Skip to main content

Two-Pore Domain K+ Channels and Their Role in Chemoreception

  • Conference paper
  • First Online:
Membrane Receptors, Channels and Transporters in Pulmonary Circulation

Part of the book series: Advances in Experimental Medicine and Biology ((volume 661))

Abstract

A number of tandem P-domain K+- channels (K2P) generate background K+-currents similar to those found in enteroreceptors that sense a diverse range of physiological stimuli including blood pH, carbon dioxide, oxygen, potassium and glucose. This review presents an overview of the properties of both cloned K2P tandem-P-domain K-channels and the endogenous chemosensitive background K-currents found in central chemoreceptors, peripheral chemoreceptors, the adrenal gland and the hypothalamus. Although the identity of many of these endogenous channels has yet to be confirmed they show striking similarities to a number of K2P channels especially those of the TASK subgroup. Moreover these channels seem often (albeit not exclusively) to be involved in pH and nutrient/metabolic sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hodgkin AL, Huxley AF (1952) The components of membrane conductance in the giant axon of Loligo. J Physiol 116:473-496

    PubMed  CAS  Google Scholar 

  2. Ketchum KA, Joiner WJ, Sellers AJ, Kaczmarek LK, Goldstein SA (1995) A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature 376:690-695

    Article  PubMed  CAS  Google Scholar 

  3. Wei A, Jegla T, Salkoff L (1996) Eight potassium channel families revealed by the C. elegans genome project. Neuropharmacology 35:805-829

    Article  PubMed  CAS  Google Scholar 

  4. Lesage F, Guillemare E, Fink M et al (1996) TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J 15:1004-1011

    PubMed  CAS  Google Scholar 

  5. Lesage F, Reyes R, Fink M, Duprat F, Guillemare E, Lazdunski M (1996) Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge. EMBO J 15:6400-6407

    PubMed  CAS  Google Scholar 

  6. Berg AP, Talley EM, Manger JP, Bayliss DA (2004) Motoneurons express heteromeric TWIK-related acid-sensitive K+ (TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9) subunits. J Neurosci 24:6693-6702

    Article  PubMed  CAS  Google Scholar 

  7. Czirjak G, Enyedi P (2002) Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits. J Biol Chem 277:5426-5432

    Article  PubMed  CAS  Google Scholar 

  8. Kang D, Han J, Talley EM, Bayliss DA, Kim D (2004) Functional expression of TASK-1/TASK-3 heteromers in cerebellar granule cells. J Physiol 554:64-77

    Article  PubMed  CAS  Google Scholar 

  9. Clarke CE, Veale EL, Wyse K, Vandenberg JI, Mathie A (2008) The M1P1 loop of TASK3 K2P channels apposes the selectivity filter and influences channel function. J Biol Chem 283:16985-16992

    Article  PubMed  CAS  Google Scholar 

  10. Goldstein SA, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S (2005) International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev 57:527-540

    Article  PubMed  CAS  Google Scholar 

  11. Lesage F (2003) Pharmacology of neuronal background potassium channels. Neuropharmacology 44:1-7

    Article  PubMed  CAS  Google Scholar 

  12. Bayliss DA, Barrett PQ (2008) Emerging roles for two-pore-domain potassium channels and their potential therapeutic impact. Trends Pharmacol Sci 29:566-575

    Article  PubMed  CAS  Google Scholar 

  13. Talley EM, Sirois JE, Lei Q, Bayliss DA (2003) Two-pore-Domain (KCNK) potassium channels: dynamic roles in neuronal function. Neuroscientist 9:46-56

    Article  PubMed  CAS  Google Scholar 

  14. Maingret F, Honore E, Lazdunski M, Patel AJ (2002) Molecular basis of the voltage-dependent gating of TREK-1, a mechano-sensitive K+ channel. Biochem Biophys Res Commun 292:339-346

    Article  PubMed  CAS  Google Scholar 

  15. Bockenhauer D, Zilberberg N, Goldstein SA (2001) KCNK2: reversible conversion of a hippocampal potassium leak into a voltage-dependent channel. Nat Neurosci 4:486-491

    PubMed  CAS  Google Scholar 

  16. Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M (1997) TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J 16:5464-5471

    Article  PubMed  CAS  Google Scholar 

  17. Lopes CM, Gallagher PG, Buck ME, Butler MH, Goldstein SA (2000) Proton block and voltage gating are potassium-dependent in the cardiac leak channel Kcnk3. J Biol Chem 275:16969-16978

    Article  PubMed  CAS  Google Scholar 

  18. Kim Y, Bang H, Kim D (1999) TBAK-1 and TASK-1, two-pore K+ channel subunits: kinetic properties and expression in rat heart. Am J Physiol 277:H1669-H1678

    PubMed  CAS  Google Scholar 

  19. Rajan S, Wischmeyer E, Xin Liu G et al (2000) TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histidine as pH sensor. J Biol Chem 275:16650-16657

    Article  PubMed  CAS  Google Scholar 

  20. Kim Y, Bang H, Kim D (2000) TASK-3, a new member of the tandem pore K+ channel family. J Biol Chem 275:9340-9347

    Article  PubMed  CAS  Google Scholar 

  21. Chapman CG, Meadows HJ, Godden RJ et al (2000) Cloning, localisation and functional expression of a novel human, cerebellum specific, two pore domain potassium channel. Brain Res Mol Brain Res 82:74-83

    Article  PubMed  CAS  Google Scholar 

  22. Meadows HJ, Randall AD (2001) Functional characterisation of human TASK-3, an acid-sensitive two-pore domain potassium channel. Neuropharmacology 40:551-559

    Article  PubMed  CAS  Google Scholar 

  23. Han J, Kang D, Kim D (2003) Functional properties of four splice variants of a human pancreatic tandem-pore K+ channel, TALK-1. Am J Physiol Cell Physiol 285:C529-C538

    PubMed  CAS  Google Scholar 

  24. Reyes R, Duprat F, Lesage F et al (1998) Cloning and expression of a novel pH-sensitive two pore domain K+ channel from human kidney. J Biol Chem 273:30863-30869

    Article  PubMed  CAS  Google Scholar 

  25. Decher N, Maier M, Dittrich W et al (2001) Characterization of TASK-4, a novel member of the pH-sensitive, two-pore domain potassium channel family. FEBS Lett 492:84-89

    Article  PubMed  CAS  Google Scholar 

  26. Girard C, Duprat F, Terrenoire C et al (2001) Genomic and functional characteristics of novel human pancreatic 2P domain K+ channels. Biochem Biophys Res Commun 282:249-256

    Article  PubMed  CAS  Google Scholar 

  27. Rajan S, Plant LD, Rabin ML, Butler MH, Goldstein SA (2005) Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell 121:37-47

    Article  PubMed  CAS  Google Scholar 

  28. Sano Y, Inamura K, Miyake A et al (2003) A novel two-pore domain K+ channel, TRESK, is localized in the spinal cord. J Biol Chem 278:27406-27412

    Article  PubMed  CAS  Google Scholar 

  29. Patel AJ, Maingret F, Magnone V, Fosset M, Lazdunski M, Honore E (2000) TWIK-2, an inactivating 2P domain K+ channel. J Biol Chem 275:28722-28730

    Article  PubMed  CAS  Google Scholar 

  30. Maingret F, Patel AJ, Lesage F, Lazdunski M, Honore E (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274:26691-26696

    Article  PubMed  CAS  Google Scholar 

  31. Honore E, Maingret F, Lazdunski M, Patel AJ (2002) An intracellular proton sensor commands lipid- and mechano-gating of the K+ channel TREK-1. EMBO J 21:2968-2976

    Article  PubMed  CAS  Google Scholar 

  32. Chavez RA, Gray AT, Zhao BB et al (1999) TWIK-2, a new weak inward rectifying member of the tandem pore domain potassium channel family. J Biol Chem 274:7887-7892

    Article  PubMed  CAS  Google Scholar 

  33. Maingret F, Lauritzen I, Patel AJ et al (2000) TREK-1 is a heat-activated background K+ channel. EMBO J 19:2483-2491

    Article  PubMed  CAS  Google Scholar 

  34. Kang D, Choe C, Kim D (2005) Thermosensitivity of the two-pore domain K+ channels TREK-2 and TRAAK. J Physiol 564:103-116

    Article  PubMed  CAS  Google Scholar 

  35. Patel AJ, Honore E, Maingret F et al (1998) A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J 17:4283-4290

    Article  PubMed  CAS  Google Scholar 

  36. Bang H, Kim Y, Kim D (2000) TREK-2, a new member of the mechanosensitive tandem-pore K+ channel family. J Biol Chem 275:17412-17419

    Article  PubMed  CAS  Google Scholar 

  37. Fink M, Lesage F, Duprat F et al (1998) A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO J 17:3297-3308

    Article  PubMed  CAS  Google Scholar 

  38. Maingret F, Patel AJ, Lesage F, Lazdunski M, Honore E (2000) Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J Biol Chem 275:10128-10133

    Article  PubMed  CAS  Google Scholar 

  39. Patel AJ, Lazdunski M, Honore E (2001) Lipid and mechano-gated 2P domain K+ channels. Curr Opin Cell Biol 13:422-428

    Article  PubMed  CAS  Google Scholar 

  40. Rajan S, Wischmeyer E, Karschin C et al (2001) THIK-1 and THIK-2, a novel subfamily of tandem pore domain K+ channels. J Biol Chem 276:7302-7311

    Article  PubMed  CAS  Google Scholar 

  41. Patel AJ, Honore E (2001) Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci 24:339-346

    Article  PubMed  CAS  Google Scholar 

  42. Maingret F, Fosset M, Lesage F, Lazdunski M, Honore E (1999) TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem 274:1381-1387

    Article  PubMed  CAS  Google Scholar 

  43. Lesage F, Terrenoire C, Romey G, Lazdunski M (2000) Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J Biol Chem 275:28398-28405

    Article  PubMed  CAS  Google Scholar 

  44. Lesage F, Maingret F, Lazdunski M (2000) Cloning and expression of human TRAAK, a polyunsaturated fatty acids-activated and mechano-sensitive K+ channel. FEBS Lett 471:137-140

    Article  PubMed  CAS  Google Scholar 

  45. Patel AJ, Honore E, Lesage F, Fink M, Romey G, Lazdunski M (1999) Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2:422-426

    Article  PubMed  CAS  Google Scholar 

  46. Gruss M, Bushell TJ, Bright DP, Lieb WR, Mathie A, Franks NP (2004) Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol Pharmacol 65:443-452

    Article  PubMed  CAS  Google Scholar 

  47. Patel AJ, Honore E (2001) Anesthetic-sensitive 2P domain K+ channels. Anesthesiology 95:1013-1021

    Article  PubMed  CAS  Google Scholar 

  48. Franks NP, Honore E (2004) The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends Pharmacol Sci 25:601-608

    Article  PubMed  CAS  Google Scholar 

  49. Heurteaux C, Guy N, Laigle C et al (2004) TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 23:2684-2695

    Article  PubMed  CAS  Google Scholar 

  50. Andres-Enguix I, Caley A, Yustos R et al (2007) Determinants of the anesthetic sensitivity of two-pore domain acid-sensitive potassium channels: molecular cloning of an anesthetic-activated potassium channel from Lymnaea stagnalis. J Biol Chem 282:20977-20990

    Article  PubMed  CAS  Google Scholar 

  51. Putzke C, Hanley PJ, Schlichthorl G et al (2007) Differential effects of volatile and intravenous anesthetics on the activity of human TASK-1. Am J Physiol Cell Physiol 293:C1319-C1326

    Article  PubMed  CAS  Google Scholar 

  52. Liu C, Au JD, Zou HL, Cotten JF, Yost CS (2004) Potent activation of the human tandem pore domain K channel TRESK with clinical concentrations of volatile anesthetics. Anesth Analg 99:1715-1722

    Article  PubMed  CAS  Google Scholar 

  53. Maingret F, Patel AJ, Lazdunski M, Honore E (2001) The endocannabinoid anandamide is a direct and selective blocker of the background K+ channel TASK-1. EMBO J 20:47-54

    Article  PubMed  CAS  Google Scholar 

  54. Czirjak G, Enyedi P (2003) Ruthenium red inhibits TASK-3 potassium channel by interconnecting glutamate 70 of the two subunits. Mol Pharmacol 63:646-652

    Article  PubMed  CAS  Google Scholar 

  55. Clarke CE, Veale EL, Green PJ, Meadows HJ, Mathie A (2004) Selective block of the human 2-P domain potassium channel, TASK-3, and the native leak potassium current, IKSO, by zinc. J Physiol 560:51-62

    Article  PubMed  CAS  Google Scholar 

  56. Bautista DM, Sigal YM, Milstein AD et al (2008) Pungent agents from Szechuan peppers excite sensory neurons by inhibiting two-pore potassium channels. Nat Neurosci 11:772-779

    Article  PubMed  CAS  Google Scholar 

  57. Czirjak G, Enyedi P (2006) Zinc and mercuric ions distinguish TRESK from the other two-pore-domain K+ channels. Mol Pharmacol 69:1024-1032

    PubMed  CAS  Google Scholar 

  58. Nattie E (2006) Why do we have both peripheral and central chemoreceptors? J Appl Physiol 100:9-10

    Article  PubMed  Google Scholar 

  59. Smith CA, Rodman JR, Chenuel BJ, Henderson KS, Dempsey JA (2006) Response time and sensitivity of the ventilatory response to CO2 in unanesthetized intact dogs: central vs. peripheral chemoreceptors. J Appl Physiol 100:13-19

    Article  PubMed  CAS  Google Scholar 

  60. Nattie E, Li A (2006) Central chemoreception 2005: a brief review. Auton Neurosci 126-127:332-338

    Article  PubMed  CAS  Google Scholar 

  61. Guyenet PG, Bayliss DA, Mulkey DK, Stornetta RL, Moreira TS, Takakura AT (2008) The retrotrapezoid nucleus and central chemoreception. Adv Exp Med Biol 605:327-332

    Article  PubMed  CAS  Google Scholar 

  62. Wellner-Kienitz MC, Shams H (1998) Hyperpolarization-activated inward currents contribute to spontaneous electrical activity and CO2/H+ sensitivity of cultivated neurons of fetal rat medulla. Neuroscience 87:109-121

    Article  PubMed  CAS  Google Scholar 

  63. Sirois JE, Lei Q, Talley EM, Lynch C 3rd, Bayliss DA (2000) The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalation anesthetics. J Neurosci 20:6347-6354

    PubMed  CAS  Google Scholar 

  64. Oyamada Y, Ballantyne D, Muckenhoff K, Scheid P (1998) Respiration-modulated membrane potential and chemosensitivity of locus coeruleus neurones in the in vitro brainstem-spinal cord of the neonatal rat. J Physiol 513:381-398

    Article  PubMed  CAS  Google Scholar 

  65. Bayliss DA, Talley EM, Sirois JE, Lei Q (2001) TASK-1 is a highly modulated pH-sensitive ‘leak’ K+ channel expressed in brainstem respiratory neurons. Respir Physiol 129:159-174

    Article  PubMed  CAS  Google Scholar 

  66. Wang W, Tiwari JK, Bradley SR, Zaykin RV, Richerson GB (2001) Acidosis-stimulated neurons of the medullary raphe are serotonergic. J Neurophysiol 85:2224-2235

    PubMed  CAS  Google Scholar 

  67. Washburn CP, Sirois JE, Talley EM, Guyenet PG, Bayliss DA (2002) Serotonergic raphe neurons express TASK channel transcripts and a TASK-like pH- and halothane-sensitive K+ conductance. J Neurosci 22:1256-1265

    PubMed  CAS  Google Scholar 

  68. Mulkey DK, Talley EM, Stornetta RL et al (2007) TASK channels determine pH sensitivity in select respiratory neurons but do not contribute to central respiratory chemosensitivity. J Neurosci 27:14049-14058

    Article  PubMed  CAS  Google Scholar 

  69. Mulkey DK, Stornetta RL, Weston MC et al (2004) Respiratory control by ventral surface chemoreceptor neurons in rats. Nat Neurosci 7:1360-1369

    Article  PubMed  CAS  Google Scholar 

  70. Buckler KJ, Vaughan Jones RD (1994) Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells. J Physiol 476:423-428

    PubMed  CAS  Google Scholar 

  71. Buckler KJ, Vaughan Jones RD (1994) Effects of hypercapnia on membrane potential and intracellular calcium in rat carotid body type I cells. J Physiol 478:157-171

    PubMed  Google Scholar 

  72. Rocher A, Geijo Barrientos E, Caceres AI, Rigual R, Gonzalez C, Almaraz L (2005) Role of voltage-dependent calcium channels in stimulus-secretion coupling in rabbit carotid body chemoreceptor cells. J Physiol 562:407-420

    Article  PubMed  CAS  Google Scholar 

  73. Weir EK, Lopez-Barneo J, Buckler KJ, Archer SL (2005) Acute oxygen-sensing mechanisms. N Engl J Med 353:2042-2055

    Article  PubMed  CAS  Google Scholar 

  74. Gonzalez C, Almaraz L, Obeso A, Rigual R (1992) Oxygen and acid chemoreception in the carotid body chemoreceptors. Trends Neurosci 15:146-153

    Article  PubMed  CAS  Google Scholar 

  75. Montoro RJ, Urena J, Fernandez Chacon R, Alvarez de Toledo G, Lopez Barneo J (1996) Oxygen sensing by ion channels and chemotransduction in single glomus cells. J Gen Physiol 107:133-143

    Article  PubMed  CAS  Google Scholar 

  76. Buckler KJ (1997) A novel oxygen-sensitive potassium current in rat carotid body type I cells. J Physiol 498:649-662

    PubMed  CAS  Google Scholar 

  77. Buckler KJ, Williams BA, Honore E (2000) An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J Physiol 525:135-142

    Article  PubMed  CAS  Google Scholar 

  78. Ponte J, Sadler CL (1989) Effect of halothane, enflurane and isoflurane on carotid body chemoreceptor activity in the rabbit and the cat. Br J Anaesth 62:33-40

    Article  PubMed  CAS  Google Scholar 

  79. Davies RO, Edwards MW Jr, Lahiri S (1982) Halothane depresses the response of carotid body chemoreceptors to hypoxia and hypercapnia in the cat. Anesthesiology 57:153-159

    Article  PubMed  CAS  Google Scholar 

  80. Knill RL, Gelb AW (1978) Ventilatory responses to hypoxia and hypercapnia during halothane sedation and anesthesia in man. Anesthesiology 49:244-251

    Article  PubMed  CAS  Google Scholar 

  81. Pandit JJ (2002) The variable effect of low-dose volatile anaesthetics on the acute ventilatory response to hypoxia in humans: a quantitative review. Anaesthesia 57:632-643

    Article  PubMed  CAS  Google Scholar 

  82. Williams BA, Buckler KJ (2004) Biophysical properties and metabolic regulation of a TASK-like potassium channel in rat carotid body type 1 cells. Am J Physiol Lung Cell Mol Physiol 286:L221-L230

    Article  PubMed  CAS  Google Scholar 

  83. Yamamoto K, Kummer W, Atoji Y, Suzuki Y (2002) TASK-1, TASK-2, TASK-3 and TRAAK immunoreactivities in the rat carotid body. Brain Res 950:304-307

    Article  PubMed  CAS  Google Scholar 

  84. Kim I, Kim JH, Carroll JL (2006) Postnatal changes in gene expression of subfamilies of TASK K+ channels in rat carotid body. Adv Exp Med Biol 580:43-47

    Article  PubMed  CAS  Google Scholar 

  85. Yamamoto Y, Taniguchi K (2006) Immunolocalization of tandem pore domain K+ channels in the rat carotid body. Adv Exp Med Biol 580:9-14

    Article  PubMed  CAS  Google Scholar 

  86. Wilson DF, Mokashi A, Chugh D, Vinogradov S, Osanai S, Lahiri S (1994) The primary oxygen sensor of the cat carotid body is cytochrome a3 of the mitochondrial respiratory chain. FEBS Lett 351:370-374

    Article  PubMed  CAS  Google Scholar 

  87. Anichkov S, Belen’kii M (1963) Pharmacology of the carotid body chemoreceptors. Pergamon, Oxford, UK

    Google Scholar 

  88. Mulligan E, Lahiri S, Storey BT (1981) Carotid body O2 chemoreception and mitochondrial oxidative phosphorylation. J Appl Physiol 51:438-446

    PubMed  CAS  Google Scholar 

  89. Shen TCR, Hauss WH (1939) Influence of dinitrophenol, dinitroortocresol and paranitrophenol upon the carotid sinus chemoreceptors of the dog. Arch. Int Pharmacodyn Ther 63:251-258

    Google Scholar 

  90. Biscoe TJ, Duchen MR (1990) Responses of type I cells dissociated from the rabbit carotid body to hypoxia. J Physiol 428:39-59

    PubMed  CAS  Google Scholar 

  91. Mosqueria M, Iturriaga R (2002) Carotid body chemosensory excitation induced by nitric oxide: involvement of oxidative metabolism. Respir Physiol Neurobiol 131:175-187

    Article  Google Scholar 

  92. Mulligan E, Lahiri S (1981) Dependence of carotid chemoreceptor stimulation by metabolic agents on PaO2 and PaCO2. J Appl Physiol 50:884-891

    PubMed  CAS  Google Scholar 

  93. Obeso A, Almaraz L, Gonzalez C (1989) Effects of cyanide and uncouplers on chemoreceptor activity and ATP content of the cat carotid body. Brain Res 481:250-257

    Article  PubMed  CAS  Google Scholar 

  94. Ortega-Sáenz P, Pardal R, Garcáa Fernández M, López Barneo J (2003) Rotenone selectively occludes sensitivity to hypoxia in rat carotid body glomus cells. J Physiol 548:789-800

    Article  PubMed  CAS  Google Scholar 

  95. Buckler KJ, Vaughan Jones RD (1998) Effects of mitochondrial uncouplers on intracellular calcium, pH and membrane potential in rat carotid body type I cells. J Physiol 513:819-833

    Article  PubMed  CAS  Google Scholar 

  96. Wyatt CN, Buckler KJ (2004) The effect of mitochondrial inhibitors on membrane currents in isolated neonatal rat carotid body type I cells. J Physiol 556:175-191

    Article  PubMed  CAS  Google Scholar 

  97. Varas R, Wyatt CN, Buckler KJ (2007) Modulation of TASK-like background potassium channels in rat arterial chemoreceptor cells by intracellular ATP and other nucleotides. J Physiol 583:521-536

    Article  PubMed  CAS  Google Scholar 

  98. Wyatt CN, Kumar P, Aley P, Peers C, Hardie DG, Evans AM (2006) Does AMP-activated protein kinase couple hypoxic inhibition of oxidative phosphorylation to carotid body excitation? Adv Exp Med Biol 580:191-196

    Article  PubMed  CAS  Google Scholar 

  99. Prabhakar NR (2006) O2 sensing at the mammalian carotid body: why multiple O2 sensors and multiple transmitters? Exp Physiol 91:17-23

    Article  PubMed  CAS  Google Scholar 

  100. Lotshaw DP (2001) Role of membrane depolarization and T-type Ca2+ channels in angiotensin II and K+ stimulated aldosterone secretion. Mol Cell Endocrinol 175:157-171

    Article  PubMed  CAS  Google Scholar 

  101. Balla T, Varnai P, Hollo Z, Spat A (1990) Effects of high potassium concentration and dihydropyridine Ca2+-channel agonists on cytoplasmic Ca2+ and aldosterone production in rat adrenal glomerulosa cells. Endocrinology 127:815-822

    Article  PubMed  CAS  Google Scholar 

  102. Lotshaw DP (1997) Characterization of angiotensin II-regulated K+ conductance in rat adrenal glomerulosa cells. J Membr Biol 156:261-277

    Article  PubMed  CAS  Google Scholar 

  103. Spat A (2004) Glomerulosa cell — a unique sensor of extracellular K+ concentration. Mol Cell Endocrinol 217:23-26

    Article  PubMed  CAS  Google Scholar 

  104. Lotshaw DP (2006) Biophysical and pharmacological characteristics of native two-pore domain TASK channels in rat adrenal glomerulosa cells. J Membr Biol 210:51-70

    Article  PubMed  CAS  Google Scholar 

  105. Czirjak G, Fischer T, Spat A, Lesage F, Enyedi P (2000) TASK (TWIK-related acid-sensitive K+ channel) is expressed in glomerulosa cells of rat adrenal cortex and inhibited by angiotensin II. Mol Endocrinol 14:863-874

    Article  PubMed  CAS  Google Scholar 

  106. Czirjak G, Enyedi P (2002) TASK-3 dominates the background potassium conductance in rat adrenal glomerulosa cells. Mol Endocrinol 16:621-629

    Article  PubMed  CAS  Google Scholar 

  107. Heitzmann D, Derand R, Jungbauer S et al (2008) Invalidation of TASK1 potassium channels disrupts adrenal gland zonation and mineralocorticoid homeostasis. EMBO J 27:179-187

    Article  PubMed  CAS  Google Scholar 

  108. Davies LA, Hu C, Guagliardo NA et al (2008) TASK channel deletion in mice causes primary hyperaldosteronism. Proc Natl Acad Sci U S A 105:2203-2208

    Article  PubMed  CAS  Google Scholar 

  109. Enyeart JJ, Xu L, Danthi S, Enyeart JA (2002) An ACTH- and ATP-regulated background K+ channel in adrenocortical cells is TREK-1. J Biol Chem 277:49186-49199

    Article  PubMed  CAS  Google Scholar 

  110. Enyeart JA, Danthi SJ, Enyeart JJ (2004) TREK-1 K+ channels couple angiotensin II receptors to membrane depolarization and aldosterone secretion in bovine adrenal glomerulosa cells. Am J Physiol Endocrinol Metab 287:E1154-E1165

    Article  PubMed  CAS  Google Scholar 

  111. Danthi S, Enyeart JA, Enyeart JJ (2003) Modulation of native TREK-1 and Kv1.4 K+ channels by polyunsaturated fatty acids and lysophospholipids. J Membr Biol 195:147-164

    Article  PubMed  CAS  Google Scholar 

  112. Burdakov D, Jensen LT, Alexopoulos H et al (2006) Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose. Neuron 50:711-722

    Article  PubMed  CAS  Google Scholar 

  113. Gonzalez JA, Jensen LT, Fugger L, Burdakov D (2008) Metabolism-independent sugar sensing in central orexin neurons. Diabetes 57:2569-2576

    Article  PubMed  CAS  Google Scholar 

  114. Williams RH, Jensen LT, Verkhratsky A, Fugger L, Burdakov D (2007) Control of hypothalamic orexin neurons by acid and CO2. Proc Natl Acad Sci U S A 104:10685-10690

    Article  PubMed  CAS  Google Scholar 

  115. Kuwaki T (2008) Orexinergic modulation of breathing across vigilance states. Respir Physiol Neurobiol 164:204-212

    Article  PubMed  CAS  Google Scholar 

  116. Olschewski A, Li Y, Tang B et al (2006) Impact of TASK-1 in human pulmonary artery smooth muscle cells. Circ Res 98:1072-1080

    Article  PubMed  CAS  Google Scholar 

  117. Warth R, Barriere H, Meneton P et al (2004) Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport. Proc Natl Acad Sci U S A 101:8215-8220

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith J. Buckler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Buckler, K.J. (2010). Two-Pore Domain K+ Channels and Their Role in Chemoreception. In: Yuan, JJ., Ward, J. (eds) Membrane Receptors, Channels and Transporters in Pulmonary Circulation. Advances in Experimental Medicine and Biology, vol 661. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-500-2_2

Download citation

Publish with us

Policies and ethics