Skip to main content

Developmental Exposure to Environmental Endocrine Disruptors and Adverse Effects on Mammary Gland Development

  • Chapter
  • First Online:
  • 1163 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

The breast or mammary gland is an organ highly dependent upon hormones and other endogenous growth catalysts for normal development. Environmental chemical exposures have been associated with altered breast developmental timing in populations of girls, and several chemicals and dietary agents are known to induce delayed or accelerated mammary gland development in rodent models. These alterations in development are more likely to occur if exposure to endocrine disruptors coincides with periods of rapid cellular proliferation. These periods of growth include prenatal, peripubertal, and pregnant/lactational mammary development. This chapter will outline the studies that have shown significant effects of environmental chemicals on mammary gland development in rodent models and discuss the relationship of these data to later life adverse health repercussions.

Funding Information: Support for L. Beck and A. Borde was provided through the NIH Summers of Discovery Program, with funding by the National Toxicology Program and the American Recovery and Reinvestment Act.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Oftedal O. The mammary gland and its origin during Synapsid evolution. J Mammary Gland Biol Neoplasia. 2002;7:225–252.

    Article  PubMed  Google Scholar 

  2. Tanner J. Growth and adolescence. 2nd ed. Oxford: Blackwell Scientific Publications; 1962.

    Google Scholar 

  3. Euling SY, Herman-Giddens ME, Lee PA, et al. Examination of US puberty-timing data from 1940 to 1994 for secular trends: panel findings. Pediatrics. 2008;121(Suppl 3):S172–191.

    Article  PubMed  Google Scholar 

  4. Euling SY, Selevan SG, Pescovitz OH, Skakkebaek NE. Role of environmental factors in the timing of puberty. Pediatrics. 2008;121(Suppl 3):S167–171.

    Article  PubMed  Google Scholar 

  5. Fenton SE. Endocrine-disrupting compounds and mammary gland development: early exposure and later life consequences. Endocrinology. 2006;147(6 Suppl):S18–24.

    Article  PubMed  CAS  Google Scholar 

  6. ACS. Cancer facts and figures. Atlanta: American Cancer Society; 2010.

    Google Scholar 

  7. Neville MC, Daniel CW. The mammary gland: development, regulation, and function. New York: Plenum Press; 1987.

    Google Scholar 

  8. Elston CW, Ellis IO. The breast. 3rd ed. Edinburgh/New York: Churchill Livingstone; 1998.

    Google Scholar 

  9. Russo IH, Russo J. Developmental stage of the rat mammary gland as determinant of its susceptibility to 7,12-dimethylbenz[a]anthracene. J Natl Cancer Inst. 1978;61(6):1439–1449.

    PubMed  CAS  Google Scholar 

  10. Russo J, Russo IH. Experimentally induced mammary tumors in rats. Breast Cancer Res Treat. 1996;39(1):7–20.

    Article  PubMed  CAS  Google Scholar 

  11. Russo J, Russo IH. Differentiation and breast cancer. Medicina (B Aires). 1997;57(Suppl 2):81–91.

    CAS  Google Scholar 

  12. Cardiff RD, Anver MR, Gusterson BA, et al. The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene. 2000;19(8):968–988.

    Article  PubMed  CAS  Google Scholar 

  13. Fenton SE, Condon M, Ettinger AS, et al. Collection and use of exposure data from human milk biomonitoring in the United States. J Toxicol Environ Health A. 2005;68(20):1691–1712.

    Article  PubMed  CAS  Google Scholar 

  14. Vorderstrasse BA, Fenton SE, Bohn AA, Cundiff JA, Lawrence BP. A novel effect of dioxin: exposure during pregnancy severely impairs mammary gland differentiation. Toxicol Sci. 2004;78(2):248–257.

    Article  PubMed  CAS  Google Scholar 

  15. Padilla-Banks E, Jefferson WN, Newbold RR. Neonatal exposure to the phytoestrogen genistein alters mammary gland growth and developmental programming of hormone receptor levels. Endocrinology. 2006;147(10):4871–4882.

    Article  PubMed  CAS  Google Scholar 

  16. Murrill WB, Brown NM, Zhang JX, Manzolillo PA, Barnes S, Lamartiniere CA. Prepubertal genistein exposure suppresses mammary cancer and enhances gland differentiation in rats. Carcinogenesis. 1996;17(7):1451–1457.

    Article  PubMed  CAS  Google Scholar 

  17. Russo IH, Koszalka M, Russo J. Effect of human chorionic gonadotropin on mammary gland differentiation and carcinogenesis. Carcinogenesis. 1990;11(10):1849–1855.

    Article  PubMed  CAS  Google Scholar 

  18. Hilakivi-Clarke L, Onojafe I, Raygada M, et al. Prepubertal exposure to zearalenone or genistein reduces mammary tumorigenesis. Br J Cancer. 1999;80(11):1682–1688.

    Article  PubMed  CAS  Google Scholar 

  19. Cabanes A, Wang M, Olivo S, et al. Prepubertal estradiol and genistein exposures up-regulate BRCA1 mRNA and reduce mammary tumorigenesis. Carcinogenesis. 2004;25(5):741–748.

    Article  PubMed  CAS  Google Scholar 

  20. John R, Latendresse TJ, Bucci, GO, Paul M, Constance C. Weis B, Thorn RR, Newbold K, Barry D. Genistein and ethinyl estradiol dietary exposure in multigenerational and chronic studies induce similar proliferative lesions in mammary gland of male Sprague–Dawley rats, Reprod Toxicol. 2009;28(3):342–353.

    Google Scholar 

  21. Hilakivi-Clarke L, Cho E, Clarke R. Maternal genistein exposure mimics the effects of estrogen on mammary gland development in female mouse offspring. Oncol Rep. 1998;5(3):609–616.

    PubMed  CAS  Google Scholar 

  22. Hilakivi-Clarke L, Cho E, Onojafe I, Raygada M, Clarke R. Maternal exposure to genistein during pregnancy increases carcinogen-induced mammary tumorigenesis in female rat offspring. Oncol Rep. 1999;6(5):1089–1095.

    PubMed  CAS  Google Scholar 

  23. Markey CM, Luque EH, Munoz De Toro M, Sonnenschein C, Soto AM. In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod. 2001;65(4):1215–1223.

    PubMed  CAS  Google Scholar 

  24. Munoz-de-Toro M, Markey CM, Wadia PR, et al. Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice. Endocrinology. 2005;146(9):4138–4147.

    Article  PubMed  CAS  Google Scholar 

  25. Vandenberg LN, Maffini MV, Wadia PR, Sonnenschein C, Rubin BS, Soto AM. Exposure to environmentally relevant doses of the xenoestrogen bisphenol-A alters development of the fetal mouse mammary gland. Endocrinology. 2007;148(1):116–127.

    Article  PubMed  CAS  Google Scholar 

  26. Vandenberg LN, Maffini MV, Schaeberle CM, et al. Perinatal exposure to the xenoestrogen bisphenol-A induces mammary intraductal hyperplasias in adult CD-1 mice. Reprod Toxicol. 2008;26(3–4):210–219.

    Article  PubMed  CAS  Google Scholar 

  27. Durando M, Kass L, Piva J, et al. Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. Environ Health Perspect. 2007;115(1):80–86.

    Article  PubMed  CAS  Google Scholar 

  28. Murray TJ, Maffini MV, Ucci AA, Sonnenschein C, Soto AM. Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A exposure. Reprod Toxicol. 2007;23(3):383–390.

    Article  PubMed  CAS  Google Scholar 

  29. Colerangle JB, Roy D. Exposure of environmental estrogenic compound nonylphenol to noble rats alters cell-cycle kinetics in the mammary gland. Endocrine. 1996;4(2):115–122.

    Article  PubMed  CAS  Google Scholar 

  30. Roy D, Colerangle JB, Singh KP. Is exposure to environmental or industrial endocrine disrupting estrogen-like chemicals able to cause genomic instability? Front Biosci. 1998;3:d913–921.

    PubMed  CAS  Google Scholar 

  31. Odum J, Pyrah ITG, Foster JR, Van Miller JP, Joiner RL, Ashby J. Comparative activities of p-nonylphenol and diethylstilbestrol in noble rat mammary gland and uterotrophic assays. Regul Toxicol Pharmacol. 1999;29(2):184–195.

    Article  PubMed  CAS  Google Scholar 

  32. Moon HJ, Han SY, Shin JH, et al. Gestational exposure to nonylphenol causes precocious mammary gland development in female rat offspring. J Reprod Dev. 2007;53(2):333–344.

    Article  PubMed  CAS  Google Scholar 

  33. Lee KY, Shibutani M, Takagi H, et al. Diverse developmental toxicity of di-n-butyl phthalate in both sexes of rat offspring after maternal exposure during the period from late gestation through lactation. Toxicology. 2004;203(1–3):221–238.

    Article  PubMed  CAS  Google Scholar 

  34. Mylchreest E, Wallace DG, Cattley RC, Foster PM. Dose-dependent alterations in androgen-regulated male reproductive development in rats exposed to Di(n-butyl) phthalate during late gestation. Toxicol Sci. 2000;55(1):143–151.

    Article  PubMed  CAS  Google Scholar 

  35. Goldman AS, Shapiro B, Neumann F. Role of testosterone and its metabolites in the differentiation of the mammary gland in rats. Endocrinology. 1976;99(6):1490–1495.

    Article  PubMed  CAS  Google Scholar 

  36. Bloch GJ, Mills R. Prepubertal testosterone treatment of neonatally gonadectomized male rats: defeminization and masculinization of behavioral and endocrine function in adulthood. Neurosci Biobehav Rev. 1995;19(2):187–200.

    Article  PubMed  CAS  Google Scholar 

  37. Tomooka Y, Bern HA. Growth of mouse mammary glands after neonatal sex hormone treatment. J Natl Cancer Inst. 1982;69(6):1347–1352.

    PubMed  CAS  Google Scholar 

  38. Warner MR. Effect of various doses of estrogen to BALB/cCrgl neonatal female mice on mammary growth and branching at 5 weeks of age. Cell Tissue Kinet. 1976;9(5):429–438.

    PubMed  CAS  Google Scholar 

  39. Hilakivi-Clarke L, Cho E, Raygada M, Kenney N. Alterations in mammary gland development following neonatal exposure to estradiol, transforming growth factor alpha, and estrogen receptor antagonist ICI 182,780. J Cell Physiol. 1997;170(3):279–289.

    Article  PubMed  CAS  Google Scholar 

  40. Zhou J, Ng S, Adesanya-Famuiya O, Anderson K, Bondy CA. Testosterone inhibits estrogen-induced mammary epithelial proliferation and suppresses estrogen receptor expression. FASEB J. 2000;14(12):1725–1730.

    Article  PubMed  CAS  Google Scholar 

  41. Odum J, Pyrah IT, Foster JR, Van Miller JP, Joiner RL, Ashby J. Comparative activities of p-nonylphenol and diethylstilbestrol in noble rat mammary gland and uterotrophic assays. Regul Toxicol Pharmacol. 1999;29(2 Pt 1):184–195.

    Article  PubMed  CAS  Google Scholar 

  42. Boylan ES. Morphological and functional consequences of prenatal exposure to diethylstilbestrol in the rat. Biol Reprod. 1978;19(4):854–863.

    Article  PubMed  CAS  Google Scholar 

  43. Hovey RC, Asai-Sato M, Warri A, et al. Effects of neonatal exposure to diethylstilbestrol, tamoxifen, and toremifene on the BALB/c mouse mammary gland. Biol Reprod. 2005;72(2):423–435.

    Article  PubMed  CAS  Google Scholar 

  44. Rothschild TC, Boylan ES, Calhoon RE, Vonderhaar BK. Transplacental effects of diethylstilbestrol on mammary development and tumorigenesis in female ACI rats. Cancer Res. 1987;47(16):4508–4516.

    PubMed  CAS  Google Scholar 

  45. Palmer JR, Wise LA, Hatch EE, et al. Prenatal diethylstilbestrol exposure and risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2006;15(8):1509–1514.

    Article  PubMed  CAS  Google Scholar 

  46. Johnson MD, Kenney N, Stoica A, et al. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nat Med. 2003;9(8):1081–1084.

    Article  PubMed  CAS  Google Scholar 

  47. Garcia-Morales P, Saceda M, Kenney N, et al. Effect of cadmium on estrogen receptor levels and estrogen-induced responses in human breast cancer cells. J Biol Chem. 1994;269(24):16896–16901.

    PubMed  CAS  Google Scholar 

  48. Ohrvik H, Yoshioka M, Oskarsson A, Tallkvist J. Cadmium-induced disturbances in lactating mammary glands of mice. Toxicol Lett. 2006;164(3):207–213.

    Article  PubMed  Google Scholar 

  49. Hilakivi-Clarke L, Cho E, Cabanes A, et al. Dietary modulation of pregnancy estrogen levels and breast cancer risk among female rat offspring. Clin Cancer Res. 2002;8(11):3601–3610.

    PubMed  CAS  Google Scholar 

  50. Welsch CW, O’Connor DH. Influence of the type of dietary fat on developmental growth of the mammary gland in immature and mature female BALB/c mice. Cancer Res. 1989;49(21):5999–6007.

    PubMed  CAS  Google Scholar 

  51. Jurkowski JJ, Cave Jr WT. Dietary effects of menhaden oil on the growth and membrane lipid composition of rat mammary tumors. J Natl Cancer Inst. 1985;74(5):1145–1150.

    PubMed  CAS  Google Scholar 

  52. Malik NM, Carter ND, Murray JF, Scaramuzzi RJ, Wilson CA, Stock MJ. Leptin requirement for conception, implantation, and gestation in the mouse. Endocrinology. 2001;142(12):5198–5202.

    Article  PubMed  CAS  Google Scholar 

  53. Hu X, Juneja SC, Maihle NJ, Cleary MP. Leptin–a growth factor in normal and malignant breast cells and for normal mammary gland development. J Natl Cancer Inst. 2002;94(22):1704–1711.

    PubMed  CAS  Google Scholar 

  54. Rayner JL, Wood C, Fenton SE. Exposure parameters necessary for delayed puberty and mammary gland development in Long-Evans rats exposed in utero to atrazine. Toxicol Appl Pharmacol. 2004;195(1):23–34.

    Article  PubMed  CAS  Google Scholar 

  55. Rayner JL, Enoch RR, Fenton SE. Adverse effects of prenatal exposure to atrazine during a critical period of mammary gland growth. Toxicol Sci. 2005;87(1):255–266.

    Article  PubMed  CAS  Google Scholar 

  56. Enoch RR, Stanko JP, Greiner SN, Youngblood GL, Rayner JL, Fenton SE. Mammary gland development as a sensitive end point after acute prenatal exposure to an atrazine metabolite mixture in female Long-Evans rats. Environ Health Perspect. 2007;115(4):541–547.

    Article  PubMed  CAS  Google Scholar 

  57. Wetzel LT, Luempert 3rd LG, Breckenridge CB, et al. Chronic effects of atrazine on estrus and mammary tumor formation in female Sprague-Dawley and Fischer 344 rats. J Toxicol Environ Health. 1994;43(2):169–182.

    Article  PubMed  CAS  Google Scholar 

  58. Birnbaum LS, Fenton SE. Cancer and developmental exposure to endocrine disruptors. Environ Health Perspect. 2003;111(4):389–394.

    Article  PubMed  CAS  Google Scholar 

  59. Fenton SE, Hamm JT, Birnbaum LS, Youngblood GL. Persistent abnormalities in the rat mammary gland following gestational and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol Sci. 2002;67(1):63–74.

    Article  PubMed  CAS  Google Scholar 

  60. Lewis BC, Hudgins S, Lewis A, et al. In utero and lactational treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin impairs mammary gland differentiation but does not block the response to exogenous estrogen in the postpubertal female rat. Toxicol Sci. 2001;62(1):46–53.

    Article  PubMed  CAS  Google Scholar 

  61. Brown NM, Manzolillo PA, Zhang JX, Wang J, Lamartiniere CA. Prenatal TCDD and predisposition to mammary cancer in the rat. Carcinogenesis. 1998;19(9):1623–1629.

    Article  PubMed  CAS  Google Scholar 

  62. Lipworth L. Epidemiology of breast cancer. Eur J Cancer Prev. 1995;4(1):7–30.

    Article  PubMed  CAS  Google Scholar 

  63. Warner M, Eskenazi B, Mocarelli P, et al. Serum dioxin concentrations and breast cancer risk in the Seveso Women’s Health Study. Environ Health Perspect. 2002;110(7):625–628.

    Article  PubMed  CAS  Google Scholar 

  64. Den Hond E, Roels HA, Hoppenbrouwers K, et al. Sexual maturation in relation to polychlorinated aromatic hydrocarbons: Sharpe and Skakkebaek’s hypothesis revisited. Environ Health Perspect. 2002;110(8):771–776.

    Article  Google Scholar 

  65. Leijs MM, Koppe JG, Olie K, et al. Delayed initiation of breast development in girls with higher prenatal dioxin exposure; a longitudinal cohort study. Chemosphere. 2008;73(6):999–1004.

    Article  PubMed  CAS  Google Scholar 

  66. Kodavanti PR, Coburn CG, Moser VC, et al. Developmental exposure to a commercial PBDE mixture, DE-71: neurobehavioral, hormonal, and reproductive effects. Toxicol Sci. 2010;116(1):297–312.

    Article  PubMed  CAS  Google Scholar 

  67. Talsness CE, Kuriyama SN, Sterner-Kock A, et al. In utero and lactational exposures to low doses of polybrominated diphenyl ether-47 alter the reproductive system and thyroid gland of female rat offspring. Environ Health Perspect. 2008;116(3):308–314.

    Article  PubMed  CAS  Google Scholar 

  68. White SS, Fenton SE, Hines EP. Endocrine disrupting properties of perfluorooctanoic acid. J Steroid Biochem Mol Biol. 2011; In press. Accepted March 4, 2011; doi: 10.1016/j.jsbmb.2011.03.011.

    Google Scholar 

  69. White SS, Calafat AM, Kuklenyik Z, et al. Gestational PFOA exposure of mice is associated with altered mammary gland development in dams and female offspring. Toxicol Sci. 2007;96(1):133–144.

    Article  PubMed  CAS  Google Scholar 

  70. Wolf CJ, Fenton SE, Schmid JE, et al. Developmental toxicity of perfluorooctanoic acid in the CD-1 mouse after cross-foster and restricted gestational exposures. Toxicol Sci. 2007;95(2):462–473.

    Article  PubMed  CAS  Google Scholar 

  71. White SS, Kato K, Jia LT, et al. Effects of perfluorooctanoic acid on mouse mammary gland development and differentiation resulting from cross-foster and restricted gestational exposures. Reprod Toxicol. 2009;27(3–4):289–298.

    Article  PubMed  CAS  Google Scholar 

  72. White SS, Stanko JP, Kato K, et al. Investigating the multigenerational effects of prenatal PFOA exposure on mouse mammary gland development, function, and tumor susceptibility. Environ Health Perspect. 2011;119(8):1070–1076.

    Google Scholar 

  73. Macon MB, Villanueva L, Tatum-Gibbs K, et al. Prenatal perfluorooctanoic acid exposure in CD-1 mice: low dose developmental effects and internal dosimetry. Toxicol Sci. 2011;In press; doi: 10.1093/toxsci/kfr076 First published online: April 11, 2011.

    Google Scholar 

  74. Yang C, Tan YS, Harkema JR, Haslam SZ. Differential effects of peripubertal exposure to perfluorooctanoic acid on mammary gland development in C57Bl/6 and Balb/c mouse strains. Reprod Toxicol. 2009;27(3–4):299–306.

    Article  PubMed  CAS  Google Scholar 

  75. Zhao Y, Tan YS, Haslam SZ, Yang C. Perfluorooctanoic acid effects on steroid hormone and growth factor levels mediate stimulation of peripubertal mammary gland development in C57BL/6 mice. Toxicol Sci. 2010;115(1):214–224.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne E. Fenton .

Editor information

Editors and Affiliations

Additional information

Disclaimer: The information in this document has been subjected to review by the National Institute for Environmental Health Sciences and approved for publication. The interpretations and conclusions in this review are those of the authors. Approval does not signify that the contents reflect the views of the Institute, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fenton, S.E., Beck, L.M., Borde, A.R., Rayner, J.L. (2012). Developmental Exposure to Environmental Endocrine Disruptors and Adverse Effects on Mammary Gland Development. In: Diamanti-Kandarakis, E., Gore, A. (eds) Endocrine Disruptors and Puberty. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-60761-561-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-561-3_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-560-6

  • Online ISBN: 978-1-60761-561-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics