Skip to main content

Rational Combination of Targeted Agents to Overcome Cancer Cell Resistance

  • Chapter
  • First Online:
  • 745 Accesses

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

The introduction of targeted agents such as the Bcr/Abl kinase inhibitor – imatinib mesylate – into the therapeutic armamentarium has revolutionized chemotherapeutic approaches to neoplastic diseases. However, as in the case of conventional chemotherapeutic agents, resistance mechanisms, either preexisting or those that develop following treatment, have limited the therapeutic potential of such agents. Over the last decade, it has become increasingly clear that survival signaling pathways do not exist in a vacuum, but instead exhibit strong evidence of cross-talk and mutual interdependence. In addition, a substantial body of evidence indicates that multiple dysregulated survival pathways may cooperate to trigger transformation. Such considerations raise the possibility that simultaneous interruption of more than one signaling pathway may represent an effective anticancer strategy. Indeed, numerous studies have now demonstrated that because many cancer cell types are not addicted to a single such pathway, simultaneous interruption of a constitutively activated and stimulated complementary pathway may effectively induce transformed cell death. Furthermore, this strategy may be particularly effective in the case of resistant disease. This chapter summarizes mechanisms of tumor cell resistance to novel agents, and provides examples of rational combination approaches involving targeted agents that might circumvent this problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kantarjian H, Sawyers C, Hochhaus A, et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med. 2002;346(9):645–52.

    PubMed  CAS  Google Scholar 

  2. Tallman MS. Current management and new approaches in the treatment of APL. Clin Adv Hematol Oncol. 2003;1(10):580–1.

    PubMed  Google Scholar 

  3. Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293(5531):876–80.

    PubMed  CAS  Google Scholar 

  4. Young MA, Shah NP, Chao LH, et al. Structure of the kinase domain of an imatinib-resistant Abl mutant in complex with the Aurora kinase inhibitor VX-680. Cancer Res. 2006;66(2):1007–14.

    PubMed  CAS  Google Scholar 

  5. Giehl K. Oncogenic Ras in tumour progression and metastasis. Biol Chem. 2005;386(3): 193–205.

    PubMed  CAS  Google Scholar 

  6. Sebti SM, Hamilton AD. Farnesyltransferase and geranylgeranyltransferase I inhibitors and cancer therapy: lessons from mechanism and bench-to-bedside translational studies. Oncogene. 2000;19(56):6584–93.

    PubMed  CAS  Google Scholar 

  7. Weinstein IB, Joe AK. Mechanisms of disease: oncogene addiction – a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol. 2006;3(8):448–57.

    PubMed  CAS  Google Scholar 

  8. Gorre ME, Ellwood-Yen K, Chiosis G, Rosen N, Sawyers CL. BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood. 2002;100(8):3041–4.

    PubMed  CAS  Google Scholar 

  9. Sausville EA. Dragons round the fleece again: STI571 versus alpha1 acid glycoprotein. J Natl Cancer Inst. 2000;92(20):1626–7.

    PubMed  CAS  Google Scholar 

  10. She QB, Solit DB, Ye Q, O’Reilly KE, Lobo J, Rosen N. The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell. 2005;8(4):287–97.

    PubMed  CAS  Google Scholar 

  11. Sharma SV, Settleman J. Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev. 2007;21(24):3214–31.

    PubMed  CAS  Google Scholar 

  12. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    PubMed  CAS  Google Scholar 

  13. Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell. 2009;136(5):823–37.

    PubMed  CAS  Google Scholar 

  14. Sharma SV, Settleman J. Oncogenic shock: turning an activated kinase against the tumor cell. Cell Cycle. 2006;5(24):2878–80.

    PubMed  CAS  Google Scholar 

  15. Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988;335(6189):440–2.

    PubMed  CAS  Google Scholar 

  16. Sharma SV, Fischbach MA, Haber DA, Settleman J. “Oncogenic shock”: explaining oncogene addiction through differential signal attenuation. Clin Cancer Res. 2006;12(14 Pt 2):4392s–5.

    PubMed  CAS  Google Scholar 

  17. Shah NP, Kasap C, Weier C, et al. Transient potent BCR-ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis. Cancer Cell. 2008;14(6):485–93.

    PubMed  CAS  Google Scholar 

  18. Carracedo A, Ma L, Teruya-Feldstein J, et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 2008;118(9):3065–74.

    PubMed  CAS  Google Scholar 

  19. Dai Y, Landowski TH, Rosen ST, Dent P, Grant S. Combined treatment with the checkpoint abrogator UCN-01 and MEK1/2 inhibitors potently induces apoptosis in drug-sensitive and -resistant myeloma cells through an IL-6-independent mechanism. Blood. 2002;100(9):3333–43.

    PubMed  CAS  Google Scholar 

  20. Ellis LM, Hicklin DJ. Resistance to targeted therapies: refining anticancer therapy in the era of molecular oncology. Clin Cancer Res. 2009;15(24):7471–8.

    PubMed  CAS  Google Scholar 

  21. Shah NP. Advanced CML: therapeutic options for patients in accelerated and blast phases. J Natl Compr Canc Netw. 2008;6 Suppl 2:S31–6.

    PubMed  CAS  Google Scholar 

  22. Roche-Lestienne C, Preudhomme C. Mutations in the ABL kinase domain pre-exist the onset of imatinib treatment. Semin Hematol. 2003;40(2 Suppl 2):80–2.

    PubMed  CAS  Google Scholar 

  23. Quintas-Cardama A, Kantarjian H, Cortes J. Imatinib and beyond – exploring the full potential of targeted therapy for CML. Nat Rev Clin Oncol. 2009;6(9):535–43.

    PubMed  CAS  Google Scholar 

  24. O’Hare T, Shakespeare WC, Zhu X, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16(5):401–12.

    PubMed  Google Scholar 

  25. Daley GQ. Towards combination target-directed chemotherapy for chronic myeloid leukemia: role of farnesyl transferase inhibitors. Semin Hematol. 2003;40(2 Suppl 2):11–4.

    PubMed  CAS  Google Scholar 

  26. Yu C, Krystal G, Dent P, Grant S. Flavopiridol potentiates STI571-induced mitochondrial damage and apoptosis in BCR-ABL-positive human leukemia cells. Clin Cancer Res. 2002;8(9):2976–84.

    PubMed  CAS  Google Scholar 

  27. Gleixner KV, Ferenc V, Peter B, et al. Polo-like kinase 1 (Plk1) as a novel drug target in chronic myeloid leukemia: overriding imatinib resistance with the Plk1 inhibitor BI 2536. Cancer Res. 2010;70(4):1513–23.

    PubMed  CAS  Google Scholar 

  28. Sato S, Fujita N, Tsuruo T. Interference with PDK1-Akt survival signaling pathway by UCN-01 (7-hydroxystaurosporine). Oncogene. 2002;21(11):1727–38.

    PubMed  CAS  Google Scholar 

  29. Fuse E, Tanii H, Takai K, et al. Altered pharmacokinetics of a novel anticancer drug, UCN-01, caused by specific high affinity binding to alpha1-acid glycoprotein in humans. Cancer Res. 1999;59(5):1054–60.

    PubMed  CAS  Google Scholar 

  30. Kummar S, Gutierrez ME, Gardner ER, et al. A phase I trial of UCN-01 and prednisone in patients with refractory solid tumors and lymphomas. Cancer Chemother Pharmacol. 2010;65(2):383–9.

    PubMed  CAS  Google Scholar 

  31. Senderowicz AM. Flavopiridol: the first cyclin-dependent kinase inhibitor in human clinical trials. Invest New Drugs. 1999;17(3):313–20.

    PubMed  CAS  Google Scholar 

  32. Byrd JC, Lin TS, Dalton JT, et al. Flavopiridol administered using a pharmacologically derived schedule is associated with marked clinical efficacy in refractory, genetically high-risk chronic lymphocytic leukemia. Blood. 2007;109(2):399–404.

    PubMed  CAS  Google Scholar 

  33. Dai Y, Grant S. New insights into Chk kinase 1 in the DNA damage repair (DDR) signaling network: rationale for employing Chk1 inhibitors in cancer chemotherapy. Clin Cancer Res. 2010;16(2):376–83.

    PubMed  CAS  Google Scholar 

  34. Mahon FX, Belloc F, Lagarde V, et al. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood. 2003;101(6):2368–73.

    PubMed  CAS  Google Scholar 

  35. Pratz KW, Cortes J, Roboz GJ, et al. A pharmacodynamic study of the FLT3 inhibitor KW-2449 yields insight into the basis for clinical response. Blood. 2009;113(17):3938–46.

    PubMed  CAS  Google Scholar 

  36. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81.

    PubMed  CAS  Google Scholar 

  37. Raponi M, Winkler H, Dracopoli NC. KRAS mutations predict response to EGFR inhibitors. Curr Opin Pharmacol. 2008;8(4):413–8.

    PubMed  CAS  Google Scholar 

  38. Kinkade CW, Castillo-Martin M, Puzio-Kuter A, et al. Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest. 2008;118(9):3051–64.

    PubMed  CAS  Google Scholar 

  39. Godin-Heymann N, Ulkus L, Brannigan BW, et al. The T790M “gatekeeper” mutation in EGFR mediates resistance to low concentrations of an irreversible EGFR inhibitor. Mol Cancer Ther. 2008;7(4):874–9.

    PubMed  CAS  Google Scholar 

  40. Reed JC. Bcl-2 family proteins. Oncogene. 1998;17(25):3225–36.

    PubMed  Google Scholar 

  41. Reed JC. Apoptosis-targeted therapies for cancer. Cancer Cell. 2003;3(1):17–22.

    PubMed  CAS  Google Scholar 

  42. Green DR. At the gates of death. Cancer Cell. 2006;9(5):328–30.

    PubMed  CAS  Google Scholar 

  43. Cragg MS, Kuroda J, Puthalakath H, Huang DC, Strasser A. Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics. PLoS Med. 2007;4(10):1681–9.

    PubMed  CAS  Google Scholar 

  44. Insinga A, Monestiroli S, Ronzoni S, et al. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med. 2005;11(1):71–6.

    PubMed  CAS  Google Scholar 

  45. White E, DiPaola RS. The double-edged sword of autophagy modulation in cancer. Clin Cancer Res. 2009;15(17):5308–16.

    PubMed  Google Scholar 

  46. Jin S, White E. Role of autophagy in cancer: management of metabolic stress. Autophagy. 2007;3(1):28–31.

    PubMed  CAS  Google Scholar 

  47. Carew JS, Nawrocki ST, Kahue CN, et al. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood. 2007;110(1):313–22.

    PubMed  CAS  Google Scholar 

  48. Bhatt AP, Bhende PM, Sin SH, Roy D, Dittmer DP, Damania B. Dual inhibition of PI3K and mTOR inhibits autocrine and paracrine proliferative loops in PI3K/Akt/mTOR-addicted lymphomas. Blood. 2010;115(22):4455–63.

    PubMed  CAS  Google Scholar 

  49. Rahmani M, Anderson A, Habibi JR, et al. The BH3-only protein Bim plays a critical role in leukemia cell death triggered by concomitant inhibition of the PI3K/Akt and MEK/ERK1/2 pathways. Blood. 2009;114(20):4507–16.

    PubMed  CAS  Google Scholar 

  50. Shao RG, Cao CX, Shimizu T, O’Connor PM, Kohn KW, Pommier Y. Abrogation of an S-phase checkpoint and potentiation of camptothecin cytotoxicity by 7-hydroxystaurosporine (UCN-01) in human cancer cell lines, possibly influenced by p53 function. Cancer Res. 1997;57(18):4029–35.

    PubMed  CAS  Google Scholar 

  51. Dai Y, Yu C, Singh V, et al. Pharmacological inhibitors of the mitogen-activated protein kinase (MAPK) kinase/MAPK cascade interact synergistically with UCN-01 to induce mitochondrial dysfunction and apoptosis in human leukemia cells. Cancer Res. 2001;61(13):5106–15.

    PubMed  CAS  Google Scholar 

  52. Pei XY, Dai Y, Rahmani M, Li W, Dent P, Grant S. The farnesyltransferase inhibitor L744832 potentiates UCN-01-induced apoptosis in human multiple myeloma cells. Clin Cancer Res. 2005;11(12):4589–600.

    PubMed  CAS  Google Scholar 

  53. Dai Y, Chen S, Pei XY, et al. Interruption of the Ras/MEK/ERK signaling cascade enhances Chk1 inhibitor-induced-DNA damage in vitro and in vivo in human multiple myeloma cells. Blood. 2008;112(6):2439–49.

    PubMed  CAS  Google Scholar 

  54. Pei XY, Dai Y, Tenorio S, et al. MEK1/2 inhibitors potentiate UCN-01 lethality in human multiple myeloma cells through a Bim-dependent mechanism. Blood. 2007;110(6):2092–101.

    PubMed  CAS  Google Scholar 

  55. Rosato RR, Almenara JA, Dai Y, Grant S. Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Mol Cancer Ther. 2003;2(12):1273–84.

    PubMed  CAS  Google Scholar 

  56. Marchion DC, Bicaku E, Daud AI, Richon V, Sullivan DM, Munster PN. Sequence-specific potentiation of topoisomerase II inhibitors by the histone deacetylase inhibitor suberoylanilide hydroxamic acid. J Cell Biochem. 2004;92(2):223–37.

    PubMed  CAS  Google Scholar 

  57. Workman P, Burrows F, Neckers L, Rosen N. Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci. 2007;1113:202–16.

    PubMed  CAS  Google Scholar 

  58. Yu C, Rahmani M, Almenara J, et al. Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and -resistant Bcr/Abl+ human myeloid leukemia cells. Cancer Res. 2003;63(9):2118–26.

    PubMed  CAS  Google Scholar 

  59. Fiskus W, Pranpat M, Balasis M, et al. Cotreatment with vorinostat (suberoylanilide hydroxamic acid) enhances activity of dasatinib (BMS-354825) against imatinib mesylate-sensitive or imatinib mesylate-resistant chronic myelogenous leukemia cells. Clin Cancer Res. 2006;12(19):5869–78.

    PubMed  CAS  Google Scholar 

  60. Bali P, George P, Cohen P, et al. Superior activity of the combination of histone deacetylase inhibitor LAQ824 and the FLT-3 kinase inhibitor PKC412 against human acute myelogenous leukemia cells with mutant FLT-3. Clin Cancer Res. 2004;10(15):4991–7.

    PubMed  CAS  Google Scholar 

  61. Witta SE, Gemmill RM, Hirsch FR, et al. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res. 2006;66(2):944–50.

    PubMed  CAS  Google Scholar 

  62. Cha TL, Chuang MJ, Wu ST, et al. Dual degradation of aurora A and B kinases by the ­histone deacetylase inhibitor LBH589 induces G2-M arrest and apoptosis of renal cancer cells. Clin Cancer Res. 2009;15(3):840–50.

    PubMed  CAS  Google Scholar 

  63. Dai Y, Chen S, Venditti CA, et al. Vorinostat synergistically potentiates MK-0457 lethality in chronic myelogenous leukemia cells sensitive and resistant to imatinib mesylate. Blood. 2008;112(3):793–804.

    PubMed  CAS  Google Scholar 

  64. Chao SH, Price DH. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem. 2001;276(34):31793–9.

    PubMed  CAS  Google Scholar 

  65. Almenara J, Rosato R, Grant S. Synergistic induction of mitochondrial damage and apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Leukemia. 2002;16(7):1331–43.

    PubMed  CAS  Google Scholar 

  66. Grant S, Kolla S, Sirulnik A, et al. Phase I trial of vorinostat (SAHA) in combinatin with alvocidib (flavopiridol) in patients with refractory, relapsed, or (selected) poor-prognosis AML or refractory anemia with excess blasts-2 (RAEB-2). Blood (Abstr). 2008;112:2986.

    Google Scholar 

  67. Dai Y, Rahmani M, Dent P, Grant S. Blockade of histone deacetylase inhibitor-induced RelA/p65 acetylation and NF-{kappa}B activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage, XIAP downregulation, and c-Jun N-terminal kinase 1 activation. Mol Cell Biol. 2005;25(13):5429–44.

    PubMed  CAS  Google Scholar 

  68. Dai Y, Chen S, Kramer LB, Funk VL, Dent P, Grant S. Interactions between bortezomib and romidepsin and belinostat in chronic lymphocytic leukemia cells. Clin Cancer Res. 2008;14(2):549–58.

    PubMed  CAS  Google Scholar 

  69. Chen S, Dai Y, Pei XY, Grant S. Bim up-regulation by histone deacetylase inhibitors mediates interactions with the Bcl-2 antagonist ABT-737: evidence for distinct roles for Bcl-2, Bcl-xL and Mcl-1. Mol Cell Biol. 2009;29(23):6149–69.

    PubMed  CAS  Google Scholar 

  70. Bali P, Pranpat M, Bradner J, et al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis of antileukemia activity of histone deacetylase inhibitors. J Biol Chem. 2005;280(29):26729–34.

    PubMed  CAS  Google Scholar 

  71. Nawrocki ST, Carew JS, Dunner Jr K, et al. Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res. 2005;65(24):11510–9.

    PubMed  CAS  Google Scholar 

  72. Mitsiades CS, Mitsiades NS, McMullan CJ, et al. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA. 2004;101(2):540–5.

    PubMed  CAS  Google Scholar 

  73. Badros A, Burger AM, Philip S, et al. Phase I study of vorinostat in combination with bortezomib for relapsed and refractory multiple myeloma. Clin Cancer Res. 2009;15(16):5250–7.

    PubMed  CAS  Google Scholar 

  74. Dasmahapatra G, Lembersky D, Kramer L, et al. The pan-HDAC inhibitor vorinostat potentiates the activity of the proteasome inhibitor carfilzomib in human DLBCL cells in vitro and in vivo. Blood. 2010;115(22):4478–87.

    PubMed  CAS  Google Scholar 

  75. Dai Y, Rahmani M, Grant S. Proteasome inhibitors potentiate leukemic cell apoptosis induced by the cyclin-dependent kinase inhibitor flavopiridol through a SAPK/JNK- and NF-kappaB-dependent process. Oncogene. 2003;22(46):7108–22.

    PubMed  CAS  Google Scholar 

  76. Takada Y, Aggarwal BB. Flavopiridol inhibits NF-kappaB activation induced by various carcinogens and inflammatory agents through inhibition of IkappaBalpha kinase and p65 phosphorylation: abrogation of cyclin D1, cyclooxygenase-2, and matrix metalloprotease-9. J Biol Chem. 2004;279(6):4750–9.

    PubMed  CAS  Google Scholar 

  77. Grant S, Sullivan D, Roodman D, et al. Phase I trial of bortezomib (NSC 681239) and flavopiridol (NSC 649890) in patients with recurrent or refractory indolent B-cell neoplasms. Blood (Abstr). 2008;112:1573.

    Google Scholar 

  78. Perez-Galan P, Roue G, Villamor N, Campo E, Colomer D. The BH3-mimetic GX15–070 synergizes with bortezomib in mantle cell lymphoma by enhancing Noxa-mediated activation of Bak. Blood. 2007;109(10):4441–9.

    PubMed  CAS  Google Scholar 

  79. Pei XY, Dai Y, Grant S. The proteasome inhibitor bortezomib promotes mitochondrial injury and apoptosis induced by the small molecule Bcl-2 inhibitor HA14-1 in multiple myeloma cells. Leukemia. 2003;17(10):2036–45.

    PubMed  CAS  Google Scholar 

  80. Paoluzzi L, Gonen M, Bhagat G, et al. The BH3-only mimetic ABT-737 synergizes the ­anti-neoplastic activity of proteasome inhibitors in lymphoid malignancies. Blood. 2008;112(7):2906–16.

    PubMed  CAS  Google Scholar 

  81. Trudel S, Li ZH, Rauw J, Tiedemann RE, Wen XY, Stewart AK. Preclinical studies of the pan-Bcl inhibitor obatoclax (GX015–070) in multiple myeloma. Blood. 2007;109(12):5430–8.

    PubMed  CAS  Google Scholar 

  82. Konopleva M, Contractor R, Tsao T, et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell. 2006;10(5):375–88.

    PubMed  CAS  Google Scholar 

  83. Chen S, Dai Y, Harada H, Dent P, Grant S. Mcl-1 downregulation potentiates ABT-737 lethality by cooperatively inducing Bak activation and Bax translocation. Cancer Res. 2007;67(2):782–91.

    PubMed  CAS  Google Scholar 

  84. Lin X, Morgan-Lappe S, Huang X, et al. “Seed” analysis of off-target siRNAs reveals an essential role of Mcl-1 in resistance to the small-molecule Bcl-2/Bcl-X(L) inhibitor ABT-737. Oncogene. 2007;26(27):3972–9.

    PubMed  CAS  Google Scholar 

  85. Zhang W, Konopleva M, Ruvolo VR, et al. Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia. 2008;22(4):808–18.

    PubMed  CAS  Google Scholar 

  86. Yu C, Krystal G, Varticovksi L, et al. Pharmacologic mitogen-activated protein/extracellular signal-regulated kinase kinase/mitogen-activated protein kinase inhibitors interact synergistically with STI571 to induce apoptosis in Bcr/Abl-expressing human leukemia cells. Cancer Res. 2002;62(1):188–99.

    PubMed  CAS  Google Scholar 

  87. Tai YT, Fulciniti M, Hideshima T, et al. Targeting MEK induces myeloma cell cytotoxicity and inhibits osteoclastogenesis. Blood. 2007;110(5):1656–63.

    PubMed  CAS  Google Scholar 

  88. Nguyen TK, Jordan N, Friedberg J, Fisher RI, Dent P, Grant S. Inhibition of MEK/ERK1/2 sensitizes lymphoma cells to sorafenib-induced apoptosis. Leuk Res. 2010;34(3):379–86.

    PubMed  CAS  Google Scholar 

  89. Rahmani M, Yu C, Reese E, et al. Inhibition of PI-3 kinase sensitizes human leukemic cells to histone deacetylase inhibitor-mediated apoptosis through p44/42 MAP kinase inactivation and abrogation of p21(CIP1/WAF1) induction rather than AKT inhibition. Oncogene. 2003;22(40):6231–42.

    PubMed  CAS  Google Scholar 

  90. Qian J, Zou Y, Rahman JS, Lu B, Massion PP. Synergy between phosphatidylinositol 3-kinase/Akt pathway and Bcl-xL in the control of apoptosis in adenocarcinoma cells of the lung. Mol Cancer Ther. 2009;8(1):101–9.

    PubMed  CAS  Google Scholar 

  91. Meloche S, Pouyssegur J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene. 2007;26(22):3227–39.

    PubMed  CAS  Google Scholar 

  92. Bhalla KN. Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol. 2005;23(17):3971–93.

    PubMed  CAS  Google Scholar 

  93. Nebbioso A, Clarke N, Voltz E, et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med. 2005;11(1):77–84.

    PubMed  CAS  Google Scholar 

  94. Stevens FE, Beamish H, Warrener R, Gabrielli B. Histone deacetylase inhibitors induce mitotic slippage. Oncogene. 2008;27(10):1345–54.

    PubMed  CAS  Google Scholar 

  95. Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene. 2005;363:15–23.

    PubMed  CAS  Google Scholar 

  96. Chen L, Fischle W, Verdin E, Greene WC. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science. 2001;293(5535):1653–7.

    CAS  Google Scholar 

  97. Chen LF, Greene WC. Regulation of distinct biological activities of the NF-kappaB transcription factor complex by acetylation. J Mol Med. 2003;81(9):549–57.

    PubMed  CAS  Google Scholar 

  98. Zhao Y, Tan J, Zhuang L, Jiang X, Liu ET, Yu Q. Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim. Proc Natl Acad Sci USA. 2005;102(44):16090–5.

    PubMed  CAS  Google Scholar 

  99. Fiskus W, Pranpat M, Bali P, et al. Combined effects of novel tyrosine kinase inhibitor AMN107 and histone deacetylase inhibitor LBH589 against Bcr-Abl-expressing human leukemia cells. Blood. 2006;108(2):645–52.

    PubMed  CAS  Google Scholar 

  100. Adams J. The development of proteasome inhibitors as anticancer drugs. Cancer Cell. 2004;5(5):417–21.

    PubMed  CAS  Google Scholar 

  101. An B, Goldfarb RH, Siman R, Dou QP. Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts. Cell Death Differ. 1998;5(12):1062–75.

    PubMed  CAS  Google Scholar 

  102. Yu C, Rahmani M, Conrad D, Subler M, Dent P, Grant S. The proteasome inhibitor ­bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. Blood. 2003;102(10):3765–74.

    PubMed  CAS  Google Scholar 

  103. Miller CP, Ban K, Dujka ME, et al. NPI-0052, a novel proteasome inhibitor, induces ­caspase-8 and ROS-dependent apoptosis alone and in combination with HDAC inhibitors in leukemia cells. Blood. 2007;110(1):267–77.

    PubMed  CAS  Google Scholar 

  104. Oltersdorf T, Elmore SW, Shoemaker AR, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435(7042):677–81.

    PubMed  CAS  Google Scholar 

  105. Deng J, Carlson N, Takeyama K, Dal CP, Shipp M, Letai A. BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell. 2007;12(2):171–85.

    PubMed  CAS  Google Scholar 

  106. Rahmani M, Davis EM, Crabtree TR, et al. The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress. Mol Cell Biol. 2007;27(15):5499–513.

    PubMed  CAS  Google Scholar 

  107. Rahmani M, Davis EM, Bauer C, Dent P, Grant S. Apoptosis induced by the kinase inhibitor BAY 43–9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem. 2005;280(42):35217–27.

    PubMed  CAS  Google Scholar 

  108. McCubrey JA, Steelman LS, Abrams SL, et al. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul. 2006;46:249–79.

    PubMed  CAS  Google Scholar 

  109. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature. 2010;464(7287):427–30.

    PubMed  CAS  Google Scholar 

  110. Fisher RI, Miller TP, O’Connor OA. Diffuse aggressive lymphoma. Hematology Am Soc Hematol Educ Program. 2004;221–236.

    Google Scholar 

  111. Stommel JM, Kimmelman AC, Ying H, et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science. 2007;318(5848):287–90.

    PubMed  CAS  Google Scholar 

  112. Barabe F, Kennedy JA, Hope KJ, Dick JE. Modeling the initiation and progression of human acute leukemia in mice. Science. 2007;316(5824):600–4.

    PubMed  CAS  Google Scholar 

  113. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3(12):895–902.

    PubMed  CAS  Google Scholar 

  114. Zhao C, Chen A, Jamieson CH, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature. 2009;458(7239):776–9.

    PubMed  CAS  Google Scholar 

  115. Naka K, Hoshii T, Muraguchi T, et al. TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature. 2010;463(7281):676–80.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by awards CA63753, CA93738, CA100866, and P50CA130805 from the National Institutes of Health; award R6059-06 from the Leukemia and Lymphoma Society of America; Lymphoma SPORE award P50CA130805; and an award from the V Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Grant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dai, Y., Grant, S. (2011). Rational Combination of Targeted Agents to Overcome Cancer Cell Resistance. In: Gioeli, D. (eds) Targeted Therapies. Molecular and Translational Medicine. Humana Press. https://doi.org/10.1007/978-1-60761-478-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-478-4_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-477-7

  • Online ISBN: 978-1-60761-478-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics