Skip to main content

Imaging Following Treatment of Lung Cancer

  • Chapter
  • First Online:
Lung Cancer Imaging

Part of the book series: Contemporary Medical Imaging ((CMI))

  • 2521 Accesses

Abstract

Patients who receive curative intent therapy need adequate follow-up imaging. The purpose of imaging in these patients is to identify and manage complications related to the curative intent therapy itself, including managing postoperative complications of surgery, chemotherapy, and radiation therapy, and to measure the tumor to document response and to detect recurrences of the primary lung cancer and/or development of a new primary lung cancer early enough to allow potentially curative retreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mountain CF. Revisions in the International System for Staging Lung Cancer. Chest. 1997;111(6):1710–7.

    Article  CAS  PubMed  Google Scholar 

  2. Virgo KS, Johnson FE, Naunheim KS. Follow-up of patients with thoracic malignancies. Surg Oncol Clin N Am. 1999;8(2):355–69.

    CAS  PubMed  Google Scholar 

  3. Colice GL, Unger M, Rubins J, American College of Chest Physicians. Follow-up and surveillance of the lung cancer patient following curative intent therapy: ACCP evidence-based clinical practice guideline (2nd edition). Chest. 2007;132(3 Suppl):355S–67S.

    PubMed  Google Scholar 

  4. Pool KL, Munden RF, Vaporciyan A, O’Sullivan PJ. Radiographic imaging features of thoracic complications after pneumonectomy in oncologic patients. Eur J Radiol. 2012;81(1):165–72.

    Article  CAS  PubMed  Google Scholar 

  5. Kim EA, Lee KS, Shim YM, et al. Radiographic and CT findings in complications following pulmonary resection. Radiographics. 2002;22(1):67–86.

    PubMed  Google Scholar 

  6. Brunelli A, Monteverde M, Borri A, Salati M, Marasco RD, Fianchini A. Predictors of prolonged air leak after pulmonary lobectomy. Ann Thorac Surg. 2004;77(4):1205–10; discussion 1210.

    Article  PubMed  Google Scholar 

  7. Chae EJ, Seo JB, Kim SY, et al. Radiographic and CT findings of thoracic complications after pneumonectomy. Radiographics. 2006;26(5):1449–68.

    Article  PubMed  Google Scholar 

  8. Nezu K, Kushibe K, Tojo T, Takahama M, Kitamura S. Recovery and limitation of exercise capacity after lung resection for lung cancer. Chest. 1998;113(6):1511–6.

    Article  CAS  PubMed  Google Scholar 

  9. Cox JD, Pajak TF, Marcial VA, et al. Dose–response for local control with hyperfractionated radiation therapy in advanced carcinomas of the upper aerodigestive tracts: preliminary report of radiation therapy oncology group protocol 83–13. Int J Radiat Oncol Biol Phys. 1990;18(3):515–21.

    Article  CAS  PubMed  Google Scholar 

  10. Abratt RP, Morgan GW. Lung toxicity following chest irradiation in patients with lung cancer. Lung Cancer. 2002;35(2):103–9.

    Article  PubMed  Google Scholar 

  11. Leo F, Solli P, Spaggiari L, et al. Respiratory function changes after chemotherapy: an additional risk for postoperative respiratory complications? Ann Thorac Surg. 2004;77(1):260–5; discussion 5.

    Article  PubMed  Google Scholar 

  12. Timmerman R, Paulus R, Galvin J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010;303(11):1070–6.

    Article  CAS  PubMed  Google Scholar 

  13. Ishimori T, Saga T, Nagata Y, et al. 18F-FDG and 11C-methionine PET for evaluation of treatment response of lung cancer after stereotactic radiotherapy. Ann Nucl Med. 2004;18(8):669–74.

    Article  PubMed  Google Scholar 

  14. Henderson MA, Hoopes DJ, Fletcher JW, et al. A pilot trial of serial 18F-fluorodeoxyglucose positron emission tomography in patients with medically inoperable stage I non-small-cell lung cancer treated with hypofractionated stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2010;76(3):789–95.

    Article  PubMed  Google Scholar 

  15. Hoopes DJ, Tann M, Fletcher JW, et al. FDG-PET and stereotactic body radiotherapy (SBRT) for stage I non-small-cell lung cancer. Lung Cancer. 2007;56(2):229–34.

    Article  PubMed  Google Scholar 

  16. Feigenberg SJ, Lango M, Nicolaou N, Ridge JA. Intensity-modulated radiotherapy for early larynx cancer: is there a role? Int J Radiat Oncol Biol Phys. 2007;68(1):2–3.

    Article  PubMed  Google Scholar 

  17. Sause WT, Byhardt RW, Curran Jr WJ, et al. Follow-up of non-small cell lung cancer. American College of Radiology. ACR Appropriateness Criteria. Radiology. 2000;215(Suppl):1363–72.

    PubMed  Google Scholar 

  18. Smith TJ. Evidence-based follow-up of lung cancer patients. Semin Oncol. 2003;30(3):361–8.

    Article  PubMed  Google Scholar 

  19. Ettinger DS, Cox JD, Ginsberg RJ, et al. NCCN Non-Small-Cell Lung Cancer Practice Guidelines. The National Comprehensive Cancer Network. Oncology (Williston Park). 1996;10(11 Suppl):81–111.

    Google Scholar 

  20. Colice GL, Rubins J, Unger M, American College of Chest Physicians. Follow-up and surveillance of the lung cancer patient following curative-intent therapy. Chest. 2003;123(1 Suppl):272S–83S.

    Article  PubMed  Google Scholar 

  21. Adebonojo SA, Moritz DM, Danby CA. The results of modern surgical therapy for multiple primary lung cancers. Chest. 1997;112(3):693–701.

    Article  CAS  PubMed  Google Scholar 

  22. Antakli T, Schaefer RF, Rutherford JE, Read RC. Second primary lung cancer. Ann Thorac Surg. 1995;59(4):863–6; discussion 867.

    Article  CAS  PubMed  Google Scholar 

  23. Westeel V, Choma D, Clément F, et al. Relevance of an intensive postoperative follow-up after surgery for non-small cell lung cancer. Ann Thorac Surg. 2000;70(4):1185–90.

    Article  CAS  PubMed  Google Scholar 

  24. Virgo KS, McKirgan LW, Caputo MC, et al. Post-treatment management options for patients with lung cancer. Ann Surg. 1995;222(6):700–10.

    Article  CAS  PubMed  Google Scholar 

  25. Walsh GL, O’Connor M, Willis KM, et al. Is follow-up of lung cancer patients after resection medically indicated and cost-effective? Ann Thorac Surg. 1995;60(6):1563–70; discussion 1570–2.

    Article  CAS  PubMed  Google Scholar 

  26. Younes RN, Gross JL, Deheinzelin D. Follow-up in lung cancer: how often and for what purpose? Chest. 1999;115(6):1494–9.

    Article  CAS  PubMed  Google Scholar 

  27. Sohn HJ, Yang YJ, Ryu JS, et al. [18F]Fluorothymidine positron emission tomography before and 7 days after gefitinib treatment predicts response in patients with advanced adenocarcinoma of the lung. Clin Cancer Res. 2008;14(22):7423–9.

    Article  CAS  PubMed  Google Scholar 

  28. Gilbert S, Reid KR, Lam MY, Petsikas D. Who should follow up lung cancer patients after operation? Ann Thorac Surg. 2000;69(6):1696–700.

    Article  CAS  PubMed  Google Scholar 

  29. Immerman SC, Vanecko RM, Fry WA, Head LR, Shields TW. Site of recurrence in patients with stages I and II carcinoma of the lung resected for cure. Ann Thorac Surg. 1981;32(1):23–7.

    Article  CAS  PubMed  Google Scholar 

  30. Pairolero PC, Williams DE, Bergstralh EJ, Piehler JM, Bernatz PE, Payne WS. Postsurgical stage I bronchogenic carcinoma: morbid implications of recurrent disease. Ann Thorac Surg. 1984;38(4):331–8.

    Article  CAS  PubMed  Google Scholar 

  31. Iascone C, DeMeester TR, Albertucci M, Little AG, Golomb HM. Local recurrence of resectable non-oat cell carcinoma of the lung. A warning against conservative treatment for N0 and N1 disease. Cancer. 1986;57(3):471–6.

    Article  CAS  PubMed  Google Scholar 

  32. Martini N, Bains MS, Burt ME, et al. Incidence of local recurrence and second primary tumors in resected stage I lung cancer. J Thorac Cardiovasc Surg. 1995;109(1):120–9.

    Article  CAS  PubMed  Google Scholar 

  33. Harpole Jr DH, Herndon II JE, Wolfe WG, Iglehart JD, Marks JR. A prognostic model of recurrence and death in stage I non-small cell lung cancer utilizing presentation, histopathology, and oncoprotein expression. Cancer Res. 1995;55(1):51–6.

    CAS  PubMed  Google Scholar 

  34. Thomas P, Rubinstein L. Cancer recurrence after resection: T1 N0 non-small cell lung cancer. Lung Cancer Study Group. Ann Thorac Surg. 1990;49(2):242–6; discussion 246–7.

    Article  CAS  PubMed  Google Scholar 

  35. Thomas Jr PA, Rubinstein L. Malignant disease appearing late after operation for T1 N0 non-small-cell lung cancer. The Lung Cancer Study Group. J Thorac Cardiovasc Surg. 1993;106(6):1053–8.

    PubMed  Google Scholar 

  36. Baldini EH, DeCamp Jr MM, Katz MS, et al. Patterns of recurrence and outcome for patients with clinical stage II non-small-cell lung cancer. Am J Clin Oncol. 1999;22(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  37. Follow-up of non-small cell lung cancer: American College of Radiology appropriateness criteria; 2005. http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CD8QFjAA&url=http%3A%2F%2Fwww.acr.org%2F~%2Fmedia%2F632D81E7C9094D6E87EE4F601179C44A.pdf&ei=7HjcUM3jLpPh0wGj0YDQCQ&usg=AFQjCNFZX2iXzXmCDXdFLQf_0E6pKj0CCw&bvm=bv.1355534169,d.dmQ

  38. National Comprehensive Cancer Network. Practice guidelines for non-small cell lung cancer. Rockledge, PA. National Comprehensive Cancer Network; 2000. http://www.nccn.org/network/business_insights/flash_updates/flash_update_information.asp?FlashID=32

  39. Pfister DG, Johnson DH, Azzoli CG, et al. American Society of Clinical Oncology treatment of unresectable non-small-cell lung cancer guideline: update 2003. J Clin Oncol. 2004;22(2):330–53.

    Article  PubMed  Google Scholar 

  40. Bruzzi JF, Munden RF. PET/CT imaging of lung cancer. J Thorac Imaging. 2006;21(2):123–36.

    Article  PubMed  Google Scholar 

  41. Patz Jr EF, Lowe VJ, Hoffman JM, Paine SS, Harris LK, Goodman PC. Persistent or recurrent bronchogenic carcinoma: detection with PET and 2-[F-18]-2-deoxy-d-glucose. Radiology. 1994;191(2):379–82.

    PubMed  Google Scholar 

  42. Inoue T, Kim EE, Komaki R, et al. Detecting recurrent or residual lung cancer with FDG-PET. J Nucl Med. 1995;36(5):788–93.

    CAS  PubMed  Google Scholar 

  43. Duhaylongsod FG, Lowe VJ, Patz Jr EF, Vaughn AL, Coleman RE, Wolfe WG. Detection of primary and recurrent lung cancer by means of F-18 fluorodeoxyglucose positron emission tomography (FDG PET). J Thorac Cardiovasc Surg. 1995;110(1):130–9; discussion 139–40.

    Article  CAS  PubMed  Google Scholar 

  44. Hellwig D, Gröschel A, Graeter TP, et al. Diagnostic performance and prognostic impact of FDG-PET in suspected recurrence of surgically treated non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2006;33(1):13–21.

    Article  PubMed  Google Scholar 

  45. Vansteenkiste JF, Stroobants SG, De Leyn PR, Dupont PJ, Verbeken EK. Potential use of FDG-PET scan after induction chemotherapy in surgically staged IIIa-N2 non-small-cell lung cancer: a prospective pilot study. The Leuven Lung Cancer Group. Ann Oncol. 1998;9(11):1193–8.

    Article  CAS  PubMed  Google Scholar 

  46. Cerfolio RJ, Ojha B, Mukherjee S, Pask AH, Bass CS, Katholi CR. Positron emission tomography scanning with 2-fluoro-2-deoxy-d-glucose as a predictor of response of neoadjuvant treatment for non-small cell carcinoma. J Thorac Cardiovasc Surg. 2003;125(4):938–44.

    Article  PubMed  Google Scholar 

  47. Akhurst T, Downey RJ, Ginsberg MS, et al. An initial experience with FDG-PET in the imaging of residual disease after induction therapy for lung cancer. Ann Thorac Surg. 2002;73(1):259–64; discussion 264–6.

    Article  PubMed  Google Scholar 

  48. Port JL, Kent MS, Korst RJ, Keresztes R, Levin MA, Altorki NK. Positron emission tomography scanning poorly predicts response to preoperative chemotherapy in non-small cell lung cancer. Ann Thorac Surg. 2004;77(1):254–9; discussion 259.

    Article  PubMed  Google Scholar 

  49. Weber WA, Petersen V, Schmidt B, et al. Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol. 2003;21(14):2651–7.

    Article  CAS  PubMed  Google Scholar 

  50. Patz Jr EF, Connolly J, Herndon J. Prognostic value of thoracic FDG PET imaging after treatment for non-small cell lung cancer. AJR Am J Roentgenol. 2000;174(3):769–74.

    Article  PubMed  Google Scholar 

  51. Hoekstra CJ, Stroobants SG, Smit EF, et al. Prognostic relevance of response evaluation using [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography in patients with locally advanced non-small-cell lung cancer. J Clin Oncol. 2005;23(33):8362–70.

    Article  PubMed  Google Scholar 

  52. Eschmann SM, Friedel G, Paulsen F, et al. Repeat 18F-FDG PET for monitoring neoadjuvant chemotherapy in patients with stage III non-small cell lung cancer. Lung Cancer. 2007;55(2):165–71.

    Article  CAS  PubMed  Google Scholar 

  53. Hellwig D, Graeter TP, Ukena D, Georg T, Kirsch CM, Schäfers HJ. Value of F-18-fluorodeoxyglucose positron emission tomography after induction therapy of locally advanced bronchogenic carcinoma. J Thorac Cardiovasc Surg. 2004;128(6):892–9.

    PubMed  Google Scholar 

  54. Pottgen C, Levegrun S, Theegarten D, et al. Value of 18F-fluoro-2-deoxy-d-glucose-positron emission tomography/computed tomography in non-small-cell lung cancer for prediction of pathologic response and times to relapse after neoadjuvant chemoradiotherapy. Clin Cancer Res. 2006;12(1):97–106.

    Article  PubMed  Google Scholar 

  55. Tanvetyanon T, Eikman EA, Sommers E, Robinson L, Boulware D, Bepler G. Computed tomography response, but not positron emission tomography scan response, predicts survival after neoadjuvant chemotherapy for resectable non-small-cell lung cancer. J Clin Oncol. 2008;26(28):4610–6.

    Article  PubMed  Google Scholar 

  56. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.

    Article  CAS  PubMed  Google Scholar 

  57. Paesmans M, Sculier JP, Libert P, et al. Response to chemotherapy has predictive value for further survival of patients with advanced non-small cell lung cancer: 10 years experience of the European Lung Cancer Working Party. Eur J Cancer. 1997;33(14):2326–32.

    Article  CAS  PubMed  Google Scholar 

  58. Buyse M, Thirion P, Carlson RW, Burzykowski T, Molenberghs G, Piedbois P. Relation between tumour response to first-line chemotherapy and survival in advanced colorectal cancer: a meta-analysis. Meta-Analysis Group in Cancer. Lancet. 2000;356(9227):373–8.

    Article  CAS  PubMed  Google Scholar 

  59. El-Maraghi RH, Eisenhauer EA. Review of phase II trial designs used in studies of molecular targeted agents: outcomes and predictors of success in phase III. J Clin Oncol. 2008;26(8):1346–54.

    Article  PubMed  Google Scholar 

  60. Sohaib SA, Turner B, Hanson JA, Farquharson M, Oliver RT, Reznek RH. CT assessment of tumour response to treatment: comparison of linear, cross-sectional and volumetric measures of tumour size. Br J Radiol. 2000;73(875):1178–84.

    CAS  PubMed  Google Scholar 

  61. Watanabe H, Yamamoto S, Kunitoh H, et al. Tumor response to chemotherapy: the validity and reproducibility of RECIST guidelines in NSCLC patients. Cancer Sci. 2003;94(11):1015–20.

    Article  CAS  PubMed  Google Scholar 

  62. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92(3):205–16.

    Article  CAS  PubMed  Google Scholar 

  63. James K, Eisenhauer E, Christian M, et al. Measuring response in solid tumors: unidimensional versus bidimensional measurement. J Natl Cancer Inst. 1999;91(6):523–8.

    Article  CAS  PubMed  Google Scholar 

  64. Erasmus JJ, Gladish GW, Broemeling L, et al. Interobserver and intraobserver variability in measurement of non-small-cell carcinoma lung lesions: implications for assessment of tumor response. J Clin Oncol. 2003;21(3):2574–82.

    Article  PubMed  Google Scholar 

  65. Revel MP, Bissery A, Bienvenu M, Aycard L, Lefort C, Frija G. Are two-dimensional CT measurements of small noncalcified pulmonary nodules reliable? Radiology. 2004;231(2):453–8.

    Article  PubMed  Google Scholar 

  66. Hopper KD, Kasales CJ, Van Slyke MA, Schwartz TA, TenHave TR, Jozefiak JA. Analysis of interobserver and intraobserver variability in CT tumor measurements. AJR Am J Roentgenol. 1996;167(4):851–4.

    Article  CAS  PubMed  Google Scholar 

  67. Petrou M, Quint LE, Nan B, Baker LH. Pulmonary nodule volumetric measurement variability as a function of CT slice thickness and nodule morphology. AJR Am J Roentgenol. 2007;188(2):306–12.

    Article  PubMed  Google Scholar 

  68. Revel MP, Lefort C, Bissery A, et al. Pulmonary nodules: preliminary experience with three-dimensional evaluation. Radiology. 2004;231(2):459–66.

    Article  PubMed  Google Scholar 

  69. Ravenel JG, Leue WM, Nietert PJ, Miller JV, Taylor KK, Silvestri GA. Pulmonary nodule volume: effects of reconstruction parameters on automated measurements—a phantom study. Radiology. 2008;247(2):400–8.

    PubMed  Google Scholar 

  70. Gavrielides MA, Kinnard LM, Myers KJ, Petrick N. Noncalcified lung nodules: volumetric assessment with thoracic CT. Radiology. 2009;251(1):26–37.

    Article  PubMed  Google Scholar 

  71. Marten K, Auer F, Schmidt S, Kohl G, Rummeny EJ, Engelke C. Inadequacy of manual measurements compared to automated CT volumetry in assessment of treatment response of pulmonary metastases using RECIST criteria. Eur Radiol. 2006;16(4):781–90.

    Article  PubMed  Google Scholar 

  72. Tran LN, Brown MS, Goldin JG, et al. Comparison of treatment response classifications between unidimensional, bidimensional, and volumetric measurements of metastatic lung lesions on chest computed tomography. Acad Radiol. 2004;11(12):1355–60.

    Article  PubMed  Google Scholar 

  73. Zhao B, Schwartz LH, Moskowitz CS, Ginsberg MS, Rizvi NA, Kris MG. Lung cancer: computerized quantification of tumor response—initial results. Radiology. 2006;241(3):892–8.

    Article  PubMed  Google Scholar 

  74. Zhao B, James LP, Moskowitz CS, et al. Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non-small cell lung cancer. Radiology. 2009;252(1):263–72.

    Article  PubMed  Google Scholar 

  75. Shankar LK, Van den Abbeele A, Yap J, Benjamin R, Scheutze S, Fitzgerald TJ. Considerations for the use of imaging tools for phase II treatment trials in oncology. Clin Cancer Res. 2009;15(6):1891–7.

    Article  CAS  PubMed  Google Scholar 

  76. Hicks RJ. Role of 18F-FDG PET in assessment of response in non-small cell lung cancer. J Nucl Med. 2009;50 Suppl 1:31S–42S.

    Article  CAS  PubMed  Google Scholar 

  77. de Geus-Oei LF, van der Heijden HF, Visser EP, et al. Chemotherapy response evaluation with 18F-FDG PET in patients with non-small cell lung cancer. J Nucl Med. 2007;48(10):1592–8.

    Article  PubMed  Google Scholar 

  78. Mac Manus MP, Hicks RJ. PET scanning in lung cancer: current status and future directions. Semin Surg Oncol. 2003;21(3):149–55.

    Article  PubMed  Google Scholar 

  79. Mac Manus MP, Hicks RJ, Matthews JP, Wirth A, Rischin D, Ball DL. Metabolic (FDG-PET) response after radical radiotherapy/chemoradiotherapy for non-small cell lung cancer correlates with patterns of failure. Lung Cancer. 2005;49(1):95–108.

    Article  PubMed  Google Scholar 

  80. Nahmias C, Hanna WT, Wahl LM, Long MJ, Hubner KF, Townsend DW. Time course of early response to chemotherapy in non-small cell lung cancer patients with 18F-FDG PET/CT. J Nucl Med. 2007;48(5):744–51.

    Article  CAS  PubMed  Google Scholar 

  81. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50S.

    Article  CAS  PubMed  Google Scholar 

  82. Young H, Baum R, Cremerius U, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer. 1999;35(13):1773–82.

    Article  CAS  PubMed  Google Scholar 

  83. Sunaga N, Oriuchi N, Kaira K, et al. Usefulness of FDG-PET for early prediction of the response to gefitinib in non-small cell lung cancer. Lung Cancer. 2008;59(2):203–10.

    Article  PubMed  Google Scholar 

  84. Vesselle H, Schmidt RA, Pugsley JM, et al. Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography. Clin Cancer Res. 2000;6(10):3837–44.

    CAS  PubMed  Google Scholar 

  85. Vansteenkiste JF, Stroobants SG, Dupont PJ, et al. Prognostic importance of the standardized uptake value on (18)F-fluoro-2-deoxy-glucose-positron emission tomography scan in non-small-cell lung cancer: an analysis of 125 cases. Leuven Lung Cancer Group. J Clin Oncol. 1999;17(10):3201–6.

    CAS  PubMed  Google Scholar 

  86. Cheran SK, Nielsen ND, Patz Jr EF. False-negative findings for primary lung tumors on FDG positron emission tomography: staging and prognostic implications. AJR Am J Roentgenol. 2004;182(5):1129–32.

    Article  PubMed  Google Scholar 

  87. Weber WA. Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med. 2005;46(6):983–95.

    CAS  PubMed  Google Scholar 

  88. Schoder H, Erdi YE, Chao K, Gonen M, Larson SM, Yeung HW. Clinical implications of different image reconstruction parameters for interpretation of whole-body PET studies in cancer patients. J Nucl Med. 2004;45(4):559–66.

    PubMed  Google Scholar 

  89. Van Schil P. The restaging issue. Lung Cancer. 2003;42 Suppl 1:S39–45.

    Article  PubMed  Google Scholar 

  90. Association of Community Cancer Centers. Oncology patient management guidelines, version 3.0. Rockville, MD; 2000. http://accc-cancer.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiren J. Mehta M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mehta, H.J., Ravenel, J.G. (2013). Imaging Following Treatment of Lung Cancer. In: Ravenel, J. (eds) Lung Cancer Imaging. Contemporary Medical Imaging. Humana Press, New York, NY. https://doi.org/10.1007/978-1-60761-620-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-620-7_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-60761-619-1

  • Online ISBN: 978-1-60761-620-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics