Skip to main content

Herpesvirus Research at the National Institute of Allergy and Infectious Diseases: Thirty Years of Progress

  • Chapter
  • First Online:
National Institute of Allergy and Infectious Diseases, NIH

Part of the book series: Infectious Disease ((ID))

  • 725 Accesses

Abstract

The year 2009 marks the 30th year anniversary of Dr. Stephen Straus(s arrival to head the Medical Virology Section of the Laboratory of Clinical Investigation at the National Institute of Allergy and Infectious Diseases. Dr. Straus initiated basic laboratory and clinical studies on herpes simplex virus, varicella-zoster virus, and Epstein-Barr virus. The Medical Virology Section (currently in the Laboratory of Clinical Infectious Diseases) continues to conduct studies of human herpesviruses, including bench-to-bedside and bedside-to-bench translational research involving these viruses. This chapter provides an overview of studies from the Medical Virology Section during the past 30 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen J I (2009). Introduction to Herpesviridae. In: Principles and Practice of Infectious Diseases (7th ed) Eds: G. Mandell, J. Bennett & R. DolinElsevier: Philadelphia, PA

    Google Scholar 

  2. Nicola A V, McEvoy A M, & Straus S E (2003). Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells, J Virol, 77, 5324–5332

    Article  PubMed  CAS  Google Scholar 

  3. Nicola A V, Hou J, Major E O, & et al (2005). Herpes simplex virus type 1 enters human epidermal keratinocytes, but not neurons, via a pH-dependent endocytic pathway, J Virol, 79, 7609–7616

    Article  PubMed  CAS  Google Scholar 

  4. Croen K D, Ostrove J M, Dragovic L J, & et al (1987). Latent herpes simplex virus in human trigeminal ganglia. Detection of an immediate early gene “anti-sense” transcript by in situ hybridization, N Engl J Med, 317, 427–432

    Article  Google Scholar 

  5. Krause P R, Stanberry L R, Bourne N, & et al (1995). Expression of the herpes simplex virus type 2 latency-associated transcript enhances spontaneous reactivation of genital herpes in latently infected guinea pigs, J Exp Med, 181, 297–306

    Article  PubMed  CAS  Google Scholar 

  6. Wang K, Lau T Y, Morales M, & et al (2005). Laser-capture microdissection: refining estimates of the quantity and distribution of latent herpes simplex virus 1 and varicella-zoster virus DNA in human trigeminal ganglia at the single-cell level, J Virol, 79, 14079–14087

    Article  PubMed  CAS  Google Scholar 

  7. Hoshino Y, Pesnicak L, Cohen J I, et al (2007). Rates of reactivation of latent herpes simplex virus from mouse trigeminal ganglia ex vivo correlate directly with viral load and inversely with number of infiltrating CD8+ T cells, J Virol, 81, 8157–8164

    Article  PubMed  CAS  Google Scholar 

  8. Rooney J F, Felser J M, Ostrove J M & et al (1986). Acquisition of genital herpes from an asymptomatic sexual partner, N Engl J Med, 314, 1561–1564

    Article  PubMed  CAS  Google Scholar 

  9. Langenberg A G, Corey L, Ashley R L & et al (1999). A prospective study of new infections with herpes simplex virus type 1 and type 2. Chiron HSV Vaccine Study Group, N Engl J Med, 341, 1432–1438

    Article  PubMed  CAS  Google Scholar 

  10. Lekstrom-Himes J A, Hohman P, Warren T & et al (1999). Association of major histocompatibility complex determinants with the development of symptomatic and asymptomatic genital herpes simplex virus type 2 infections, J Infect Dis, 179, 1077–1085

    Article  PubMed  CAS  Google Scholar 

  11. Rooney J F, Bryson Y, Mannix M L & et al (1991). Prevention of ultraviolet- light-induced herpes labialis by sunscreen, Lancet, 338, 1419–1422

    Article  PubMed  CAS  Google Scholar 

  12. Rooney J F, Straus S E, Mannix M L & et al (1992). UV light-induced reactivation of herpes simplex virus type 2 and prevention by acyclovir, J Infect Dis, 166, 500–506

    Article  PubMed  CAS  Google Scholar 

  13. Straus S E, Smith H A, Brickman C & et al (1982). Acyclovir for chronic mucocutaneous herpes simplex virus infection in immunosuppressed patients, Ann Intern Med, 96, 270–277

    Article  PubMed  CAS  Google Scholar 

  14. Straus S E, Seidlin M, Takiff H & et al (1984). Oral acyclovir to suppress recurring herpes simplex virus infections in immunodeficient patients, Ann Intern Med, 100, 522–524

    Article  PubMed  CAS  Google Scholar 

  15. Straus S E, Takiff H E, Seidlin M & et al (1984). Suppression of frequently recurring genital herpes. A placebo-controlled double-blind trial of oral acyclovir, N Engl J Med, 310, 1545–1550

    Article  PubMed  CAS  Google Scholar 

  16. Straus S E, Croen K D, Sawyer M H & et al (1988). Acyclovir suppression of frequently recurring genital herpes. Efficacy and diminishing need during successive years of treatment, JAMA, 260, 2227–2230

    Article  PubMed  CAS  Google Scholar 

  17. Straus S E, Rooney J F & Hallahan C (1996). Acyclovir suppresses subclinical shedding of herpes simplex virus, Ann Intern Med, 125, 776–777

    Article  PubMed  CAS  Google Scholar 

  18. Rooney J F, Straus S E, Mannix M L & et al (1993). Oral acyclovir to suppress frequently recurrent herpes labialis. A double-blind, placebo-controlled trial, Ann Intern Med, 118, 268–272

    Article  PubMed  CAS  Google Scholar 

  19. Kost R G, Hill E L, Tigges M & et al (1993). Brief report: recurrent acyclovir- resistant genital herpes in an immunocompetent patient, N Engl J Med, 329, 1777–1782

    Article  PubMed  CAS  Google Scholar 

  20. Wang K, Mahalingam G, Hoover S E & et al (2007). Diverse herpes simplex virus type 1 thymidine kinase mutants in individual human neurons and ganglia, J Virol, 81, 6817–6826

    Article  PubMed  CAS  Google Scholar 

  21. Straus S E, Savarese B, Tigges M & et al (1993). Induction and enhancement of immune responses to herpes simplex virus type 2 in humans by use of a recombinant glycoprotein D vaccine, J Infect Dis, 167, 1045–1052

    Article  PubMed  CAS  Google Scholar 

  22. Straus S E, Corey L, Burke R L & et al (1994). Placebo-controlled trial of vaccination with recombinant glycoprotein D of herpes simplex virus type 2 for immunotherapy of genital herpes, Lancet, 343, 1460–1463

    Article  PubMed  CAS  Google Scholar 

  23. Straus S E, Wald A, Kost R G & et al (1997). Immunotherapy of recurrent genital herpes with recombinant herpes simplex virus type 2 glycoproteins D and B: results of a placebo-controlled vaccine trial, J Infect Dis, 176, 1129–1134

    Article  PubMed  CAS  Google Scholar 

  24. Corey L, Langenberg A G, Ashley R & et al (1999). Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: two randomized controlled trials. Chiron HSV Vaccine Study Group, JAMA, 282, 331–340

    Article  PubMed  CAS  Google Scholar 

  25. Heineman T C, Connelly B L, Bourne N & et al (1995). Immunization with recombinant varicella-zoster virus expressing herpes simplex virus type 2 glycoprotein D reduces the severity of genital herpes in guinea pigs, J Virol, 69, 8109–8113

    PubMed  CAS  Google Scholar 

  26. Hoshino Y, Dalai S K, Wang K & et al (2005). Comparative efficacy and immunogenicity of replication-defective, recombinant glycoprotein, and DNA vaccines for herpes simplex virus 2 infections in mice and guinea pigs, J Virol, 7, 410–418

    Article  Google Scholar 

  27. Straus S E, Owens J, Ruyechan W T & et al (1982). Molecular cloning and physical mapping of varicella-zoster virus DNA, Proc Natl Acad Sci USA, 79, 993–997

    Article  PubMed  CAS  Google Scholar 

  28. Straus S E, Reinhold W, Smith H A & et al (1984). Endonuclease analysis of viral DNA from varicella and subsequent zoster infections in the same patient, N Engl J Med, 311, 1362–1364

    Article  PubMed  CAS  Google Scholar 

  29. Cohen J I & Seidel K E (1993). Generation of varicella-zoster virus (VZV) and viral mutants from cosmid DNAs: VZV thymidylate synthetase is not essential for replication in vitro, Proc Natl Acad Sci USA, 90, 7376–7380

    Article  PubMed  CAS  Google Scholar 

  30. Cohen J I, Krogmann T, Ross J P & et al (2005). Varicella-zoster virus ORF4 latency-associated protein is important for establishment of latency, J Virol, 79, 6969–6975

    Article  PubMed  CAS  Google Scholar 

  31. Xia D, Srinivas S, Sato H & et al (2003). Varicella-zoster virus open reading frame 21, which is expressed during latency, is essential for virus replication but dispensable for establishment of latency, J Virol, 77, 1211–1218

    Article  PubMed  CAS  Google Scholar 

  32. Cohen J I, Krogmann T, Pesnicak L & et al (2007). Absence or overexpression of the Varicella-Zoster Virus (VZV) ORF29 ­ latency-associated protein impairs late gene expression and reduces VZV latency in a rodent model, J Virol, 81, 1586–1591

    Article  PubMed  CAS  Google Scholar 

  33. Ali M A, Li Q, Fischer E R & et al (2009). The insulin degrading enzyme binding domain of varicella-zoster virus (VZV) glycoprotein E is important for cell-to-cell spread and VZV infectivity, while a glycoprotein I binding domain is essential for infection (In press)

    Google Scholar 

  34. Cohen J I, Straus S E & Arvin A M (2007). Varicella-zoster virus: replication, pathogenesis, and management. In: Fields Virology (Ed: D Knipe & M Howley ( (5th ed) Lipincott-Williams & Wilkins, Philadelphia

    Google Scholar 

  35. Moffat J F, Zerboni L, Sommer M H & et al (1998). The ORF47 and ORF66 putative protein kinases of varicella-zoster virus determine tropism for human T cells and skin in the SCID-hu mouse, Proc Natl Acad Sci USA, 95, 11969–11974

    Article  PubMed  CAS  Google Scholar 

  36. Li Q, Ali M A & Cohen J I (2006). Insulin degrading enzyme is a cellular receptor mediating varicella-zoster virus infection and cell-to-cell spread, Cell, 127, 305–316

    Article  PubMed  CAS  Google Scholar 

  37. Croen K D, Ostrove J M, Dragovic L J & et al (1988). Patterns of gene expression and sites of latency in human nerve ganglia are different for varicella- zoster and herpes simplex viruses, Proc Natl Acad Sci USA, 85, 9773–9777

    Article  PubMed  CAS  Google Scholar 

  38. Meier J L, Holman R P, Croen K D & et al (1993). Varicella-zoster virus transcription in human trigeminal ganglia, Virology, 193, 193–200

    Article  PubMed  CAS  Google Scholar 

  39. Cohen J I, Cox E, Pesnicak L & et al (2004). The varicella-zoster virus open reading frame 63 latency-associated protein is critical for establishment of latency, J Virol, 78, 11833–11840

    Article  PubMed  CAS  Google Scholar 

  40. Cohen J I (1998). Infection of cells with varicella-zoster virus down-regulates surface expression of class I major histocompatibility complex antigens, J Infect Dis, 177, 1390–1393

    Article  PubMed  CAS  Google Scholar 

  41. Ambagala A P & Cohen J I (2007). Varicella-Zoster virus IE63, a major viral latency protein, is required to inhibit the alpha interferon-induced antiviral response, J Virol, 81, 7844–7851

    Article  PubMed  CAS  Google Scholar 

  42. Visalli R J, Fairhurst J, Srinivas S & et al (2003). Identification of small molecule compounds that selectively inhibit varicella-zoster virus replication, J Virol, 77, 2349–2358

    Article  PubMed  CAS  Google Scholar 

  43. Oxman M N, Levin M J, Johnson G R & et al (2005). (2005) A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults, N Engl J Med, 352, 2271–2284

    Article  PubMed  CAS  Google Scholar 

  44. Cohen J I (2000). Epstein-Barr virus infection, N Engl J Med, 343, 481–492

    Article  PubMed  CAS  Google Scholar 

  45. Cohen J I (1992). A region of herpes simplex virus VP16 can substitute for a transforming domain of Epstein-Barr virus nuclear protein 2, Proc Natl Acad Sci U.S.A., 89, 8030–8034

    Article  PubMed  CAS  Google Scholar 

  46. Cohen J I, Picchio G R & Mosier D E (1992). Epstein-Barr virus nuclear protein 2 is a critical determinant for tumor growth in SCID mice and for transformation in vitro, J Virol, 66, 7555–7559

    PubMed  CAS  Google Scholar 

  47. Spriggs M K, Armitage R J, Comeau M R & et al (1996). The extracellular domain of the Epstein-Barr virus BZLF2 protein binds the HLA-DR beta chain and inhibits antigen presentation, J Virol, 70, 5557–5563

    PubMed  CAS  Google Scholar 

  48. Strockbine L D, Cohen J I, Farrah T, et al (1998). The Epstein-Barr virus BARF1 gene encodes a novel, soluble colony-stimulating factor-1 receptor, J Virol, 72, 4015–4021

    PubMed  CAS  Google Scholar 

  49. Cohen J I & Lekstrom K (1999). Epstein-Barr virus BARF1 protein is dispensable for B-cell transformation and inhibits alpha interferon secretion from mononuclear cells, J Virol, 73, 7627–7632

    PubMed  CAS  Google Scholar 

  50. Henle W, Henle G, Andersson J & et al (1987). Antibody responses to Epstein- Barr virus-determined nuclear antigen (EBNA)-1 and EBNA-2 in acute and chronic Epstein-Barr virus infection, Proc Natl Acad Sci USA, 84, 570–574

    Article  PubMed  CAS  Google Scholar 

  51. Katano H, Ali M A, Patera A C & et al (2004). Chronic active Epstein-Barr virus infection associated with mutations in perforin that impair its maturation, Blood, 103, 1244–1252

    Article  PubMed  CAS  Google Scholar 

  52. Feng W H, Cohen J I, Fischer S & et al (2004). Reactivation of latent Epstein- Barr virus by methotrexate: a potential contributor to methotrexate-associated lymphomas, J Natl Cancer Inst, 96, 1691–1702

    Article  PubMed  CAS  Google Scholar 

  53. Hoover S E, Kawada J, Wilson W & et al (2008). Oropharyngeal shedding of Epstein-Barr virus in the absence of circulating B cells, J Infect Dis, 198, 318–323

    Article  PubMed  Google Scholar 

  54. Katano H, Pesnicak L & Cohen J I (2004). Simvastatin induces apoptosis of Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines and delays development of EBV lymphomas, Proc Natl Acad Sci USA, 101, 4960–4965

    Article  PubMed  CAS  Google Scholar 

  55. Zou P, Kawada J, Pesnicak L & et al (2007). Bortezomib induces apoptosis of Epstein-Barr virus (EBV)-transformed B cells and prolongs survival of mice inoculated with EBV-transformed B cells, J Virol, 81, 10029–10036

    Article  PubMed  CAS  Google Scholar 

  56. Bertin J, Armstrong R C, Ottilie S & et al (1997). Death effector domain- containing herpesvirus and poxvirus proteins inhibit both Fas- and TNFR1-induced apoptosis, Proc Natl Acad Sci U.S.A., 94, 1172–1176

    Article  PubMed  CAS  Google Scholar 

  57. Wang G H, Bertin J, Wang Y& et al (1997). Bovine herpesvirus 4 BORFE2 protein inhibits Fas- and tumor necrosis factor receptor 1-induced apoptosis and contains death effector domains shared with other gamma-2 herpesviruses, J Virol, 71, 8928–8932

    PubMed  CAS  Google Scholar 

  58. Freifeld AG, Hilliard J, Southers J & et al (1995). A controlled seroprevalence survey of primate handlers for evidence of asymptomatic herpes B virus infection, J Infect Dis, 171, 1031–1034

    Article  PubMed  CAS  Google Scholar 

  59. Cohen J I, Davenport D S, Stewart J A & et al (2002). Recommendations for prevention of and therapy for exposure to B virus (cercopithecine herpesvirus 1),Clin Infect Dis, 35, 1191–1203

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work described here was supported by the Intramural Program of the National Institute of Allergy and Infectious Diseases. I thank the many research and clinical fellows, biologists, students, nurses, physicians, and support staff for their work which is described here, and Janet Dale for reviewing the chapter. This chapter is dedicated to the memory of Stephen E. Straus a mentor, colleague, and friend.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cohen, J.I. (2010). Herpesvirus Research at the National Institute of Allergy and Infectious Diseases: Thirty Years of Progress. In: Georgiev, V. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-512-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-512-5_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-511-8

  • Online ISBN: 978-1-60761-512-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics