Skip to main content

The Influence of Endocrine Disruptors on Male Pubertal Timing

  • Chapter
  • First Online:
Endocrine Disruptors and Puberty

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Wildlife observations and toxicological studies in animals have revealed that endocrine disruptors have adverse effects on reproductive health, including altering the timing of pubertal development in both males and females. In contrast to the early puberty observed with EDC exposure in females, most antiandrogenic and estrogenic compounds cause a delay in male pubertal onset accompanied by dysfunction of testicular steroidogenic pathways and perturbation in secondary sexual maturation. Animal studies have identified critical windows of vulnerability for susceptibility that vary among compounds. For several estrogenic compounds such as DES and DDE, the juvenile and peripubertal windows are key exposure periods for the outcome of preputial separation, a hallmark of pubertal onset in male rodents. Gestational and neonatal exposures have been shown to have no impact on pubertal timing. Conversely, gestational exposures to PCBs, dioxins, and flutamide (an antiandrogen) delay pubertal onset. A small but growing number of epidemiologic studies have shown that EDCs can also alter pubertal timing and progression in humans. Recent studies demonstrate an association of lead, dioxins, endosulfan, and PCBs on delaying onset of puberty and age of attaining pubertal milestones and a weaker association of serum organochlorines with earlier puberty. Cumulatively, these studies have identified key factors that affect vulnerability and toxicity. Dose, duration, and timing of exposure, genetic susceptibility, and the endogenous endocrine milieu may all modulate the effects of exposures to EDCs. Human studies are further complicated by the long interval between exposure and outcome and the likelihood of mixed exposures which may have opposing, additive, or synergistic actions on the reproductive system. In conclusion, animal and human data confirm perturbations in pubertal onset and attainment of late pubertal stages with early-life exposures to EDCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acerini CL, Hughes IA. Endocrine disrupting chemicals: a new and emerging public health problem? Arch Dis Child. 2006;91:633–41.

    Article  PubMed  CAS  Google Scholar 

  2. Euling SY, Selevan SG, Pescovitz OH, Skakkebaek NE. Role of environmental factors in the timing of puberty. Pediatrics. 2008;121(Suppl 3):S167–71.

    Article  PubMed  Google Scholar 

  3. Euling SY, Herman-Giddens ME, Lee PA, et al. Examination of US puberty-timing data from 1940 to 1994 for secular trends: panel findings. Pediatrics. 2008;121(Suppl 3):S172–91.

    Article  PubMed  Google Scholar 

  4. Sharpe RM, Skakkebaek NE. Are oestrogens involved in the falling sperm counts and disorders of the male reproductive tract? Lancet. 1993;341:1392–5.

    Article  PubMed  CAS  Google Scholar 

  5. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30:293–342.

    Article  PubMed  CAS  Google Scholar 

  6. Biro FM, Galvez MP, Greenspan LC, et al. Pubertal assessment method and baseline characteristics in a mixed longitudinal study of girls. Pediatrics. 2010;126:e583–90.

    Article  PubMed  Google Scholar 

  7. Jacobson-Dickman E, Lee MM. The influence of endocrine disruptors on pubertal timing. Curr Opin Endocrinol Diabetes Obes. 2009;16:25–30.

    Article  PubMed  CAS  Google Scholar 

  8. Schoeters G, Den Hond E, Dhooge W, et al. Endocrine disruptors and abnormalities of pubertal development. Basic Clin Pharmacol Toxicol. 2008;102:168–75.

    Article  PubMed  CAS  Google Scholar 

  9. Rockett JC, Lynch CD, Buck GM. Biomarkers for assessing reproductive development and health: part 1–pubertal development. Environ Health Perspect. 2004;112:105–12.

    Article  PubMed  CAS  Google Scholar 

  10. Ge RS, Hardy MP. Variation in the end products of androgen biosynthesis and metabolism during postnatal differentiation of rat Leydig cells. Endocrinology. 1998;139:3787–95.

    Article  PubMed  CAS  Google Scholar 

  11. Odum J, Lefevre PA, Tinwell H, et al. Comparison of the developmental and reproductive toxicity of diethylstilbestrol administered to rats in utero, lactationally, preweaning, or postweaning. Toxicol Sci. 2002;68:147–63.

    Article  PubMed  CAS  Google Scholar 

  12. Wu X, Arumugam R, Zhang N, Lee MM. Androgen profiles during pubertal Leydig cell development in mice. Reproduction. 2010;140:113–21.

    Article  PubMed  CAS  Google Scholar 

  13. Yoshimura S, Yamaguchi H, Konno K, et al. Observation of preputial separation is a useful tool for evaluating endocrine active chemicals. J Toxicol Pathol. 2005;18:141–57.

    Article  CAS  Google Scholar 

  14. Dickerson SM, Gore AC. Estrogenic environmental endocrine-disrupting chemical effects on reproductive neuroendocrine function and dysfunction across the life cycle. Rev Endocr Metab Disord. 2007;8:143–59.

    Article  PubMed  CAS  Google Scholar 

  15. Rasier G, Toppari J, Parent AS, Bourguignon JP. Female sexual maturation and reproduction after prepubertal exposure to estrogens and endocrine disrupting chemicals: a review of rodent and human data. Mol Cell Endocrinol. 2006;254–255:187–201.

    Article  PubMed  Google Scholar 

  16. Navarro VM, Sanchez-Garrido MA, Castellano JM, et al. Persistent impairment of hypothalamic KiSS-1 system after exposures to estrogenic compounds at critical periods of brain sex differentiation. Endocrinology. 2009;150:2359–67.

    Article  PubMed  CAS  Google Scholar 

  17. Shin JH, Kim TS, Kang IH, et al. Effects of postnatal administration of diethylstilbestrol on puberty and thyroid function in male rats. J Reprod Dev. 2009;55:461–6.

    Article  PubMed  CAS  Google Scholar 

  18. Tan BL, Kassim NM, Mohd MA. Assessment of pubertal development in juvenile male rats after sub-acute exposure to bisphenol A and nonylphenol. Toxicol Lett. 2003;143:261–70.

    Article  PubMed  CAS  Google Scholar 

  19. Tyl RW, Myers CB, Marr MC, et al. Three-generation reproductive toxicity study of dietary bisphenol A in CD Sprague-Dawley rats. Toxicol Sci. 2002;68:121–46.

    Article  PubMed  CAS  Google Scholar 

  20. vom Saal FS, Cooke PS, Buchanan DL, et al. A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior. Toxicol Ind Health. 1998;14:239–60.

    Google Scholar 

  21. Ge RS, Chen GR, Dong Q, et al. Biphasic effects of postnatal exposure to diethylhexylphthalate on the timing of puberty in male rats. J Androl. 2007;28:513–20.

    Article  PubMed  CAS  Google Scholar 

  22. Gray Jr LE, Ostby J, Ferrell J, et al. A dose-response analysis of methoxychlor-induced alterations of reproductive development and function in the rat. Fundam Appl Toxicol. 1989;12:92–108.

    Article  PubMed  CAS  Google Scholar 

  23. Durrer S, Ehnes C, Fuetsch M, et al. Estrogen sensitivity of target genes and expression of nuclear receptor co-regulators in rat prostate after pre- and postnatal exposure to the ultraviolet filter 4-methylbenzylidene camphor. Environ Health Perspect. 2007;115(Suppl 1):42–50.

    PubMed  Google Scholar 

  24. Carou ME, Szwarcfarb B, Deguiz ML, et al. Impact of 4-methylbenzylidene-camphor (4-MBC) during embryonic and fetal development in the neuroendocrine regulation of testicular axis in prepubertal and peripubertal male rats. Exp Clin Endocrinol Diabetes. 2009;117:449–54.

    Article  PubMed  CAS  Google Scholar 

  25. Kuwada M, Kawashima R, Nakamura K, et al. Neonatal exposure to endocrine disruptors suppresses juvenile testis weight and steroidogenesis but spermatogenesis is considerably restored during puberty. Biochem Biophys Res Commun. 2002;295:193–7.

    Article  PubMed  CAS  Google Scholar 

  26. Blystone CR, Lambright CS, Cardon MC, et al. Cumulative and antagonistic effects of a mixture of the antiandrogens vinclozolin and iprodione in the pubertal male rat. Toxicol Sci. 2009;111:179–88.

    Article  PubMed  CAS  Google Scholar 

  27. Monosson E, Kelce WR, Lambright C, et al. Peripubertal exposure to the antiandrogenic fungicide, vinclozolin, delays puberty, inhibits the development of androgen-dependent tissues, and alters androgen receptor function in the male rat. Toxicol Ind Health. 1999;15:65–79.

    PubMed  CAS  Google Scholar 

  28. Shin JH, Kim HS, Moon HJ, et al. Effects of flutamide on puberty in male rats: an evaluation of the protocol for the assessment of pubertal development and thyroid function. J Toxicol Environ Health A. 2002;65:433–45.

    Article  PubMed  CAS  Google Scholar 

  29. Yamada T, Kunimatsu T, Sako H, et al. Comparative evaluation of a 5-day Hershberger assay utilizing mature male rats and a pubertal male assay for detection of flutamide’s antiandrogenic activity. Toxicol Sci. 2000;53:289–96.

    Article  PubMed  CAS  Google Scholar 

  30. Blystone CR, Furr J, Lambright CS, et al. Prochloraz inhibits testosterone production at dosages below those that affect androgen-dependent organ weights or the onset of puberty in the male Sprague Dawley rat. Toxicol Sci. 2007;97:65–74.

    Article  PubMed  CAS  Google Scholar 

  31. de Boer J, Wester PG, Klamer HJ, et al. Do flame retardants threaten ocean life? Nature. 1998;394:28–9.

    Article  PubMed  Google Scholar 

  32. Ohta S, Ishizuka D, Nishimura H, et al. Comparison of polybrominated diphenyl ethers in fish, vegetables, and meats and levels in human milk of nursing women in Japan. Chemosphere. 2002;46:689–96.

    Article  PubMed  CAS  Google Scholar 

  33. Sjodin A, Hagmar L, Klasson-Wehler E, et al. Flame retardant exposure: polybrominated diphenyl ethers in blood from Swedish workers. Environ Health Perspect. 1999;107:643–8.

    Article  PubMed  CAS  Google Scholar 

  34. Stoker TE, Laws SC, Crofton KM, et al. Assessment of DE-71, a commercial polybrominated diphenyl ether (PBDE) mixture, in the EDSP male and female pubertal protocols. Toxicol Sci. 2004;78:144–55.

    Article  PubMed  CAS  Google Scholar 

  35. Bell DR, Clode S, Fan MQ, et al. Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the developing male Wistar(Han) rat. II: chronic dosing causes developmental delay. Toxicol Sci. 2007;99:224–33.

    Article  PubMed  CAS  Google Scholar 

  36. Hamm JT, Chen CY, Birnbaum LS. A mixture of dioxins, furans, and non-ortho PCBs based upon consensus toxic equivalency factors produces dioxin-like reproductive effects. Toxicol Sci. 2003;74:182–91.

    Article  PubMed  CAS  Google Scholar 

  37. Cooke GM, Price CA, Oko RJ. Effects of in utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on serum androgens and steroidogenic enzyme activities in the male rat reproductive tract. J Steroid Biochem Mol Biol. 1998;67:347–54.

    Article  PubMed  CAS  Google Scholar 

  38. Jin MH, Ko HK, Hong CH, Han SW. In utero exposure to 2,3,7,8-Tetrachlorodibenzo-p-Dioxin affects the development of reproductive system in mouse. Yonsei Med J. 2008;49:843–50.

    Article  PubMed  CAS  Google Scholar 

  39. Matsumoto M, Hirata-Koizumi M, Ema M. Potential adverse effects of phthalic acid esters on human health: a review of recent studies on reproduction. Regul Toxicol Pharmacol. 2008;50:37–49.

    Article  PubMed  CAS  Google Scholar 

  40. Rais-Bahrami K, Nunez S, Revenis ME, et al. Follow-up study of adolescents exposed to di(2-ethylhexyl) phthalate (DEHP) as neonates on extracorporeal membrane oxygenation (ECMO) support. Environ Health Perspect. 2004;112:1339–40.

    Article  PubMed  CAS  Google Scholar 

  41. Mol NM, Sorensen N, Weihe P, et al. Spermaturia and serum hormone concentrations at the age of puberty in boys prenatally exposed to polychlorinated biphenyls. Eur J Endocrinol. 2002;146:357–63.

    Article  PubMed  CAS  Google Scholar 

  42. Gladen BC, Ragan NB, Rogan WJ. Pubertal growth and development and prenatal and ­lactational exposure to polychlorinated biphenyls and dichlorodiphenyl dichloroethene. J Pediatr. 2000;136:490–6.

    Article  PubMed  CAS  Google Scholar 

  43. Hauser R, Sergeyev O, Korrick S, et al. Association of blood lead levels with onset of puberty in Russian boys. Environ Health Perspect. 2008;116:976–80.

    Article  PubMed  CAS  Google Scholar 

  44. Williams PL, Sergeyev O, Lee MM, et al. Blood Lead Levels and Delayed Onset of Puberty in a Longitudinal Study of Russian Boys. Pediatrics. 2010;125(5):e1088–96.

    Article  PubMed  Google Scholar 

  45. Saiyed H, Dewan A, Bhatnagar V, et al. Effect of endosulfan on male reproductive development. Environ Health Perspect. 2003;111:1958–62.

    Article  PubMed  CAS  Google Scholar 

  46. Den Hond E, Roels HA, Hoppenbrouwers K, et al. Sexual maturation in relation to polychlorinated aromatic hydrocarbons: Sharpe and Skakkebaek’s hypothesis revisited. Environ Health Perspect. 2002;110:771–6.

    Article  Google Scholar 

  47. Den Hond E, Dhooge W, Bruckers L, et al. Internal exposure to pollutants and sexual maturation in Flemish adolescents. J Expo Sci Environ Epidemiol. 2010;21(3):224–33.

    Article  Google Scholar 

  48. Mouritsen A, Aksglaede L, Sorensen K, et al. Hypothesis: exposure to endocrine-disrupting chemicals may interfere with timing of puberty. Int J Androl. 2010;33:346–59.

    Article  PubMed  CAS  Google Scholar 

  49. Toppari J, Juul A. Trends in puberty timing in humans and environmental modifiers. Mol Cell Endocrinol. 2010;324:39–44.

    Article  PubMed  CAS  Google Scholar 

  50. Golub MS, Collman GW, Foster PM, et al. Public health implications of altered puberty timing. Pediatrics. 2008;121(Suppl 3):S218–30.

    Article  PubMed  Google Scholar 

  51. Dickerson SM, Cunningham SL, Patisaul HB, et al. Endocrine disruption of brain sexual ­differentiation by developmental PCB exposure. Endocrinology. 2011;152(2):581–94.

    Article  PubMed  CAS  Google Scholar 

  52. Korenbrot CC, Huhtaniemi IT, Weiner RI. Preputial separation as an external sign of pubertal development in the male rat. Biol Reprod. 1977;17(2):298–303.

    Article  PubMed  Google Scholar 

  53. Gaytan F, Bellido C, Aguilar R, et al. Balano-preputial separation as an external sign of puberty in the rat: correlation with histologic testicular data. Andrologia. 1988;20(5):450–3.

    Article  PubMed  Google Scholar 

  54. Lau C, Thibodeaux JR, Hanson RG, et al. Effects of perfluorooctanoic acid exposure during pregnancy in the mouse. Toxicol Sci. 2006;90(2):510  –8.

    Article  PubMed  Google Scholar 

  55. Dalsenter PR, de Araujo SL, de Assis HC, et al. Pre and postnatal exposure to endosulfan in Wistar rats. Hum Exp Toxicol. 2003;22(4):171–5.

    Article  PubMed  Google Scholar 

  56. O’Shaughnessy PJ, Sheffield JW. Effect of temperature and the role of testicular descent on post-natal testicular androgen production in the mouse. J Reprod Fertil. 1991;91(1):357–64.

    Article  PubMed  Google Scholar 

  57. Klonisch T, Fowler PA, Hombach-Klonisch S. Molecular and genetic regulation of testis descent and external genitalia development. Dev Biol. 2004;270(1):1–18.

    Article  PubMed  Google Scholar 

  58. Stoker TE, Laws SC, Guidici DL, et al. The effect of atrazine on puberty in male wistar rats: an evaluation in the protocol for the assessment of pubertal development and thyroid function. Toxicol Sci. 2000;58(1):50–9.

    Article  PubMed  Google Scholar 

  59. Noriega NC, Ostby J, Lambright C, et al. Late gestational exposure to the fungicide prochloraz delays the onset of parturition and causes reproductive malformations in male but not female rat offspring. Biol Reprod. 2005;72(6):1324–35.

    Article  PubMed  Google Scholar 

  60. Korrick SA, Lee MM, Williams PL, et al. Dioxin exposure and age of pubertal onset among Russian boys. Environ Health Perspect. 2011;119:1339–44.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary M. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wu, X., Zhang, N., Lee, M.M. (2012). The Influence of Endocrine Disruptors on Male Pubertal Timing. In: Diamanti-Kandarakis, E., Gore, A. (eds) Endocrine Disruptors and Puberty. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-60761-561-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-561-3_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-560-6

  • Online ISBN: 978-1-60761-561-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics