Skip to main content

Nutritional Impact on the Nitric Oxide Pathway

  • Chapter
  • First Online:
Book cover Nitrite and Nitrate in Human Health and Disease

Part of the book series: Nutrition and Health ((NH))

  • 1511 Accesses

Key points

  • The endothelial nitric oxide synthase (eNOS) pathway is highly modulated by nutrition.

  • Dietary choices and interventions may modulate endothelial function.

  • The Mediterranean diet enhances endothelial vasodilator function and reduces major adverse cardiovascular events (MACE).

  • Increased dietary consumption of fish and other sources of omega-3 fatty acids improve NO activity, and also reduce MACE in those with cardiovascular disease.

  • A number of nutritional supplements may improve endothelial function by reducing oxidative stress, by restoring elements of the NOS pathway, or by ameliorating insulin resistance, hypertension, or hyperlipidemia; however, their long-term effects on MACE are unknown.

  • Some dietary supplements known to enhance the NOS pathway and improve endothelial vasodilator function in humans (Vitamin E, the B vitamins, and l-arginine) were ineffective at reducing MACE in large randomized clinical trials.

  • Thus, dietary interventions that improve endothelial vasodilator function in the short term might not necessarily have long-term benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cooke JP, Rossitch Jr E, Andon NA, Loscalzo J, Dzau VJ. Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J Clin Invest. 1991;88(5):1663–71.

    PubMed  CAS  Google Scholar 

  2. Nishida K, Harrison DG, Navas JP, et al. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest. 1992;90(5):2092–6.

    PubMed  CAS  Google Scholar 

  3. Taddei S, Virdis A, Ghiadoni L, et al. Age-related reduction of NO availability and oxidative stress in humans. Hypertension. 2001;38(2):274–9.

    PubMed  CAS  Google Scholar 

  4. Gerhard M, Roddy MA, Creager SJ, Creager MA. Aging progressively impairs endothelium-dependent vasodilation in forearm resistance vessels of humans. Hypertension. 1996;27(4):849–53.

    PubMed  CAS  Google Scholar 

  5. Egashira K, Inou T, Hirooka Y, et al. Effects of age on endothelium-dependent vasodilation of resistance coronary artery by acetylcholine in humans. Circulation. 1993;88(1):77–81.

    PubMed  CAS  Google Scholar 

  6. Creager MA, Cooke JP, Mendelsohn ME, et al. Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans. J Clin Invest. 1990;86(1):228–34.

    PubMed  CAS  Google Scholar 

  7. Cooke JP. Asymmetrical dimethylarginine: the Uber marker? Circulation. 2004;109(15):1813–8.

    PubMed  Google Scholar 

  8. Stamler J, Mendelsohn ME, Amarante P, et al. N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor. Circ Res. 1989;65(3):789–95.

    PubMed  CAS  Google Scholar 

  9. Cooke JP, Stamler J, Andon N, Davies PF, McKinley G, Loscalzo J. Flow stimulates endothelial cells to release a nitrovasodilator that is potentiated by reduced thiol. Am J Physiol. 1990;259(3 Pt 2):H804–12.

    PubMed  CAS  Google Scholar 

  10. Tsao PS, McEvoy LM, Drexler H, Butcher EC, Cooke JP. Enhanced endothelial adhesiveness in hypercholesterolemia is attenuated by L-arginine. Circulation. 1994;89(5):2176–82.

    PubMed  CAS  Google Scholar 

  11. Tsao PS, Lewis NP, Alpert S, Cooke JP. Exposure to shear stress alters endothelial adhesiveness. Role of nitric oxide. Circulation. 1995;92(12):3513–9.

    PubMed  CAS  Google Scholar 

  12. Tsao PS, Buitrago R, Chan JR, Cooke JP. Fluid flow inhibits endothelial adhesiveness. Nitric oxide and transcriptional regulation of VCAM-1. Circulation. 1996;94(7):1682–9.

    PubMed  CAS  Google Scholar 

  13. Tsao PS, Wang B, Buitrago R, Shyy JY, Cooke JP. Nitric oxide regulates monocyte chemotactic protein-1. Circulation. 1997;96(3):934–40.

    PubMed  CAS  Google Scholar 

  14. Cooke JP, Singer AH, Tsao P, Zera P, Rowan RA, Billingham ME. Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest. 1992;90(3):1168–72.

    PubMed  CAS  Google Scholar 

  15. von der Leyen HE, Gibbons GH, Morishita R, et al. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci USA. 1995;92(4):1137–41.

    PubMed  Google Scholar 

  16. Candipan RC, Wang BY, Buitrago R, Tsao PS, Cooke JP. Regression or progression. Dependency on vascular nitric oxide. Arterioscler Thromb Vasc Biol. 1996;16(1):44–50.

    PubMed  CAS  Google Scholar 

  17. Schachinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation. 2000;101(16):1899–906.

    PubMed  CAS  Google Scholar 

  18. Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes Jr DR, Lerman A. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation. 2000;101(9):948–54.

    PubMed  CAS  Google Scholar 

  19. Gokce N, Keaney Jr JF, Hunter LM, et al. Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J Am Coll Cardiol. 2003;41(10):1769–75.

    PubMed  Google Scholar 

  20. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.

    PubMed  CAS  Google Scholar 

  21. Hink U, Li H, Mollnau H, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res. 2001;88(2):E14–22.

    PubMed  CAS  Google Scholar 

  22. Musicki B, Kramer MF, Becker RE, Burnett AL. Inactivation of phosphorylated endothelial nitric oxide synthase (Ser-1177) by O-GlcNAc in diabetes-associated erectile dysfunction. Proc Natl Acad Sci U S A. 2005;102(33):11870–5.

    PubMed  CAS  Google Scholar 

  23. Wells L, Vosseller K, Hart GW. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science. 2001;291(5512):2376–8.

    PubMed  CAS  Google Scholar 

  24. Musicki B, Kramer MF, Becker RE, Burnett AL. Age-related changes in phosphorylation of endothelial nitric oxide synthase in the rat penis. J Sex Med. 2005;2(3):347–55.

    Google Scholar 

  25. Musicki B, Liu T, Strong T, et al. Low-fat diet and exercise preserve eNOS regulation and endothelial function in the penis of early atherosclerotic pigs: a molecular analysis. J Sex Med. 2008;5(3):552–61.

    PubMed  CAS  Google Scholar 

  26. Ceriello A, Taboga C, Tonutti L, et al. Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: effects of short- and long-term simvastatin treatment. Circulation. 2002;106(10):1211–8.

    PubMed  Google Scholar 

  27. Jensen-Urstad KJ, Reichard PG, Rosfors JS, Lindblad LE, Jensen-Urstad MT. Early atherosclerosis is retarded by improved long-term blood glucose control in patients with IDDM. Diabetes. 1996;45(9):1253–8.

    PubMed  CAS  Google Scholar 

  28. Ghiadoni L, Magagna A, Versari D, et al. Different effect of antihypertensive drugs on conduit artery endothelial function. Hypertension. 2003;41(6):1281–6.

    PubMed  CAS  Google Scholar 

  29. Plotnick GD, Corretti MC, Vogel RA, Hesslink Jr R, Wise JA. Effect of supplemental phytonutrients on impairment of the flow-mediated brachial artery vasoactivity after a single high-fat meal. J Am Coll Cardiol. 2003;41(10):1744–9.

    PubMed  CAS  Google Scholar 

  30. Fard A, Tuck CH, Donis JA, et al. Acute elevations of plasma asymmetric dimethylarginine and impaired endothelial function in response to a high-fat meal in patients with type 2 diabetes. Arterioscler Thromb Vasc Biol. 2000;20(9):2039–44.

    PubMed  CAS  Google Scholar 

  31. Keogh JB, Grieger JA, Noakes M, Clifton PM. Flow-mediated dilatation is impaired by a high-saturated fat diet but not by a high-carbohydrate diet. Arterioscler Thromb Vasc Biol. 2005;25(6):1274–9.

    PubMed  CAS  Google Scholar 

  32. Jenkins DJ, Wolever TM, Rao AV, et al. Effect on blood lipids of very high intakes of fiber in diets low in saturated fat and cholesterol. N Engl J Med. 1993;329(1):21–6.

    PubMed  CAS  Google Scholar 

  33. de Roos NM, Bots ML, Katan MB. Replacement of dietary saturated fatty acids by trans fatty acids lowers serum HDL cholesterol and impairs endothelial function in healthy men and women. Arterioscler Thromb Vasc Biol. 2001;21(7):1233–7.

    PubMed  Google Scholar 

  34. Mensink RP, Katan MB. Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects. N Engl J Med. 1990;323(7):439–45.

    PubMed  CAS  Google Scholar 

  35. Sebedio JL, Vermunt SH, Chardigny JM, et al. The effect of dietary trans alpha-linolenic acid on plasma lipids and platelet fatty acid composition: the TransLinE study. Eur J Clin Nutr. 2000;54(2):104–13.

    PubMed  CAS  Google Scholar 

  36. Fraser GE, Sabate J, Beeson WL, Strahan TM. A possible protective effect of nut consumption on risk of coronary heart disease. The Adventist Health Study. Arch Intern Med. 1992;152(7):1416–24.

    PubMed  CAS  Google Scholar 

  37. Dyerberg J, Bang HO, Stoffersen E, Moncada S, Vane JR. Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis? Lancet. 1978;2(8081):117–9.

    PubMed  CAS  Google Scholar 

  38. Mori TA, Watts GF, Burke V, Hilme E, Puddey IB, Beilin LJ. Differential effects of eicosapentaenoic acid and docosahexaenoic acid on vascular reactivity of the forearm microcirculation in hyperlipidemic, overweight men. Circulation. 2000;102(11):1264–9.

    PubMed  CAS  Google Scholar 

  39. Abeywardena MY, Head RJ. Longchain n-3 polyunsaturated fatty acids and blood vessel function. Cardiovasc Res. 2001;52(3):361–71.

    PubMed  CAS  Google Scholar 

  40. Funk CD, Powell WS. Release of prostaglandins and monohydroxy and trihydroxy metabolites of linoleic and arachidonic acids by adult and fetal aortae and ductus arteriosus. J Biol Chem. 1985;260(12):7481–8.

    PubMed  CAS  Google Scholar 

  41. Fleischhauer FJ, Yan WD, Fischell TA. Fish oil improves endothelium-dependent coronary vasodilation in heart transplant recipients. J Am Coll Cardiol. 1993;21(4):982–9.

    PubMed  CAS  Google Scholar 

  42. Tushuizen ME, Nieuwland R, Scheffer PG, Sturk A, Heine RJ, Diamant M. Two consecutive high-fat meals affect endothelial-dependent vasodilation, oxidative stress and cellular microparticles in healthy men. J Thromb Haemost. 2006;4(5):1003–10.

    PubMed  CAS  Google Scholar 

  43. Food and Agriculture Organization of the United Nations. Protein quality evaluation. Joint FAO/WHO. FAO Food Nutr Pap. 1991;51:1–66.

    Google Scholar 

  44. Boger RH, Bode-Boger SM, Szuba A, et al. Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation. 1998;98(18):1842–7.

    PubMed  CAS  Google Scholar 

  45. Jacobs Jr DR, Meyer HE, Solvoll K. [Consumption of whole grain foods and chronic disease]. Tidsskr Nor Laegeforen. 2004;124(10):1399–401.

    PubMed  Google Scholar 

  46. Lockheart MS, Steffen LM, Rebnord HM, et al. Dietary patterns, food groups and myocardial infarction: a case-control study. Br J Nutr. 2007;98(2):380–7.

    PubMed  CAS  Google Scholar 

  47. Jenkins DJ, Kendall CW, Vuksan V, et al. Soluble fiber intake at a dose approved by the US Food and Drug Administration for a claim of health benefits: serum lipid risk factors for cardiovascular disease assessed in a randomized controlled crossover trial. Am J Clin Nutr. 2002;75(5):834–9.

    PubMed  CAS  Google Scholar 

  48. Stein JH, Keevil JG, Wiebe DA, Aeschlimann S, Folts JD. Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation. 1999;100(10):1050–5.

    PubMed  CAS  Google Scholar 

  49. Widlansky ME, Hamburg NM, Anter E, et al. Acute EGCG supplementation reverses endothelial dysfunction in patients with coronary artery disease. J Am Coll Nutr. 2007;26(2):95–102.

    PubMed  CAS  Google Scholar 

  50. Flammer AJ, Hermann F, Sudano I, et al. Dark chocolate improves coronary vasomotion and reduces platelet reactivity. Circulation. 2007;116(21):2376–82.

    PubMed  Google Scholar 

  51. Djousse L, Ellison RC, McLennan CE, et al. Acute effects of a high-fat meal with and without red wine on endothelial function in healthy subjects. Am J Cardiol. 1999;84(6):660–4.

    PubMed  CAS  Google Scholar 

  52. Cooper HA, Exner DV, Domanski MJ. Light-to-moderate alcohol consumption and prognosis in patients with left ventricular systolic dysfunction. J Am Coll Cardiol. 2000;35(7):1753–9.

    PubMed  CAS  Google Scholar 

  53. Ajani UA, Gaziano JM, Lotufo PA, et al. Alcohol consumption and risk of coronary heart disease by diabetes status. Circulation. 2000;102(5):500–5.

    PubMed  CAS  Google Scholar 

  54. Imhof A, Woodward M, Doering A, et al. Overall alcohol intake, beer, wine, and systemic markers of inflammation in western Europe: results from three MONICA samples (Augsburg, Glasgow, Lille). Eur Heart J. 2004;25(23):2092–100.

    PubMed  CAS  Google Scholar 

  55. Sacco RL, Elkind M, Boden-Albala B, et al. The protective effect of moderate alcohol consumption on ischemic stroke. JAMA. 1999;281(1):53–60.

    PubMed  CAS  Google Scholar 

  56. Vogel RA, Corretti MC, Plotnick GD. Effect of a single high-fat meal on endothelial function in healthy subjects. Am J Cardiol. 1997;79(3):350–4.

    PubMed  CAS  Google Scholar 

  57. Lundman P, Eriksson M, Schenck-Gustafsson K, Karpe F, Tornvall P. Transient triglyceridemia decreases vascular reactivity in young, healthy men without risk factors for coronary heart disease. Circulation. 1997;96(10):3266–8.

    PubMed  CAS  Google Scholar 

  58. Yasuda S, Miyazaki S, Kanda M, et al. Intensive treatment of risk factors in patients with type-2 diabetes mellitus is associated with improvement of endothelial function coupled with a reduction in the levels of plasma asymmetric dimethylarginine and endogenous inhibitor of nitric oxide synthase. Eur Heart J. 2006;27(10):1159–65.

    PubMed  CAS  Google Scholar 

  59. Engler MM, Engler MB, Malloy MJ, et al. Antioxidant vitamins C and E improve endothelial function in children with hyperlipidemia: Endothelial Assessment of Risk from Lipids in Youth (EARLY) Trial. Circulation. 2003;108(9):1059–63.

    PubMed  CAS  Google Scholar 

  60. Plotnick GD, Corretti MC, Vogel RA. Effect of antioxidant vitamins on the transient impairment of endothelium-dependent brachial artery vasoactivity following a single high-fat meal. JAMA. 1997;278(20):1682–6.

    PubMed  CAS  Google Scholar 

  61. Raitakari OT, Adams MR, McCredie RJ, Griffiths KA, Stocker R, Celermajer DS. Oral vitamin C and endothelial function in smokers: short-term improvement, but no sustained beneficial effect. J Am Coll Cardiol. 2000;35(6):1616–21.

    PubMed  CAS  Google Scholar 

  62. Stuhlinger MC, Oka RK, Graf EE, et al. Endothelial dysfunction induced by hyperhomocyst(e)inemia: role of asymmetric dimethylarginine. Circulation. 2003;108(8):933–8.

    PubMed  Google Scholar 

  63. Stuhlinger MC, Tsao PS, Her JH, Kimoto M, Balint RF, Cooke JP. Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation. 2001;104(21):2569–75.

    PubMed  CAS  Google Scholar 

  64. de Lorgeril M, Renaud S, Mamelle N, et al. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet. 1994;343(8911):1454–9.

    PubMed  Google Scholar 

  65. Burr ML, Fehily AM, Gilbert JF, et al. Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet. 1989;2(8666):757–61.

    PubMed  CAS  Google Scholar 

  66. Vogel RA, Corretti MC, Plotnick GD. The postprandial effect of components of the Mediterranean diet on endothelial function. J Am Coll Cardiol. 2000;36(5):1455–60.

    PubMed  CAS  Google Scholar 

  67. Perez-Jimenez F, Castro P, Lopez-Miranda J, et al. Circulating levels of endothelial function are modulated by dietary monounsaturated fat. Atherosclerosis. 1999;145(2):351–8.

    PubMed  CAS  Google Scholar 

  68. Fuentes F, Lopez-Miranda J, Sanchez E, et al. Mediterranean and low-fat diets improve endothelial function in hypercholesterolemic men. Ann Intern Med. 2001;134(12):1115–9.

    PubMed  CAS  Google Scholar 

  69. Lundberg JO, Feelisch M, Bjorne H, Jansson EA, Weitzberg E. Cardioprotective effects of vegetables: is nitrate the answer? Nitric Oxide. 2006;15(4):359–62.

    PubMed  CAS  Google Scholar 

  70. Hord NG, Tang Y, Bryan NS. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr. 2009;90(1):1–10.

    PubMed  CAS  Google Scholar 

  71. Appel LJ, Champagne CM, Harsha DW, et al. Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER clinical trial. JAMA. 2003;289(16):2083–93.

    PubMed  Google Scholar 

  72. Maruthur NM, Wang NY, Appel LJ. Lifestyle interventions reduce coronary heart disease risk: results from the PREMIER trial. Circulation. 2009;119(15):2026–31.

    PubMed  Google Scholar 

  73. Larsen FJ, Ekblom B, Sahlin K, Lundberg JO, Weitzberg E. Effects of dietary nitrate on blood pressure in healthy volunteers. N Engl J Med. 2006;355(26):2792–3.

    PubMed  CAS  Google Scholar 

  74. Weigle DS, Breen PA, Matthys CC, et al. A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am J Clin Nutr. 2005;82(1):41–8.

    PubMed  CAS  Google Scholar 

  75. Fung TT, Stampfer MJ, Manson JE, Rexrode KM, Willett WC, Hu FB. Prospective study of major dietary patterns and stroke risk in women. Stroke. 2004;35(9):2014–9.

    PubMed  Google Scholar 

  76. Iso H, Stampfer MJ, Manson JE, et al. Prospective study of fat and protein intake and risk of intraparenchymal hemorrhage in women. Circulation. 2001;103(6):856–63.

    PubMed  CAS  Google Scholar 

  77. Ornish D, Scherwitz LW, Billings JH, et al. Intensive lifestyle changes for reversal of coronary heart disease. JAMA. 1998;280(23):2001–7.

    PubMed  CAS  Google Scholar 

  78. Lefevre M, Champagne CM, Tulley RT, Rood JC, Most MM. Individual variability in cardiovascular disease risk factor responses to low-fat and low-saturated-fat diets in men: body mass index, adiposity, and insulin resistance predict changes in LDL cholesterol. Am J Clin Nutr. 2005;82(5):957–63; quiz 1145–6.

    Google Scholar 

  79. Archer SL, Stamler J, Moag-Stahlberg A, et al. Association of dietary supplement use with specific micronutrient intakes among middle-aged American men and women: the INTERMAP Study. J Am Diet Assoc. 2005;105(7):1106–14.

    PubMed  Google Scholar 

  80. Good Housekeeping Institute. New Good Housekeeping Institute study finds drastic discrepancy in potencies of popular herbal supplement. News Release, Consumer Safety Symposium on Dietary Supplements and Herbals, New York City, 1998.

    Google Scholar 

  81. Radack KL, Deck CC, Huster GA. n-3 Fatty acid effects on lipids, lipoproteins, and apolipoproteins at very low doses: results of a randomized controlled trial in hypertriglyceridemic subjects. Am J Clin Nutr. 1990;51(4):599–605.

    PubMed  CAS  Google Scholar 

  82. Connor WE, DeFrancesco CA, Connor SL. N-3 fatty acids from fish oil. Effects on plasma lipoproteins and hypertriglyceridemic patients. Ann N Y Acad Sci. 1993;683:16–34.

    PubMed  CAS  Google Scholar 

  83. Sacks FM, Stone PH, Gibson CM, Silverman DI, Rosner B, Pasternak RC. Controlled trial of fish oil for regression of human coronary atherosclerosis. HARP Research Group. J Am Coll Cardiol. 1995;25(7):1492–8.

    PubMed  CAS  Google Scholar 

  84. Rivellese AA, Maffettone A, Iovine C, et al. Long-term effects of fish oil on insulin resistance and plasma lipoproteins in NIDDM patients with hypertriglyceridemia. Diabetes Care. 1996;19(11):1207–13.

    PubMed  CAS  Google Scholar 

  85. Taccone-Gallucci M, Manca-di-Villahermosa S, Battistini L, Stuffler RG, Tedesco M, Maccarrone M. N-3 PUFAs reduce oxidative stress in ESRD patients on maintenance HD by inhibiting 5-lipoxygenase activity. Kidney Int. 2006;69(8):1450–4.

    PubMed  CAS  Google Scholar 

  86. An WS, Kim HJ, Cho KH, Vaziri ND. Omega-3 fatty acid supplementation attenuates oxidative stress, inflammation, and tubulointerstitial fibrosis in the remnant kidney. Am J Physiol Renal Physiol. 2009;297(4):F895–903.

    PubMed  CAS  Google Scholar 

  87. Svegliati-Baroni G, Candelaresi C, Saccomanno S, et al. A model of insulin resistance and nonalcoholic steatohepatitis in rats: role of peroxisome proliferator-activated receptor-alpha and n-3 polyunsaturated fatty acid treatment on liver injury. Am J Pathol. 2006;169(3):846–60.

    PubMed  CAS  Google Scholar 

  88. Casos K, Zaragoza MC, Zarkovic N, et al. A fish oil-rich diet reduces vascular oxidative stress in apoE(-/-) mice. Free Radic Res. 2010;44(7):821–9.

    PubMed  CAS  Google Scholar 

  89. Virtanen JK, Mursu J, Voutilainen S, Tuomainen TP. Serum long-chain n-3 polyunsaturated fatty acids and risk of hospital diagnosis of atrial fibrillation in men. Circulation. 2009;120(23):2315–21.

    PubMed  CAS  Google Scholar 

  90. Leaf A, Albert CM, Josephson M, et al. Prevention of fatal arrhythmias in high-risk subjects by fish oil n-3 fatty acid intake. Circulation. 2005;112(18):2762–8.

    PubMed  CAS  Google Scholar 

  91. Djousse L, Rautaharju PM, Hopkins PN, et al. Dietary linolenic acid and adjusted QT and JT intervals in the National Heart, Lung, and Blood Institute Family Heart study. J Am Coll Cardiol. 2005;45(10):1716–22.

    PubMed  CAS  Google Scholar 

  92. Mozaffarian D, Ascherio A, Hu FB, et al. Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in men. Circulation. 2005;111(2):157–64.

    PubMed  CAS  Google Scholar 

  93. Marchioli R, Barzi F, Bomba E, et al. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI)-Prevenzione. Circulation. 2002;105(16):1897–903.

    PubMed  CAS  Google Scholar 

  94. Armah CK, Jackson KG, Doman I, James L, Cheghani F, Minihane AM. Fish oil fatty acids improve postprandial vascular reactivity in healthy men. Clin Sci (Lond). 2008;114(11):679–86.

    CAS  Google Scholar 

  95. Goode GK, Garcia S, Heagerty AM. Dietary supplementation with marine fish oil improves in vitro small artery endothelial function in hypercholesterolemic patients: a double-blind placebo-controlled study. Circulation. 1997;96(9):2802–7.

    PubMed  CAS  Google Scholar 

  96. McVeigh GE, Brennan GM, Johnston GD, et al. Dietary fish oil augments nitric oxide production or release in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1993;36(1):33–8.

    PubMed  CAS  Google Scholar 

  97. Morgan DR, Dixon LJ, Hanratty CG, et al. Effects of dietary omega-3 fatty acid supplementation on endothelium-dependent vasodilation in patients with chronic heart failure. Am J Cardiol. 2006;97(4):547–51.

    PubMed  CAS  Google Scholar 

  98. Holm T, Andreassen AK, Aukrust P, et al. Omega-3 fatty acids improve blood pressure control and preserve renal function in hypertensive heart transplant recipients. Eur Heart J. 2001;22(5):428–36.

    PubMed  CAS  Google Scholar 

  99. Hu FB, Cho E, Rexrode KM, Albert CM, Manson JE. Fish and long-chain omega-3 fatty acid intake and risk of coronary heart disease and total mortality in diabetic women. Circulation. 2003;107(14):1852–7.

    PubMed  Google Scholar 

  100. Brouwer IA, Raitt MH, Dullemeijer C, et al. Effect of fish oil on ventricular tachyarrhythmia in three studies in patients with implantable cardioverter defibrillators. Eur Heart J. 2009;30(7):820–6.

    PubMed  CAS  Google Scholar 

  101. Brouwer IA, Zock PL, Camm AJ, et al. Effect of fish oil on ventricular tachyarrhythmia and death in patients with implantable cardioverter defibrillators: the Study on Omega-3 Fatty Acids and Ventricular Arrhythmia (SOFA) randomized trial. JAMA. 2006;295(22):2613–9.

    PubMed  CAS  Google Scholar 

  102. Foran SE, Flood JG, Lewandrowski KB. Measurement of mercury levels in concentrated over-the-counter fish oil preparations: is fish oil healthier than fish? Arch Pathol Lab Med. 2003;127(12):1603–5.

    PubMed  CAS  Google Scholar 

  103. Hamilton MC, Hites RA, Schwager SJ, Foran JA, Knuth BA, Carpenter DO. Lipid composition and contaminants in farmed and wild salmon. Environ Sci Technol. 2005;39(22):8622–9.

    PubMed  CAS  Google Scholar 

  104. Storelli MM, Storelli A, Marcotrigiano GO. Polychlorinated biphenyls, hexachlorobenzene, hexachlorocyclohexane isomers, and pesticide organochlorine residues in cod-liver oil dietary supplements. J Food Prot. 2004;67(8):1787–91.

    PubMed  CAS  Google Scholar 

  105. van Beelen VA, Spenkelink B, Mooibroek H, et al. An n-3 PUFA-rich microalgal oil diet protects to a similar extent as a fish oil-rich diet against AOM-induced colonic aberrant crypt foci in F344 rats. Food Chem Toxicol. 2009;47(2):316–20.

    PubMed  Google Scholar 

  106. El Abed MM, Marzouk B, Medhioub MN, Helal AN, Medhioub A. Microalgae: a potential source of polyunsaturated fatty acids. Nutr Health. 2008;19(3):221–6.

    PubMed  CAS  Google Scholar 

  107. Lee JM, Robson MD, Yu LM, et al. Effects of high-dose modified-release nicotinic acid on atherosclerosis and vascular function: a randomized, placebo-controlled, magnetic resonance imaging study. J Am Coll Cardiol. 2009;54(19):1787–94.

    PubMed  CAS  Google Scholar 

  108. Blankenhorn DH, Azen SP, Crawford DW, et al. Effects of colestipol-niacin therapy on human femoral atherosclerosis. Circulation. 1991;83(2):438–47.

    PubMed  CAS  Google Scholar 

  109. Cashin-Hemphill L, Mack WJ, Pogoda JM, Sanmarco ME, Azen SP, Blankenhorn DH. Beneficial effects of colestipol-niacin on coronary atherosclerosis. A 4-year follow-up. JAMA. 1990;264(23):3013–7.

    PubMed  CAS  Google Scholar 

  110. Warnholtz A, Wild P, Ostad MA, et al. Effects of oral niacin on endothelial dysfunction in patients with coronary artery disease: results of the randomized, double-blind, placebo-controlled INEF study. Atherosclerosis. 2009;204(1):216–21.

    PubMed  CAS  Google Scholar 

  111. Wu BJ, Yan L, Charlton F, Witting P, Barter PJ, Rye KA. Evidence that niacin inhibits acute vascular inflammation and improves endothelial dysfunction independent of changes in plasma lipids. Arterioscler Thromb Vasc Biol. 2010;30(5):968–75.

    PubMed  CAS  Google Scholar 

  112. Shirodaria C, Antoniades C, Lee J, et al. Global improvement of vascular function and redox state with low-dose folic acid: implications for folate therapy in patients with coronary artery disease. Circulation. 2007;115(17):2262–70.

    PubMed  CAS  Google Scholar 

  113. Doshi SN, McDowell IF, Moat SJ, et al. Folate improves endothelial function in coronary artery disease: an effect mediated by reduction of intracellular superoxide? Arterioscler Thromb Vasc Biol. 2001;21(7):1196–202.

    PubMed  CAS  Google Scholar 

  114. Stampfer MJ, Hu FB, Manson JE, Rimm EB, Willett WC. Primary prevention of coronary heart disease in women through diet and lifestyle. N Engl J Med. 2000;343(1):16–22.

    PubMed  CAS  Google Scholar 

  115. Rimm EB, Willett WC, Hu FB, et al. Folate and vitamin B6 from diet and supplements in relation to risk of coronary heart disease among women. JAMA. 1998;279(5):359–64.

    PubMed  CAS  Google Scholar 

  116. Bonthu S, Heistad DD, Chappell DA, Lamping KG, Faraci FM. Atherosclerosis, vascular remodeling, and impairment of endothelium-dependent relaxation in genetically altered hyperlipidemic mice. Arterioscler Thromb Vasc Biol. 1997;17(11):2333–40.

    PubMed  CAS  Google Scholar 

  117. Laursen JB, Somers M, Kurz S, et al. Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation. 2001;103(9):1282–8.

    PubMed  CAS  Google Scholar 

  118. Aikawa M, Sugiyama S, Hill CC, et al. Lipid lowering reduces oxidative stress and endothelial cell activation in rabbit atheroma. Circulation. 2002;106(11):1390–6.

    PubMed  CAS  Google Scholar 

  119. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990;87(4):1620–4.

    PubMed  CAS  Google Scholar 

  120. Forstermann U. Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med. 2008;5(6):338–49.

    PubMed  Google Scholar 

  121. Baker TA, Milstien S, Katusic ZS. Effect of vitamin C on the availability of tetrahydrobiopterin in human endothelial cells. J Cardiovasc Pharmacol. 2001;37(3):333–8.

    PubMed  CAS  Google Scholar 

  122. Heitzer T, Brockhoff C, Mayer B, et al. Tetrahydrobiopterin improves endothelium-dependent vasodilation in chronic smokers: evidence for a dysfunctional nitric oxide synthase. Circ Res. 2000;86(2):E36–41.

    PubMed  CAS  Google Scholar 

  123. Lin KY, Ito A, Asagami T, et al. Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase. Circulation. 2002;106(8):987–92.

    PubMed  CAS  Google Scholar 

  124. Green D, O’Driscoll G, Rankin JM, Maiorana AJ, Taylor RR. Beneficial effect of vitamin E administration on nitric oxide function in subjects with hypercholesterolaemia. Clin Sci (Lond). 1998;95(3):361–7.

    CAS  Google Scholar 

  125. Hirashima O, Kawano H, Motoyama T, et al. Improvement of endothelial function and insulin sensitivity with vitamin C in patients with coronary spastic angina: possible role of reactive oxygen species. J Am Coll Cardiol. 2000;35(7):1860–6.

    PubMed  CAS  Google Scholar 

  126. Schindler TH, Nitzsche EU, Munzel T, et al. Coronary vasoregulation in patients with various risk factors in response to cold pressor testing: contrasting myocardial blood flow responses to short- and long-term vitamin C administration. J Am Coll Cardiol. 2003;42(5):814–22.

    PubMed  Google Scholar 

  127. Rallidis LS, Lekakis J, Kolomvotsou A, et al. Close adherence to a Mediterranean diet improves endothelial function in subjects with abdominal obesity. Am J Clin Nutr. 2009;90(2):263–8.

    PubMed  CAS  Google Scholar 

  128. Matteucci E, Passerai S, Mariotti M, et al. Dietary habits and nutritional biomarkers in Italian type 1 diabetes families: evidence of unhealthy diet and combined-vitamin-deficient intakes. Eur J Clin Nutr. 2005;59(1):114–22.

    PubMed  CAS  Google Scholar 

  129. Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet. 1996;347(9004):781–6.

    PubMed  CAS  Google Scholar 

  130. Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet. 2000;355(9200):253–9.

    Google Scholar 

  131. Dagenais GR, Yusuf S, Bourassa MG, et al. Effects of ramipril on coronary events in high-risk persons: results of the Heart Outcomes Prevention Evaluation Study. Circulation. 2001;104(5):522–6.

    PubMed  CAS  Google Scholar 

  132. Sleight P, Yusuf S, Pogue J, Tsuyuki R, Diaz R, Probstfield J. Blood-pressure reduction and cardiovascular risk in HOPE study. Lancet. 2001;358(9299):2130–1.

    PubMed  CAS  Google Scholar 

  133. Cheung MC, Zhao XQ, Chait A, Albers JJ, Brown BG. Antioxidant supplements block the response of HDL to simvastatin-niacin therapy in patients with coronary artery disease and low HDL. Arterioscler Thromb Vasc Biol. 2001;21(8):1320–6.

    PubMed  CAS  Google Scholar 

  134. Hercberg S, Galan P, Preziosi P, et al. The SU.VI.MAX Study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch Intern Med. 2004;164(21):2335–42.

    PubMed  CAS  Google Scholar 

  135. Zureik M, Galan P, Bertrais S, et al. Effects of long-term daily low-dose supplementation with antioxidant vitamins and minerals on structure and function of large arteries. Arterioscler Thromb Vasc Biol. 2004;24(8):1485–91.

    PubMed  CAS  Google Scholar 

  136. Booth SL, Golly I, Sacheck JM, et al. Effect of vitamin E supplementation on vitamin K status in adults with normal coagulation status. Am J Clin Nutr. 2004;80(1):143–8.

    PubMed  CAS  Google Scholar 

  137. Horwitt MK. Critique of the requirement for vitamin E. Am J Clin Nutr. 2001;73(6):1003–5.

    PubMed  CAS  Google Scholar 

  138. GISSI-Prevenzione Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet. 1999;354(9177):447–55.

    Google Scholar 

  139. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med. 1994;330(15):1029–35.

    Google Scholar 

  140. Hennekens CH, Buring JE, Manson JE, et al. Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med. 1996;334(18):1145–9.

    PubMed  CAS  Google Scholar 

  141. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):7–22.

    Google Scholar 

  142. de Gaetano G. Low-dose aspirin and vitamin E in people at cardiovascular risk: a randomised trial in general practice. Collaborative Group of the Primary Prevention Project. Lancet. 2001;357(9250):89–95.

    PubMed  Google Scholar 

  143. Tiano L, Belardinelli R, Carnevali P, Principi F, Seddaiu G, Littarru GP. Effect of coenzyme Q10 administration on endothelial function and extracellular superoxide dismutase in patients with ischaemic heart disease: a double-blind, randomized controlled study. Eur Heart J. 2007;28(18):2249–55.

    PubMed  CAS  Google Scholar 

  144. Edirisinghe I, Burton-Freeman B, Tissa Kappagoda C. Mechanism of the endothelium-dependent relaxation evoked by a grape seed extract. Clin Sci (Lond). 2008;114(4):331–7.

    CAS  Google Scholar 

  145. Campos-Toimil M, Lugnier C, Droy-Lefaix MT, Takeda K. Inhibition of type 4 phosphodiesterase by rolipram and Ginkgo biloba extract (EGb 761) decreases agonist-induced rises in internal calcium in human endothelial cells. Arterioscler Thromb Vasc Biol. 2000;20(9):E34–40.

    PubMed  CAS  Google Scholar 

  146. Lissin LW, Cooke JP. Phytoestrogens and cardiovascular health. J Am Coll Cardiol. 2000;35(6):1403–10.

    PubMed  CAS  Google Scholar 

  147. Anderson JW, Johnstone BM, Cook-Newell ME. Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med. 1995;333(5):276–82.

    PubMed  CAS  Google Scholar 

  148. Weggemans RM, Trautwein EA. Relation between soy-associated isoflavones and LDL and HDL cholesterol concentrations in humans: a meta-analysis. Eur J Clin Nutr. 2003;57(8):940–6.

    PubMed  CAS  Google Scholar 

  149. Zhuo XG, Melby MK, Watanabe S. Soy isoflavone intake lowers serum LDL cholesterol: a meta-analysis of 8 randomized controlled trials in humans. J Nutr. 2004;134(9):2395–400.

    PubMed  CAS  Google Scholar 

  150. Lissin LW, Oka R, Lakshmi S, Cooke JP. Isoflavones improve vascular reactivity in post-menopausal women with hypercholesterolemia. Vasc Med. 2004;9(1):26–30.

    PubMed  Google Scholar 

  151. Tempfer CB, Froese G, Heinze G, Bentz EK, Hefler LA, Huber JC. Side effects of phytoestrogens: a meta-analysis of randomized trials. Am J Med. 2009;122(10):939–46.e9.

    Google Scholar 

  152. Vincent A, Fitzpatrick LA. Soy isoflavones: are they useful in menopause? Mayo Clin Proc. 2000;75(11):1174–84.

    PubMed  CAS  Google Scholar 

  153. Cacciatore L, Cerio R, Ciarimboli M, et al. The therapeutic effect of L-carnitine in patients with exercise-induced stable angina: a controlled study. Drugs Exp Clin Res. 1991;17(4):225–35.

    PubMed  CAS  Google Scholar 

  154. Davini P, Bigalli A, Lamanna F, Boem A. Controlled study on L-carnitine therapeutic efficacy in post-infarction. Drugs Exp Clin Res. 1992;18(8):355–65.

    PubMed  CAS  Google Scholar 

  155. Iliceto S, Scrutinio D, Bruzzi P, et al. Effects of L-carnitine administration on left ventricular remodeling after acute anterior myocardial infarction: the L-Carnitine Ecocardiografia Digitalizzata Infarto Miocardico (CEDIM) Trial. J Am Coll Cardiol. 1995;26(2):380–7.

    PubMed  CAS  Google Scholar 

  156. Brevetti G, Perna S, Sabba C, Martone VD, Condorelli M. Propionyl-L-carnitine in intermittent claudication: double-blind, placebo-controlled, dose titration, multicenter study. J Am Coll Cardiol. 1995;26(6):1411–6.

    PubMed  CAS  Google Scholar 

  157. Loffredo L, Pignatelli P, Cangemi R, et al. Imbalance between nitric oxide generation and oxidative stress in patients with peripheral arterial disease: effect of an antioxidant treatment. J Vasc Surg. 2006;44(3):525–30.

    PubMed  Google Scholar 

  158. Volek JS, Judelson DA, Silvestre R, et al. Effects of carnitine supplementation on flow-mediated dilation and vascular inflammatory responses to a high-fat meal in healthy young adults. Am J Cardiol. 2008;102(10):1413–7.

    PubMed  CAS  Google Scholar 

  159. Cooke JP, Andon NA, Girerd XJ, Hirsch AT, Creager MA. Arginine restores cholinergic relaxation of hypercholesterolemic rabbit thoracic aorta. Circulation. 1991;83(3):1057–62.

    PubMed  CAS  Google Scholar 

  160. Rossitch Jr E, Alexander III E, Black PM, Cooke JP. L-arginine normalizes endothelial function in cerebral vessels from hypercholesterolemic rabbits. J Clin Invest. 1991;87(4):1295–9.

    PubMed  CAS  Google Scholar 

  161. Creager MA, Gallagher SJ, Girerd XJ, Coleman SM, Dzau VJ, Cooke JP. L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J Clin Invest. 1992;90(4):1248–53.

    PubMed  CAS  Google Scholar 

  162. Morawietz H, Erbs S, Holtz J, et al. Endothelial protection, AT1 blockade and cholesterol-dependent oxidative stress: the EPAS trial. Circulation. 2006;114(1 Suppl):I296–301.

    PubMed  Google Scholar 

  163. Hayashi T, Matsui-Hirai H, Miyazaki-Akita A, et al. Endothelial cellular senescence is inhibited by nitric oxide: implications in atherosclerosis associated with menopause and diabetes. Proc Natl Acad Sci U S A. 2006;103(45):17018–23.

    PubMed  CAS  Google Scholar 

  164. Wang BY, Singer AH, Tsao PS, Drexler H, Kosek J, Cooke JP. Dietary arginine prevents atherogenesis in the coronary artery of the hypercholesterolemic rabbit. J Am Coll Cardiol. 1994;23(2):452–8.

    PubMed  CAS  Google Scholar 

  165. Theilmeier G, Chan JR, Zalpour C, et al. Adhesiveness of mononuclear cells in hypercholesterolemic humans is normalized by dietary L-arginine. Arterioscler Thromb Vasc Biol. 1997;17(12):3557–64.

    PubMed  CAS  Google Scholar 

  166. Tsao PS, Theilmeier G, Singer AH, Leung LL, Cooke JP. L-arginine attenuates platelet reactivity in hypercholesterolemic rabbits. Arterioscler Thromb. 1994;14(10):1529–33.

    PubMed  CAS  Google Scholar 

  167. Wang BY, Candipan RC, Arjomandi M, Hsiun PT, Tsao PS, Cooke JP. Arginine restores nitric oxide activity and inhibits monocyte accumulation after vascular injury in hypercholesterolemic rabbits. J Am Coll Cardiol. 1996;28(6):1573–9.

    PubMed  CAS  Google Scholar 

  168. Wolf A, Zalpour C, Theilmeier G, et al. Dietary L-arginine supplementation normalizes platelet aggregation in hypercholesterolemic humans. J Am Coll Cardiol. 1997;29(3):479–85.

    PubMed  CAS  Google Scholar 

  169. Vallance P, Leone A, Calver A, Collier J, Moncada S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet. 1992;339(8793):572–5.

    PubMed  CAS  Google Scholar 

  170. Leiper J, Murray-Rust J, McDonald N, Vallance P. S-nitrosylation of dimethylarginine dimethylaminohydrolase regulates enzyme activity: further interactions between nitric oxide synthase and dimethylarginine dimethylaminohydrolase. Proc Natl Acad Sci USA. 2002;99(21):13527–32.

    PubMed  CAS  Google Scholar 

  171. Boger RH, Bode-Boger SM, Brandes RP, et al. Dietary L-arginine reduces the progression of atherosclerosis in cholesterol-fed rabbits: comparison with lovastatin. Circulation. 1997;96(4):1282–90.

    PubMed  CAS  Google Scholar 

  172. Ito A, Tsao PS, Adimoolam S, Kimoto M, Ogawa T, Cooke JP. Novel mechanism for endothelial dysfunction: dysregulation of dimethylarginine dimethylaminohydrolase. Circulation. 1999;99(24):3092–5.

    PubMed  CAS  Google Scholar 

  173. Leiper J, Nandi M, Torondel B, et al. Disruption of methylarginine metabolism impairs vascular homeostasis. Nat Med. 2007;13(2):198–203.

    PubMed  CAS  Google Scholar 

  174. Leiper JM, Santa Maria J, Chubb A, et al. Identification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases. Biochem J. 1999;343(Pt 1):209–14.

    PubMed  CAS  Google Scholar 

  175. Hong L, Fast W. Inhibition of human dimethylarginine dimethylaminohydrolase-1 by S-nitroso-L-homocysteine and hydrogen peroxide. Analysis, quantification, and implications for hyperhomocysteinemia. J Biol Chem. 2007;282(48):34684–92.

    PubMed  CAS  Google Scholar 

  176. Rodionov RN, Dayoub H, Lynch CM, et al. Overexpression of dimethylarginine dimethylaminohydrolase protects against cerebral vascular effects of hyperhomocysteinemia. Circ Res. 2010;106(3):551–8.

    PubMed  CAS  Google Scholar 

  177. Sydow K, Mondon CE, Schrader J, Konishi H, Cooke JP. Dimethylarginine dimethylaminohydrolase overexpression enhances insulin sensitivity. Arterioscler Thromb Vasc Biol. 2008;28(4):692–7.

    PubMed  CAS  Google Scholar 

  178. Siroen MP, van Leeuwen PA, Nijveldt RJ, Teerlink T, Wouters PJ, Van den Berghe G. Modulation of asymmetric dimethylarginine in critically ill patients receiving intensive insulin treatment: a possible explanation of reduced morbidity and mortality? Crit Care Med. 2005;33(3):504–10.

    PubMed  CAS  Google Scholar 

  179. Nicholls SJ, Wang Z, Koeth R, et al. Metabolic profiling of arginine and nitric oxide pathways predicts hemodynamic abnormalities and mortality in patients with cardiogenic shock after acute myocardial infarction. Circulation. 2007;116(20):2315–24.

    PubMed  CAS  Google Scholar 

  180. Zeller M, Korandji C, Guilland JC, et al. Impact of asymmetric dimethylarginine on mortality after acute myocardial infarction. Arterioscler Thromb Vasc Biol. 2008;28(5):954–60.

    PubMed  CAS  Google Scholar 

  181. Furuki K, Adachi H, Enomoto M, et al. Plasma level of asymmetric dimethylarginine (ADMA) as a predictor of carotid intima-media thickness progression: six-year prospective study using carotid ultrasonography. Hypertens Res. 2008;31(6):1185–9.

    PubMed  CAS  Google Scholar 

  182. Quyyumi AA, Dakak N, Diodati JG, Gilligan DM, Panza JA, Cannon III RO. Effect of L-arginine on human coronary endothelium-dependent and physiologic vasodilation. J Am Coll Cardiol. 1997;30(5):1220–7.

    PubMed  CAS  Google Scholar 

  183. Chin-Dusting JP, Kaye DM, Lefkovits J, Wong J, Bergin P, Jennings GL. Dietary supplementation with L-arginine fails to restore endothelial function in forearm resistance arteries of patients with severe heart failure. J Am Coll Cardiol. 1996;27(5):1207–13.

    PubMed  CAS  Google Scholar 

  184. Parnell MM, Holst DP, Kaye DM. Augmentation of endothelial function following exercise training is associated with increased L-arginine transport in human heart failure. Clin Sci (Lond). 2005;109(6):523–30.

    CAS  Google Scholar 

  185. Bednarz B, Jaxa-Chamiec T, Maciejewski P, et al. Efficacy and safety of oral l-arginine in acute myocardial infarction. Results of the multicenter, randomized, double-blind, placebo-controlled ARAMI pilot trial. Kardiol Pol. 2005;62(5):421–7.

    PubMed  Google Scholar 

  186. Schulman SP, Becker LC, Kass DA, et al. L-arginine therapy in acute myocardial infarction: the Vascular Interaction With Age in Myocardial Infarction (VINTAGE MI) randomized clinical trial. JAMA. 2006;295(1):58–64.

    PubMed  CAS  Google Scholar 

  187. Wilson AM, Harada R, Nair N, Balasubramanian N, Cooke JP. L-arginine supplementation in peripheral arterial disease: no benefit and possible harm. Circulation. 2007;116(2):188–95.

    PubMed  CAS  Google Scholar 

  188. Weingartner O, Lutjohann D, Ji S, et al. Vascular effects of diet supplementation with plant sterols. J Am Coll Cardiol. 2008;51(16):1553–61.

    PubMed  Google Scholar 

  189. Miettinen TA, Railo M, Lepantalo M, Gylling H. Plant sterols in serum and in atherosclerotic plaques of patients undergoing carotid endarterectomy. J Am Coll Cardiol. 2005;45(11):1794–801.

    PubMed  CAS  Google Scholar 

  190. Blair SN, Capuzzi DM, Gottlieb SO, Nguyen T, Morgan JM, Cater NB. Incremental reduction of serum total cholesterol and low-density lipoprotein cholesterol with the addition of plant stanol ester-containing spread to statin therapy. Am J Cardiol. 2000;86(1):46–52.

    PubMed  CAS  Google Scholar 

  191. Heber D, Yip I, Ashley JM, Elashoff DA, Elashoff RM, Go VL. Cholesterol-lowering effects of a proprietary Chinese red-yeast-rice dietary supplement. Am J Clin Nutr. 1999;69(2):231–6.

    PubMed  CAS  Google Scholar 

  192. Heber D, Lembertas A, Lu QY, Bowerman S, Go VL. An analysis of nine proprietary Chinese red yeast rice dietary supplements: implications of variability in chemical profile and contents. J Altern Complement Med. 2001;7(2):133–9.

    PubMed  CAS  Google Scholar 

  193. Turner B, Molgaard C, Marckmann P. Effect of garlic (Allium sativum) powder tablets on serum lipids, blood pressure and arterial stiffness in normo-lipidaemic volunteers: a randomised, double-blind, placebo-controlled trial. Br J Nutr. 2004;92(4):701–6.

    PubMed  CAS  Google Scholar 

  194. Urizar NL, Liverman AB, Dodds DT, et al. A natural product that lowers cholesterol as an antagonist ligand for FXR. Science. 2002;296(5573):1703–6.

    PubMed  CAS  Google Scholar 

  195. Torres O, Agramonte AJ, Illnait J, Mas Ferreiro R, Fernandez L, Fernandez JC. Treatment of hypercholesterolemia in NIDDM with policosanol. Diabetes Care. 1995;18(3):393–7.

    PubMed  CAS  Google Scholar 

  196. Berthold HK, Unverdorben S, Degenhardt R, Bulitta M, Gouni-Berthold I. Effect of policosanol on lipid levels among patients with hypercholesterolemia or combined hyperlipidemia: a randomized controlled trial. JAMA. 2006;295(19):2262–9.

    PubMed  CAS  Google Scholar 

  197. Nissen SE, Tuzcu EM, Schoenhagen P, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA. 2004;291(9):1071–80.

    PubMed  CAS  Google Scholar 

  198. Urberg M, Zemel MB. Evidence for synergism between chromium and nicotinic acid in the control of glucose tolerance in elderly humans. Metabolism. 1987;36(9):896–9.

    PubMed  CAS  Google Scholar 

  199. Freund H, Atamian S, Fischer JE. Chromium deficiency during total parenteral nutrition. JAMA. 1979;241(5):496–8.

    PubMed  CAS  Google Scholar 

  200. Stupar J, Vrtovec M, Dolinsek F. Longitudinal hair chromium profiles of elderly subjects with normal glucose tolerance and type 2 diabetes mellitus. Metabolism. 2007;56(1):94–104.

    PubMed  CAS  Google Scholar 

  201. Jeejeebhoy KN, Chu RC, Marliss EB, Greenberg GR, Bruce-Robertson A. Chromium deficiency, glucose intolerance, and neuropathy reversed by chromium supplementation, in a patient receiving long-term total parenteral nutrition. Am J Clin Nutr. 1977;30(4):531–8.

    PubMed  CAS  Google Scholar 

  202. Ali A, Ma Y, Reynolds J, Wise JP, Inzucchi SE, Katz DL. Chromium effects on glucose tolerance and insulin sensitivity in people at risk for diabetes. Endocr Pract. 2010;14:1–21.

    Google Scholar 

  203. Ziegler D, Gries FA. Alpha-lipoic acid in the treatment of diabetic peripheral and cardiac autonomic neuropathy. Diabetes. 1997;46 Suppl 2:S62–6.

    PubMed  CAS  Google Scholar 

  204. Sola S, Mir MQ, Cheema FA, et al. Irbesartan and lipoic acid improve endothelial function and reduce markers of inflammation in the metabolic syndrome: results of the Irbesartan and Lipoic Acid in Endothelial Dysfunction (ISLAND) study. Circulation. 2005;111(3):343–8.

    PubMed  CAS  Google Scholar 

  205. Costa FV. Non-pharmacological treatment of hypertension in women. J Hypertens Suppl. 2002;20(2):S57–61.

    PubMed  CAS  Google Scholar 

  206. Sobenin IA, Andrianova IV, Fomchenkov IV, Gorchakova TV, Orekhov AN. Time-released garlic powder tablets lower systolic and diastolic blood pressure in men with mild and moderate arterial hypertension. Hypertens Res. 2009;32(6):433–7.

    PubMed  CAS  Google Scholar 

  207. Al-Qattan KK, Thomson M, Al-Mutawa’a S, Al-Hajeri D, Drobiova H, Ali M. Nitric oxide mediates the blood-pressure lowering effect of garlic in the rat two-kidney, one-clip model of hypertension. J Nutr. 2006;136(3 Suppl):774S–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Cooke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wong, W.T., Cooke, J.P. (2011). Nutritional Impact on the Nitric Oxide Pathway. In: Bryan, N., Loscalzo, J. (eds) Nitrite and Nitrate in Human Health and Disease. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-60761-616-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-616-0_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-615-3

  • Online ISBN: 978-1-60761-616-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics