Skip to main content

Relationship of the CYBA Gene Polymorphisms with Oxidative Stress and Cardiovascular Risk

  • Chapter
  • First Online:

Abstract

Oxidative stress plays a key role in the pathophysiology of several major cardiovascular diseases, including atherosclerosis, hypertension, heart failure, stroke, and diabetes. Reactive oxygen species (ROS) induce cardiovascular alterations by modulating cell contraction/dilatation, migration, growth/apoptosis, and extracellular matrix protein turnover, which contribute to vascular and cardiac remodeling. Of the several sources of ROS within the cardiovascular system, the family of the multisubunit NADPH oxidases appears to be a predominant contributor generating superoxide anions. Recent data suggest a significant role of the genetic background in NADPH oxidase regulation. Common genetic polymorphisms within CYBA, the gene that encodes the p22phox subunit of the NADPH oxidase, have been characterized in the context of cardiovascular diseases. This chapter aims to present the current state of research into these polymorphisms in their relationship to cardiovascular diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ROS:

Reactive oxygen species

•O2 :

Superoxide

CGD:

Chronic granulomatous disease

SHR:

Spontaneously hypertensive rat

CAD:

Coronary artery disease

C/EBP:

CCAAT enhancer-binding protein

HIF-1α:

Hypoxia-inducible factor-1alpha

LD:

Linkage disequilibrium

References

  1. Kullo IJ, Ding K (2007) Mechanisms of disease: the genetic basis of coronary heart disease. Nat Clin Pract Card Medi 4:558–569

    Article  CAS  Google Scholar 

  2. Bokoch GM, Knaus UG (2003) NADPH oxidases: not just for leukocytes anymore! Trends Biochem Sci 28:502–508

    Article  PubMed  CAS  Google Scholar 

  3. Quinn MT, Gauss KA (2004) Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol 76:760–781

    Article  PubMed  CAS  Google Scholar 

  4. Cross AR, Segal AW (2004) The NADPH oxidase of professional phagocytes–prototype of the NOX electron transport chain systems. Biochim Biophys Acta 1657:1–22

    PubMed  CAS  Google Scholar 

  5. Ray R, Shah AM (2005) NADPH oxidase and endothelial cell function. Clin Sci 109:217–226

    Article  PubMed  CAS  Google Scholar 

  6. Brandes RP, Kreuzer J (2005) Vascular NADPH oxidases: molecular mechanisms of activation. Cardiovasc Res 65:16–27

    Article  PubMed  CAS  Google Scholar 

  7. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  PubMed  CAS  Google Scholar 

  8. Quinn MT, Ammons MC, Deleo FR (2006) The expanding role of NADPH oxidases in health and disease: no longer just agents of death and destruction. Clin Sci 111:1–20

    Article  PubMed  CAS  Google Scholar 

  9. Inoguchi T, Nawata H (2005) NAD(P)H oxidase activation: a potential target mechanism for diabetic vascular complications, progressive beta-cell dysfunction and metabolic syndrome. Curr Drug Targets 6:495–501

    Article  PubMed  CAS  Google Scholar 

  10. Fortuño A, San José G, Moreno MU et al (2006) Phagocytic NADPH oxidase overactivity underlies oxidative stress in metabolic syndrome. Diabetes 55:209–215

    Article  PubMed  Google Scholar 

  11. Zalba G, Beaumont FJ, San José G et al (2000) Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats. Hypertension 35:1055–1061

    Article  PubMed  CAS  Google Scholar 

  12. Fortuño A, Oliván S, Beloqui O et al (2004) Association of increased phagocytic NADPH oxidase-dependent superoxide production with diminished nitric oxide generation in essential hypertension. J Hypertens 22:2169–2175

    Article  PubMed  Google Scholar 

  13. Lassegue B, Griendling KK (2004) Reactive oxygen species in hypertension; An update. Am J Hypertens 17:852–860

    Article  PubMed  CAS  Google Scholar 

  14. Guzik TJ, Mussa S, Gastaldi D et al (2002) Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 105:1656–1662

    Article  PubMed  CAS  Google Scholar 

  15. Inoguchi T, Tsubouchi H, Etoh T et al (2003) A possible target of antioxidative therapy for diabetic vascular complications-vascular NAD(P)H oxidase. Curr Med Chem 10:1759–1764

    Article  PubMed  CAS  Google Scholar 

  16. Heymes C, Bendall JK, Ratajczak P et al (2003) Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 41:2164–2171

    Article  PubMed  CAS  Google Scholar 

  17. Cave A, Grieve D, Johar S et al (2005) NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology. Philos Trans R Soc Lond B Biol Sci 360:2327–2334

    Article  PubMed  CAS  Google Scholar 

  18. Fortuño A, Beloqui O, San José G et al (2005) Increased phagocytic nicotinamide adenine dinucleotide phosphate oxidase-dependent superoxide production in patients with early chronic kidney disease. Kidney Int Suppl 22:S71–S75

    Article  Google Scholar 

  19. Zalba G, Fortuño A, Díez J (2006) Oxidative stress and atherosclerosis in early chronic kidney disease. Nephrol Dial Transplant 21:2686–2690

    Article  PubMed  CAS  Google Scholar 

  20. Gill PS, Wilcox CS (2006) NADPH oxidases in the kidney. Antioxid Redox Signal 8:1597–1607

    Article  PubMed  CAS  Google Scholar 

  21. Sorescu D, Weiss D, Lassegue B et al (2002) Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 105:1429–1435

    Article  PubMed  CAS  Google Scholar 

  22. Zalba G, Beloqui O, San José G et al (2005) NADPH oxidase-dependent superoxide production is associated with carotid intima-media thickness in subjects free of clinical atherosclerotic disease. Arterioscler Thromb Vasc Biol 25:1452–1457

    Article  PubMed  CAS  Google Scholar 

  23. Zalba G, Fortuño A, Orbe J et al (2007) Phagocytic NADPH oxidase-dependent superoxide production stimulates matrix metalloproteinase-9: implications for human atherosclerosis. Arterioscler Thromb Vasc Biol 27:587–593

    Article  PubMed  CAS  Google Scholar 

  24. Miller AA, Drummond GR, Sobey CG (2006) Novel isoforms of NADPH-oxidase in cerebral vascular control. Pharmacol Ther 111:928–948

    Article  PubMed  CAS  Google Scholar 

  25. Kalinina N, Agrotis A, Tararak E et al (2002) Cytochrome b558-dependent NAD(P)H oxidase-phox units in smooth muscle and macrophages of atherosclerotic lesions. Arterioscler Thromb Vasc Biol 22:2037–2043

    Article  PubMed  CAS  Google Scholar 

  26. Liu J, Yang F, Yang XP et al (2003) NAD(P)H oxidase mediates angiotensin II-induced vascular macrophage infiltration and medial hypertrophy. Arterioscler Thromb Vasc Biol 23:776–782

    Article  PubMed  CAS  Google Scholar 

  27. Cifuentes ME, Pagano PJ (2006) Targeting reactive oxygen species in hypertension. Curr Opin Nephrol Hypertens 15:179–186

    Article  PubMed  CAS  Google Scholar 

  28. Rajagopalan S, Kurz S, Munzel T et al (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97:1916–1923

    Article  PubMed  CAS  Google Scholar 

  29. De Keulenaer GW, Alexander RW, Ushio-Fukai M et al (1998) Tumour necrosis factor alpha activates a p22phox-based NADH oxidase in vascular smooth muscle. Biochem J 329:653–657

    PubMed  Google Scholar 

  30. Pu Q, Neves MF, Virdis A et al (2003) Endothelin antagonism on aldosterone-induced oxidative stress and vascular remodeling. Hypertension 42:49–55

    Article  PubMed  CAS  Google Scholar 

  31. Dorffel Y, Franz S, Pruss A et al (2001) Preactivated monocytes from hypertensive patients as a factor for atherosclerosis? Atherosclerosis 157:151–160

    Article  PubMed  CAS  Google Scholar 

  32. Virdis A, Neves MF, Amiri F et al (2002) Spironolactone improves angiotensin-induced vascular changes and oxidative stress. Hypertension 40:504–510

    Article  PubMed  CAS  Google Scholar 

  33. Zalba G, San José G, Moreno MU et al (2001) Oxidative stress in arterial hypertension: role of NAD(P)H oxidase. Hypertension 38:1395–1399

    Article  PubMed  CAS  Google Scholar 

  34. San José G, Fortuño A, Beloqui O et al (2008) NADPH oxidase CYBA polymorphisms, oxidative stress and cardiovascular diseases. Clin Sci 114:173–182

    Article  PubMed  Google Scholar 

  35. Roos D (1994) The genetic basis of chronic granulomatous disease. Immunol Rev 138:121–157

    Article  PubMed  CAS  Google Scholar 

  36. Ushio-Fukai M, Zafari AM, Fukui T et al (1996) p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem 271:23317–23321

    Article  PubMed  CAS  Google Scholar 

  37. Ushio-Fukai M, Tang Y, Fukai T et al (2002) Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res 91:1160–1167

    Article  PubMed  CAS  Google Scholar 

  38. Lassegue B, Clempus RE (2003) Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 285:R277–R297

    PubMed  CAS  Google Scholar 

  39. Dinauer MC, Pierce EA, Bruns GA et al (1990) Human neutrophil cytochrome b light chain (p22-phox). Gene structure, chromosomal location, and mutations in cytochrome-negative autosomal recessive chronic granulomatous disease. J Clin Invest 86:1729–1737

    Article  PubMed  CAS  Google Scholar 

  40. Parkos CA, Dinauer MC, Jesaitis AJ et al (1989) Absence of both the 91kD and 22kD subunits of human neutrophil cytochrome b in two genetic forms of chronic granulomatous disease. Blood 73:1416–1420

    PubMed  CAS  Google Scholar 

  41. Kawahara T, Ritsick D, Cheng G et al (2005) Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation. J Biol Chem 280:31859–31869

    Article  PubMed  CAS  Google Scholar 

  42. Martyn KD, Frederick LM, von Loehneysen K et al (2006) Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18:69–82

    Article  PubMed  CAS  Google Scholar 

  43. Zalba G, San José G, Moreno MU et al (2005) NADPH oxidase-mediated oxidative stress: genetic studies of the p22(phox) gene in hypertension. Antioxid Redox Signal 7:1327–1336

    Article  PubMed  CAS  Google Scholar 

  44. Soccio M, Toniato E, Evangelista V et al (2005) Oxidative stress and cardiovascular risk: the role of vascular NAD(P)H oxidase and its genetic variants. Eur J Clin Invest 35:305–314

    Article  PubMed  CAS  Google Scholar 

  45. Zalba G, San José G, Beaumont FJ et al (2001) Polymorphisms and promoter overactivity of the p22(phox) gene in vascular smooth muscle cells from spontaneously hypertensive rats. Circ Res 88:217–222

    Article  PubMed  CAS  Google Scholar 

  46. de Boer M, de Klein A, Hossle JP et al (1992) Cytochrome b558-negative, autosomal recessive chronic granulomatous disease: two new mutations in the cytochrome b558 light chain of the NADPH oxidase (p22-phox). Am J Hum Genet 51:1127–1135

    PubMed  Google Scholar 

  47. Moreno MU, San José G, Orbe J et al (2003) Preliminary characterisation of the promoter of the human p22(phox) gene: identification of a new polymorphism associated with hypertension. FEBS Lett 542:27–31

    Article  PubMed  CAS  Google Scholar 

  48. Moreno MU, San José G, Fortuño A et al (2007) A novel CYBA variant, the -675A/T polymorphism, is associated with essential hypertension. J Hypertens 25:1620–1626

    Article  PubMed  CAS  Google Scholar 

  49. Doi K, Noiri E, Nakao A et al (2005) Haplotype analysis of NAD(P)H oxidase p22 phox polymorphisms in end-stage renal disease. J Hum Genet 50:641–647

    Article  PubMed  CAS  Google Scholar 

  50. Whitehead AS, FitzGerald GA (2001) Twenty-first century phox: not yet ready for widespread screening. Circulation 103:7–9

    Article  PubMed  CAS  Google Scholar 

  51. Inoue N, Kawashima S, Kanazawa K et al (1998) Polymorphism of the NADH/NADPH oxidase p22 phox gene in patients with coronary artery disease. Circulation 97:135–137

    Article  PubMed  CAS  Google Scholar 

  52. Fan M, Kahonen M, Rontu R et al (2006) The p22phox C242T gene polymorphism is associated with a reduced risk of angiographically verified coronary artery disease in a high-risk Finnish Caucasian population. The Finnish Cardiovascular Study. Am Heart J 152:538–542

    Article  PubMed  CAS  Google Scholar 

  53. Corsetti JP, Ryan D, Moss AJ et al (2008) NAD(P)H oxidase polymorphism (C242T) and high HDL cholesterol associate with recurrent coronary events in postinfarction patients. Atherosclerosis 196:461–468

    Article  PubMed  CAS  Google Scholar 

  54. Arca M, Conti B, Montali A et al (2008) C242T polymorphism of NADPH oxidase p22phox and recurrence of cardiovascular events in coronary artery disease. Arterioscler Thromb Vasc Biol 28:752–757

    Article  PubMed  CAS  Google Scholar 

  55. Cahilly C, Ballantyne CM, Lim DS et al (2000) A variant of p22(phox), involved in generation of reactive oxygen species in the vessel wall, is associated with progression of coronary atherosclerosis. Circ Res 86:391–395

    Article  PubMed  CAS  Google Scholar 

  56. Nasti S, Spallarossa P, Altieri P et al (2006) C242T polymorphism in CYBA gene (p22phox) and risk of coronary artery disease in a population of Caucasian Italians. Dis Markers 22:167–173

    PubMed  CAS  Google Scholar 

  57. Spence MS, McGlinchey PG, Patterson CC et al (2003) Investigation of the C242T polymorphism of NAD(P)H oxidase p22 phox gene and ischaemic heart disease using family-based association methods. Clin Sci 105:677–682

    Article  PubMed  CAS  Google Scholar 

  58. Gardemann A, Mages P, Katz N et al (1999) The p22 phox A640G gene polymorphism but not the C242T gene variation is associated with coronary heart disease in younger individuals. Atherosclerosis 145:315–323

    Article  PubMed  CAS  Google Scholar 

  59. Zafari AM, Davidoff MN, Austin H et al (2002) The A640G and C242T p22(phox) polymorphisms in patients with coronary artery disease. Antioxid Redox Signal 4:675–680

    Article  PubMed  CAS  Google Scholar 

  60. Saha N, Sanghera DK, Kamboh MI (1999) The p22 phox polymorphism C242T is not associated with CHD risk in Asian Indians and Chinese. Eur J Clin Invest 29:999–1002

    Article  PubMed  CAS  Google Scholar 

  61. Cai H, Duarte N, Wilcken DE (1999) NADH/NADPH oxidase p22 phox C242T polymorphism and coronary artery disease in the Australian population. Eur J Clin Invest 29:744–748

    Article  PubMed  CAS  Google Scholar 

  62. Li A, Prasad A, Mincemoyer R et al (1999) Relationship of the C242T p22phox gene polymorphism to angiographic coronary artery disease and endothelial function. Am J Med Genet 86:57–61

    Article  PubMed  CAS  Google Scholar 

  63. Renner W, Schallmoser K, Gallippi P et al (2000) C242T polymorphism of the p22 phox gene is not associated with peripheral arterial occlusive disease. Atherosclerosis 152:175–179

    Article  PubMed  CAS  Google Scholar 

  64. Schachinger V, Britten MB, Dimmeler S (2001) NADH/NADPH oxidase p22 phox gene polymorphism is associated with improved coronary endothelial vasodilator function. Eur Heart J 22:96–101

    Article  PubMed  CAS  Google Scholar 

  65. Shimokata K, Yamada Y, Kondo T et al (2004) Association of gene polymorphisms with coronary artery disease in individuals with or without nonfamilial hypercholesterolemia. Atherosclerosis 172:167–173

    Article  PubMed  CAS  Google Scholar 

  66. Fricker R, Hesse C, Weiss J et al (2004) Endothelial venodilator response in carriers of genetic polymorphisms involved in NO synthesis and degradation. Br J Clin Pharmacol 58:169–177

    Article  PubMed  CAS  Google Scholar 

  67. Schneider MP, Hilgers KF, Huang Y et al (2003) The C242T p22phox polymorphism and endothelium-dependent vasodilation in subjects with hypercholesterolaemia. Clin Sci 105:97–103

    Article  PubMed  CAS  Google Scholar 

  68. Ito D, Murata M, Watanabe K et al (2000) C242T polymorphism of NADPH oxidase p22 PHOX gene and ischemic cerebrovascular disease in the Japanese population. Stroke 31:936–939

    Article  PubMed  CAS  Google Scholar 

  69. Krex D, Ziegler A, Konig IR et al (2003) Polymorphisms of the NADPH oxidase P22PHOX gene in a Caucasian population with intracranial aneurysms. Cerebrovasc Dis 16:363–368

    Article  PubMed  CAS  Google Scholar 

  70. Genius J, Grau AJ, Lichy C (2008) The C242T polymorphism of the NAD(P)H oxidase p22phox subunit is associated with an enhanced risk for cerebrovascular disease at young age. Cerebrovasc Dis 26:430–433

    Article  PubMed  CAS  Google Scholar 

  71. Kuroda J, Kitazono T, Ago T et al (2007) NAD(P)H oxidase p22phox C242T polymorphism and ischemic stroke in Japan: the Fukuoka Stroke Registry and the Hisayama study. Eur J Neurol 14:1091–1097

    Article  PubMed  CAS  Google Scholar 

  72. Matsunaga-Irie S, Maruyama T, Yamamoto Y et al (2004) Relation between development of nephropathy and the p22phox C242T and receptor for advanced glycation end product G1704T gene polymorphisms in type 2 diabetic patients. Diabetes Care 27:303–307

    Article  PubMed  CAS  Google Scholar 

  73. Matsunaga S, Maruyama T, Yamada S et al (2003) Nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) P22 Phox C242T gene polymorphism in type 1 diabetes. Ann N Y Acad Sci 1005:324–327

    Article  PubMed  CAS  Google Scholar 

  74. Hodgkinson AD, Millward BA, Demaine AG (2003) Association of the p22phox component of NAD(P)H oxidase with susceptibility to diabetic nephropathy in patients with type 1 diabetes. Diabetes Care 26:3111–3115

    Article  PubMed  CAS  Google Scholar 

  75. Lim SC, Goh SK, Lai YR et al (2006) Relationship between common functional polymorphisms of the p22phox gene (-930A > G and +242C > T) and nephropathy as a result of Type 2 diabetes in a Chinese population. Diabet Med 23:1037–1041

    Article  PubMed  CAS  Google Scholar 

  76. Hayaishi-Okano R, Yamasaki Y, Kajimoto Y et al (2003) Association of NAD(P)H oxidase p22 phox gene variation with advanced carotid atherosclerosis in Japanese type 2 diabetes. Diabetes Care 26:458–463

    Article  PubMed  CAS  Google Scholar 

  77. Moreno MU, San José G, Fortuño A et al (2006) The C242T CYBA polymorphism of NADPH oxidase is associated with essential hypertension. J Hypertens 24:1299–1306

    Article  PubMed  CAS  Google Scholar 

  78. Raijmakers MT, Roes EM, Steegers EA et al (2002) The C242T-polymorphism of the NADPH/NADH oxidase gene p22phox subunit is not associated with pre-eclampsia. J Hum Hypertens 16:423–425

    Article  PubMed  CAS  Google Scholar 

  79. Grahl DA, Axelsson J, Nordfors L et al (2007) Associations between the CYBA 242C/T and the MPO -463G/A polymorphisms, oxidative stress and cardiovascular disease in chronic kidney disease patients. Blood Purif 25:210–218

    Article  PubMed  CAS  Google Scholar 

  80. Wyche KE, Wang SS, Griendling KK et al (2004) C242T CYBA polymorphism of the NADPH oxidase is associated with reduced respiratory burst in human neutrophils. Hypertension 43:1246–1251

    Article  PubMed  CAS  Google Scholar 

  81. Guzik TJ, West NE, Black E et al (2000) Functional effect of the C242T polymorphism in the NAD(P)H oxidase p22phox gene on vascular superoxide production in atherosclerosis. Circulation 102:1744–1747

    Article  PubMed  CAS  Google Scholar 

  82. Delles C, Zimmerli LU, McGrane DJ et al (2008) Vascular stiffness is related to superoxide generation in the vessel wall. J Hypertens 26:946–955

    Article  PubMed  CAS  Google Scholar 

  83. Perianayagam MC, Liangos O, Kolyada AY et al (2007) NADPH oxidase p22phox and catalase gene variants are associated with biomarkers of oxidative stress and adverse outcomes in acute renal failure. J Am Soc Nephrol 18:255–263

    Article  PubMed  CAS  Google Scholar 

  84. Macías-Reyes A, Rodríguez-Esparragón F, Caballero-Hidalgo A et al (2008) Insight into the role of CYBA A640G and C242T gene variants and coronary heart disease risk. A case-control study. Free Rad Biol Med 42:82–92

    Google Scholar 

  85. Park JY, Ferrell RE, Park JJ et al (2005) NADPH oxidase p22phox gene variants are associated with systemic oxidative stress biomarker responses to exercise training. J Appl Physiol 99:1905–1911

    Article  PubMed  CAS  Google Scholar 

  86. Mashiba J, Koike G, Kamiunten H et al (2005) Vasospastic angina and microvascular angina are differentially influenced by PON1 A632G polymorphism in the Japanese. Circ J 69:1466–1471

    Article  PubMed  CAS  Google Scholar 

  87. Schirmer M, Hoffmann M, Kaya E et al (2008) Genetic polymorphisms of NAD(P)H oxidase: variation in subunit expression and enzyme activity. Pharmacogenomics J 8:297–304

    Article  PubMed  CAS  Google Scholar 

  88. San José G, Moreno MU, Olivan S et al (2004) Functional effect of the p22phox -930A/G polymorphism on p22phox expression and NADPH oxidase activity in hypertension. Hypertension 44:163–169

    Article  PubMed  Google Scholar 

  89. Kokubo Y, Iwai N, Tago N et al (2005) Association analysis between hypertension and CYBA, CLCNKB, and KCNMB1 functional polymorphisms in the Japanese population–the Suita Study. Circ J 69:138–142

    Article  PubMed  CAS  Google Scholar 

  90. Sales ML, Ferreira MC, Leme CA Jr et al (2007) Non-effect of p22-phox -930A/G polymorphism on end-organ damage in Brazilian hypertensive patients. J Hum Hypertens 2:504–506

    Google Scholar 

  91. Kitami Y, Fukuoka T, Hiwada K et al (1999) A high level of CCAAT-enhancer binding protein-delta expression is a major determinant for markedly elevated differential gene expression of the platelet-derived growth factor-alpha receptor in vascular smooth muscle cells of genetically hypertensive rats. Circ Res 84:64–73

    Article  PubMed  CAS  Google Scholar 

  92. He MA, Cheng LX, Jiang CZ et al (2007) Associations of polymorphism of P22(phox) C242T, plasma levels of vitamin E, and smoking with coronary heart disease in China. Am Heart J 153:640.e1–640.e6

    Article  Google Scholar 

  93. Niemiec P, Zak I, Wita K (2007) The 242T variant of the CYBA gene polymorphism increases the risk of coronary artery disease associated with cigarette smoking and hypercholesterolemia. Coron Artery Dis 18:339–346

    Article  PubMed  Google Scholar 

  94. Wojnowski L, Kulle B, Schirmer M et al (2005) NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation 112:3754–3762

    Article  PubMed  CAS  Google Scholar 

  95. Rueckschloss U, Quinn MT, Holtz J et al (2002) Dose-dependent regulation of NAD(P)H oxidase expression by angiotensin II in human endothelial cells: protective effect of angiotensin II type 1 receptor blockade in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 22:1845–1851

    Article  PubMed  CAS  Google Scholar 

  96. van der Giet M, Erinola M, Zidek W et al (2002) Captopril and quinapril reduce reactive oxygen species. Eur J Clin Invest 32:732–737

    Article  PubMed  Google Scholar 

  97. Maack C, Kartes T, Kilter H et al (2003) Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment. Circulation 108:1567–1574

    Article  PubMed  CAS  Google Scholar 

  98. Hwang J, Kleinhenz DJ, Lassegue B et al (2005) Peroxisome proliferator-activated receptor-gamma ligands regulate endothelial membrane superoxide production. Am J Physiol Cell Physiol 288:C899–C905

    Article  PubMed  CAS  Google Scholar 

  99. Morawietz H, Erbs S, Holtz J et al (2006) Endothelial Protection, AT1 blockade and Cholesterol-Dependent Oxidative Stress: the EPAS trial. Circulation 114:I296–I301

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the agreement between the Foundation for Applied Medical Research and “UTE project CIMA”; European Union (InGenious HyperCare, LSHM-CT-2006-037093); Red Temática de Investigación Cooperativa en Enfermedades Cardiovasculares from the Instituto de Salud Carlos III, Ministry of Health (RD06/0014/0008) and Ministry of Science and Culture (SAF-2007-62553) of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Zalba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zalba, G., Díez, J. (2010). Relationship of the CYBA Gene Polymorphisms with Oxidative Stress and Cardiovascular Risk. In: Sauer, H., Shah, A., Laurindo, F. (eds) Studies on Cardiovascular Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-600-9_9

Download citation

Publish with us

Policies and ethics