

    Article  CAS  PubMed  Google Scholar 

  116. Bradlow, H.L. (2008) Indole-3-carbinol as a chemoprotective agent in breast and prostate cancer. In Vivo 22, 441–45.

    CAS  PubMed  Google Scholar 

  117. Xu, M., Schut, H.A., Bjeldanes, L.F., Williams, D.E., Bailey, G.S., and Dashwood, R.H. (1997) Inhibition of 2-amino-3-methylimidazo[4,5-f]quinoline-DNA adducts by indole-3-carbinol: Dose-response studies in the rat colon. Carcinogenesis 18, 2149–53.

    Article  CAS  PubMed  Google Scholar 

  118. Meng, Q., Yuan, F., Goldberg, I.D., Rosen, E.M., Auborn, K., and Fan, S. (2000) Indole-3-carbinol is a negative regulator of estrogen receptor-alpha signaling in human tumor cells. J Nutr 130, 2927–31.

    CAS  PubMed  Google Scholar 

  119. Bailey, G.S., Hendricks, J.D., Shelton, D.W., Nixon, J.E., and Pawlowski, N.E. (1987) Enhancement of carcinogenesis by the natural anticarcinogen indole-3-carbinol. J Natl Cancer Inst 78, 931–34.

    CAS  PubMed  Google Scholar 

  120. Exon, J.H., Henningsen, G.M., Osborne, C.A., and Koller, L.D. (1984) Toxicologic, pathologic, and immunotoxic effects of 2,4-dichlorophenol in rats. J Toxicol Environ Health 14, 723–30.

    Article  CAS  PubMed  Google Scholar 

  121. Yoshida, M., Katashima, S., Ando, J. et al. (2004) Dietary indole-3-carbinol promotes endometrial adenocarcinoma development in rats initiated with N-ethyl-N’-nitro-N-nitrosoguanidine, with induction of cytochrome P450s in the liver and consequent modulation of estrogen metabolism. Carcinogenesis 25, 2257–64.

    Article  CAS  PubMed  Google Scholar 

  122. Reed, G.A., Arneson, D.W., Putnam, W.C. et al. (2006) Single-dose and multiple-dose administration of indole-3-carbinol to women: Pharmacokinetics based on 3,3-diindolylmethane. Cancer Epidemiol Biomarkers Prev 15, 477–81.

    Article  Google Scholar 

  123. Chen, I., McDougal, A., Wang, F., and Safe, S. (1998) Aryl hydrocarbon receptor-mediated antiestrogenic and antitumorigenic activity of diindolylmethane. Carcinogenesis 19, 1631–39.

    Article  CAS  PubMed  Google Scholar 

  124. Grubbs, C.J., Steele, V.E., Casebolt, T. et al. (1995) Chemoprevention of chemically-induced mammary carcinogenesis by indole-3-carbinol. Anticancer Res 15, 709–16.

    CAS  PubMed  Google Scholar 

  125. Reed, G.A., Sunega, J.M., Sullivan, D.K. et al. (2008) Single-dose pharmacokinetics and tolerability of absorption-enhanced 3,3-diindolylmethane in healthy subjects. Cancer Epidemiol Biomarkers Prev 17, 2619–24.

    Article  CAS  PubMed  Google Scholar 

  126. Bonnesen, C., Eggleston, I.M., and Hayes, J.D. (2001) Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res 61, 6120–30.

    CAS  PubMed  Google Scholar 

  127. Ciolino, H.P., Daschner, P.J., and Yeh, G.C. (1999) Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially. Biochem J 340, 715–22.

    Article  CAS  PubMed  Google Scholar 

  128. Puppala, D., Gairola, C.G., and Swanson, H.I. (2007) Identification of kaempferol as an inhibitor of cigarette smoke-induced activation of the aryl hydrocarbon receptor and cell transformation. Carcinogenesis 28, 639–47.

    Article  CAS  PubMed  Google Scholar 

  129. Fukuda, I., Sakane, I., Yabushita, Y. et al. (2004) Pigments in green tea leaves (Camellia sinensis) suppress transformation of the aryl hydrocarbon receptor induced by dioxin. J Agric Food Chem 52, 2499–506.

    Article  CAS  PubMed  Google Scholar 

  130. Ashida, H., Fukuda, I., Yamashita, T., and Kanazawa, K. (2000) Flavones and flavonols at dietary levels inhibit a transformation of aryl hydrocarbon receptor induced by dioxin. FEBS Lett 476, 213–17.

    Article  CAS  PubMed  Google Scholar 

  131. Williams, S.N., Shih, H., Guenette, D.K. et al. (2000) Comparative studies on the effects of green tea extracts and individual tea catechins on human CYP1A gene expression. Chem Biol Interact 128, 211–29.

    Article  CAS  PubMed  Google Scholar 

  132. Nakagawa, K., Okuda, S., and Miyazawa, T. (1997) Dose-dependent incorporation of tea catechins, (-)-epigallocatechin-3-gallate and (-)-epigallocatechin, into human plasma. Biosci Biotechnol Biochem 61, 1981–85.

    Article  CAS  PubMed  Google Scholar 

  133. Amakura, Y., Tsutsumi, T., Nakamura, M. et al. (2002) Preliminary screening of the inhibitory effect of food extracts on activation of the aryl hydrocarbon receptor induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biol Pharm Bull 25, 272–74.

    Article  CAS  PubMed  Google Scholar 

  134. Palermo, C.M., Hernando, J.I., Dertinger, S.D., Kende, A.S., and Gasiewicz, T.A. (2003) Identification of potential aryl hydrocarbon receptor antagonists in green tea. Chem Res Toxicol 16, 865–72.

    Article  CAS  PubMed  Google Scholar 

  135. De Waard, W.J., Aarts, J.M., Peijnenburg, A.C., De Kok, T.M., Van Schooten, F.J., and Hoogenboom, L.A. (2008) Ah receptor agonist activity in frequently consumed food items. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25, 779–87.

    Article  PubMed  CAS  Google Scholar 

  136. Connor, K.T., Harris, M.A., Edwards, M. et al. (2008) AH receptor agonist activity in human blood measure with a cell-based bioassay: Evidence for naturally occurring AH receptor ligands in vivo. J Expo Sci Environ Epidemiol 18, 369–80.

    Article  CAS  PubMed  Google Scholar 

  137. Chiaro, C.R., Patel, R.D., and Perdew, G.H. (2008) 12(R)-HETE, an Arachidonic Acid Derivative, is an Activator of the Aryl Hydrocarbon (Ah) Receptor. Mol Pharmacol, Sep 8. [Epub ahead of print] PMID: 18779363.

    PubMed  Google Scholar 

  138. Kall, M.A., Vang, O., and Clausen, J. (1996) Effects of dietary broccoli on human in vivo drug metabolizing enzymes: Evaluation of caffeine, oestrone and chlorzoxazone metabolism. Carcinogenesis 17, 793–99.

    Article  CAS  PubMed  Google Scholar 

  139. Dashwood, R.H. (1998) Indole-3-carbinol: Anticarcinogen or tumor promoter in brassica vegetables? Chem Biol Interact 110, 1–5.

    Article  CAS  PubMed  Google Scholar 

  140. Phillips, D.H. (1999) Polycyclic aromatic hydrocarbons in the diet. Mutat Res 443, 139–47.

    Article  CAS  PubMed  Google Scholar 

  141. La Rocca, C., and Mantovani, A. (2006) From environment to food: The case of PCB. Ann Ist Super Sanita 42, 410–16.

    PubMed  Google Scholar 

  142. Moon, Y.J., Wang, X., and Morris, M.E. (2006) Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. Toxicol In Vitro 20, 187–210.

    Article  CAS  PubMed  Google Scholar 

  143. Nguyen, L.P., and Bradfield, C.A. (2008) The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol 21, 102–16.

    Article  CAS  PubMed  Google Scholar 

  144. Sathyanarayana, S. (2008) Phthalates and children’s health. Curr Probl Pediatr Adolesc Health Care 38, 34–49.

    Article  PubMed  Google Scholar 

  145. Willhite, C.C., Ball, G.L., and McLellan, C.J. (2008) Derivation of a bisphenol A oral reference dose (RfD) and drinking-water equivalent concentration. J Toxicol Environ Health B Crit Rev 11, 69–146.

    Article  CAS  PubMed  Google Scholar 

  146. Piskorska-Pliszczynska, J., Keys, B., Safe, S., and Newman, M.S. (1986) The cytosolic receptor binding affinities and AHH induction potencies of 29 polynuclear aromatic hydrocarbons. Toxicol Lett 34, 67–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research has been supported by grants from the Arizona Biomedical Research Commission (100116, 8015), the Susan G. Komen Breast Cancer Foundation (BCTR0707643), the US Department Breast Cancer Research Program (DAMD17-00-1-0130), the National Institute of Environmental Health Sciences, National Institutes of Health (ES009966), and Training Grant in Toxicology and Toxicogenomics (T32 ES-07091-24).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Romagnolo, D.F., Degner, S.C., Selmin, O. (2010). Aryl Hydrocarbon Receptor-Mediated Carcinogenesis and Modulation by Dietary Xenobiotic and Natural Ligands. In: Milner, J., Romagnolo, D. (eds) Bioactive Compounds and Cancer. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-627-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-627-6_32

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-626-9

  • Online ISBN: 978-1-60761-627-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics