Skip to main content

The Role of Classical Transient Receptor Potential Channels in the Regulation of Hypoxic Pulmonary Vasoconstriction

  • Conference paper
  • First Online:
Book cover Membrane Receptors, Channels and Transporters in Pulmonary Circulation

Part of the book series: Advances in Experimental Medicine and Biology ((volume 661))

Abstract

Hypoxic pulmonary vasoconstriction (HPV) is an essential mechanism of the lung matching blood perfusion to ventilation during local alveolar hypoxia. HPV thus optimizes pulmonary gas exchange. In contrast chronic and generalized hypoxia leads to pulmonary vascular remodeling with subsequent pulmonary hypertension and right heart hypertrophy. Among other non-selective cation channels, the family of classical transient receptor potential channels (TRPC) has been shown to be expressed in pulmonary arterial smooth muscle cells. Among this family, TRPC6 is essential for the regulation of acute HPV in mice. Against this background, in this chapter we give an overview about the TRPC family and their role in HPV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weissmann N, Sommer N, Schermuly RT, Ghofrani HA, Seeger W, Grimminger F (2006) Oxygen sensors in hypoxic pulmonary vasoconstriction. Cardiovasc Res 71:620-629

    Article  PubMed  CAS  Google Scholar 

  2. Ward JPT, Aaronson PI (1999) Mechanisms of hypoxic pulmonary vasoconstriction: can anyone be right? Respir Physiol 115:261-271

    Article  PubMed  CAS  Google Scholar 

  3. Naeije R, Brimioulle S (2001) Physiology in medicine: importance of hypoxic pulmonary vasoconstriction in maintaining arterial oxygenation during acute respiratory failure. Crit Care 5:67-71

    Article  PubMed  CAS  Google Scholar 

  4. Weir EK, Olschewski A (2006) Role of ion channels in acute and chronic responses of the pulmonary vasculature to hypoxia. Cardiovasc Res 71:630-641

    Article  PubMed  CAS  Google Scholar 

  5. Weissmann N, Dietrich A, Fuchs B et al (2006) Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc Natl Acad Sci U S A 103:19093-19098

    Article  PubMed  CAS  Google Scholar 

  6. Weissmann N, Grimminger F, Walmrath D, Seeger W (1995) Hypoxic vasoconstriction in buffer-perfused rabbit lungs. Respir Physiol 100:159-169

    Article  PubMed  CAS  Google Scholar 

  7. Sham JSK (2002) Hypoxic pulmonary vasoconstriction: ups and downs of reactive oxygen species. Circ Res 91:649-651

    Article  PubMed  CAS  Google Scholar 

  8. Weissmann N, Grimminger F, Olschewski A, Seeger W (2001) Hypoxic pulmonary vasoconstriction: a multifactorial response? Am J Physiol Lung Cell Mol Physiol 281:L314-L317

    PubMed  CAS  Google Scholar 

  9. Dietrich A, Kalwa H, Fuchs B, Grimminger F, Weissmann N (2007) Gudermann T. In vivo TRPC functions in the cardiopulmonary vasculature. Cell Calcium 42:233-244

    Article  PubMed  CAS  Google Scholar 

  10. McDaniel SS, Platoshyn O, Wang J et al (2001) Capacitative Ca2+ entry in agonist-induced pulmonary vasoconstriction. Am J Physiol Lung Cell Mol Physiol 280:L870-L880

    PubMed  CAS  Google Scholar 

  11. Wang J, Shimoda LA, Sylvester JT (2004) Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 286:L848-L858

    Article  PubMed  CAS  Google Scholar 

  12. Ward JPT, Robertson TP, Aaronson PI (2005) Capacitative calcium entry: a central role in hypoxic pulmonary vasoconstriction? Am J Physiol Lung Cell Mol Physiol 289:L2-L4

    Article  PubMed  CAS  Google Scholar 

  13. Wang J, Shimoda LA, Weigand L, Wang W, Sun D, Sylvester JT (2005) Acute hypoxia increases intracellular [Ca2+] in pulmonary arterial smooth muscle by enhancing capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol 288:L1059-L1069

    Article  PubMed  CAS  Google Scholar 

  14. Weigand L, Foxson J, Wang J, Shimoda LA, Sylvester JT (2005) Inhibition of hypoxic pulmonary vasoconstriction by antagonists of store-operated Ca2+ and nonselective cation channels. Am J Physiol Lung Cell Mol Physiol 289:L5-L13

    Article  PubMed  CAS  Google Scholar 

  15. Dietrich A, Chubanov V, Kalwa H, Rost BR, Gudermann T (2006) Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther 112:744-760

    Article  PubMed  CAS  Google Scholar 

  16. Hardie RC, Minke B (1993) Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci 16:371-376

    Article  PubMed  CAS  Google Scholar 

  17. Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313-1323

    Article  PubMed  CAS  Google Scholar 

  18. Minke B, Selinger Z (1996) The roles of trp and calcium in regulating photoreceptor function in Drosophila. Curr Opin Neurobiol 6:459-466

    Article  PubMed  CAS  Google Scholar 

  19. Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373:193-198

    Article  PubMed  CAS  Google Scholar 

  20. Firth AL, Remillard CV, Yuan JX-J (2007) TRP channels in hypertension. Biochim Biophys Acta 1772:895-906

    Article  PubMed  CAS  Google Scholar 

  21. Targos B, Ska J, Pomorski P (2005) Store-operated calcium entry in physiology and pathology of mammalian cells. Acta Biochim Pol 52:379-409

    Google Scholar 

  22. Freichel M, Vennekens R, Olausson J et al (2004) Functional role of TRPC proteins in vivo: lessons from TRPC-deficient mouse models. Biochem Biophys Res Commun 322:1352-1358

    Article  PubMed  CAS  Google Scholar 

  23. Dietrich A, Schnitzler M, Kalwa H, Storch U, Gudermann T (2005) Functional characterization and physiological relevance of the TRPC3/6/7 subfamily of cation channels. Naunyn Schmiedebergs Arch Pharmacol 371:257-265

    Article  PubMed  CAS  Google Scholar 

  24. Beech DJ (2005) Emerging functions of 10 types of TRP cationic channel in vascular smooth muscle. Clin Exp Pharmacol Physiol 32:597-603

    Article  PubMed  CAS  Google Scholar 

  25. Dietrich A, Mederos YS, Gollasch M et al (2005) Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol 25:6980-6989

    Article  PubMed  CAS  Google Scholar 

  26. Sel S, Rost BR, Yildirim AO et al (2008) Loss of classical transient receptor potential 6 channel reduces allergic airway response. Clin Exp Allergy 38:1548-1558

    Article  PubMed  CAS  Google Scholar 

  27. Ward JPT, Snetkov VA, Aaronson PI (2004) Calcium, mitochondria and oxygen sensing in the pulmonary circulation. Cell Calcium 36:209-220

    Article  PubMed  CAS  Google Scholar 

  28. Sweeney M, Yuan JX-J (2000) Hypoxic pulmonary vasoconstriction: role of voltage-gated potassium channels. Respir Res 1:40-48

    Article  PubMed  CAS  Google Scholar 

  29. Landsberg JW, Yuan JX-J (2004) Calcium and TRP channels in pulmonary vascular smooth muscle cell proliferation. News Physiol Sci 1944-1950

    Google Scholar 

  30. Aaronson PI, Robertson TP, Knock GA et al (2006) Hypoxic pulmonary vasoconstriction: mechanisms and controversies. J Physiol 570:53-58

    Article  PubMed  CAS  Google Scholar 

  31. Beech DJ, Muraki K, Flemming R (2004) Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J Physiol 559:685-706

    PubMed  CAS  Google Scholar 

  32. Birnbaumer L, Zhu X, Jiang M et al (1996) On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc Natl Acad Sci U S A 93:15195-15202

    Article  PubMed  CAS  Google Scholar 

  33. Marshall C, Mamary AJ, Verhoeven AJ, Marshall BE (1996) Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction. Am J Respir Cell Mol Biol 15:633-644

    PubMed  CAS  Google Scholar 

  34. Waypa GB, Chandel NS, Schumacker PT (2001) Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res 88:1259-1266

    Article  PubMed  CAS  Google Scholar 

  35. Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, Schumacker PT (2002) Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res 91:719-726

    Article  PubMed  CAS  Google Scholar 

  36. Sham JSK, Crenshaw BR Jr, Deng LH, Shimoda LA, Sylvester JT (2000) Effects of hypoxia in porcine pulmonary arterial myocytes: roles of KV channel and endothelin-1. Am J Physiol Lung Cell Mol Physiol 279:L262-L272

    PubMed  CAS  Google Scholar 

  37. Turner JL, Kozlowski RZ (1997) Relationship between membrane potential, delayed rectifier K+ currents and hypoxia in rat pulmonary arterial myocytes. Exp Physiol 82:629-645

    PubMed  CAS  Google Scholar 

  38. Estacion M, Sinkins WG, Jones SW, Applegate MA, Schilling WP (2006) Human TRPC6 expressed in HEK 293 cells forms non-selective cation channels with limited Ca2+ permeability. J Physiol 572:359-377

    Article  PubMed  CAS  Google Scholar 

  39. Gudermann T, Mederos y Schnitzler M, Dietrich A (2004) Receptor-operated cation entry - more than esoteric terminology? Sci STKE 2004:e35

    Article  Google Scholar 

  40. Soboloff J, Spassova M, Xu W, He LP, Cuesta N, Gill DL (2005) Role of endogenous TRPC6 channels in Ca2+ signal generation in A7r5 smooth muscle cells. J Biol Chem 280:39786-39794

    Article  PubMed  CAS  Google Scholar 

  41. French RJ, Wells JB (1977) Sodium ions as blocking agents and charge carriers in the potassium channel of the squid giant axon. J Gen Physiol 70:707-724

    Article  PubMed  CAS  Google Scholar 

  42. Archer SL, London B, Hampl V et al (2001) Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5. FASEB J 15:1801-1803

    PubMed  CAS  Google Scholar 

  43. Keserü B, Barbosa-Sicard E, Popp R et al (2008) Epoxyeicosatrienoic acids and the soluble epoxide hydrolase are determinants of pulmonary artery pressure and the acute hypoxic pulmonary vasoconstrictor response. FASEB J 22:4306-4315

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Fuchs, B., Dietrich, A., Gudermann, T., Kalwa, H., Grimminger, F., Weissmann, N. (2010). The Role of Classical Transient Receptor Potential Channels in the Regulation of Hypoxic Pulmonary Vasoconstriction. In: Yuan, JJ., Ward, J. (eds) Membrane Receptors, Channels and Transporters in Pulmonary Circulation. Advances in Experimental Medicine and Biology, vol 661. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-500-2_12

Download citation

Publish with us

Policies and ethics