Skip to main content

Melanoma Cell Propagation: Cancer Stem Cell, Clonal Evolution and Interconversion Models of Tumorigenicity

  • Chapter
  • First Online:
  • 902 Accesses

Part of the book series: Current Clinical Pathology ((CCPATH))

Abstract

Melanoma is a significant health problem worldwide. Available treatments can induce transient tumor regression in a small percentage of patients; however, these responses are not always associated with improved long-term survival. The mechanisms underlying therapeutic resistance and tumor recurrence in melanoma are still elusive. Tumor escape as a result of cancer cell heterogeneity and genomic instability may explain the persistence of disease despite an apparent primary response to therapy. For a long time, the accumulation of random mutations was believed to be associated with progressive transformation of normal cells into malignant cells, based on a classic “survival of the fittest” evolutionary model. Among other factors, these genetic alterations were also believed to be responsible for the acquisition of drug resistance during treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beddingfield III FC. The melanoma epidemic: res ipsa loquitur. Oncologist. 2003;8:459–65.

    PubMed  Google Scholar 

  2. Gogas HJ, Kirkwood JM, Sondak VK. Chemotherapy for metastatic melanoma: time for a change? Cancer. 2007;109:455–64.

    PubMed  CAS  Google Scholar 

  3. Rietschel P, Wolchok JD, Krown S, et al. Phase II study of extended-dose temozolomide in patients with melanoma. J Clin Oncol. 2008;26:2299–304.

    PubMed  CAS  Google Scholar 

  4. Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298:850–4.

    PubMed  CAS  Google Scholar 

  5. Dudley ME, Wunderlich JR, Yang JC, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol. 2005;23:2346–57.

    PubMed  CAS  Google Scholar 

  6. Dudley ME, Yang JC, Sherry R, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol. 2008;26:5233–9.

    PubMed  CAS  Google Scholar 

  7. Aksentijevich I, Galon J, Soares M, et al. The tumor-necrosis-factor receptor-associated periodic syndrome: new mutations in TNFRSF1A, ancestral origins, genotype-phenotype studies and evidence for further genetic heterogeneity of periodic fevers. Am J Hum Genet. 2001;69:301–14.

    PubMed  CAS  Google Scholar 

  8. Chen KG, Valencia JC, Gillet JP, Hearing VJ, Gottesman MM. Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma. Pigment Cell Melanoma Res. 2009;22:740–9.

    PubMed  CAS  Google Scholar 

  9. Di Tomaso T, Mazzoleni S, Wang E, et al. Immunobiological characterization of cancer stem cells isolated from glioblastoma patients. Clin Cancer Res. 2010;16:800–13.

    PubMed  Google Scholar 

  10. Odoux C, Fohrer H, Hoppo T, et al. A stochastic model for cancer stem cell origin in metastatic colon cancer. Cancer Res. 2008;68:6932–41.

    PubMed  CAS  Google Scholar 

  11. Lagasse E. Cancer stem cells with genetic instability: the best vehicle with the best engine for cancer. Gene Ther. 2008;15:136–42.

    PubMed  CAS  Google Scholar 

  12. Shackleton M. Normal stem cells and cancer stem cells: similar and different. Semin Cancer Biol. 2010;20:85–92.

    PubMed  CAS  Google Scholar 

  13. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183:1797–806.

    PubMed  CAS  Google Scholar 

  14. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.

    PubMed  CAS  Google Scholar 

  15. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.

    PubMed  CAS  Google Scholar 

  16. Al Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–8.

    PubMed  CAS  Google Scholar 

  17. Krivtsov AV, Twomey D, Feng Z, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 2006;442:818–22.

    PubMed  CAS  Google Scholar 

  18. Deshpande AJ, Cusan M, Rawat VP, et al. Acute myeloid leukemia is propagated by a leukemic stem cell with lymphoid characteristics in a mouse model of CALM/AF10-positive leukemia. Cancer Cell. 2006;10:363–74.

    PubMed  CAS  Google Scholar 

  19. Somervaille TC, Cleary ML. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell. 2006;10:257–68.

    PubMed  CAS  Google Scholar 

  20. Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA. 2003;100:15178–83.

    PubMed  CAS  Google Scholar 

  21. Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.

    PubMed  CAS  Google Scholar 

  22. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.

    PubMed  CAS  Google Scholar 

  23. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.

    PubMed  Google Scholar 

  24. Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.

    PubMed  CAS  Google Scholar 

  25. Schatton T, Murphy GF, Frank NY, et al. Identification of cells initiating human melanomas. Nature. 2008;451:345–9.

    PubMed  CAS  Google Scholar 

  26. Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA. 2007;104:10158–63.

    PubMed  CAS  Google Scholar 

  27. Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA. 2007;104:973–8.

    PubMed  CAS  Google Scholar 

  28. Kim CF, Jackson EL, Woolfenden AE, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121:823–35.

    PubMed  CAS  Google Scholar 

  29. Yang ZF, Ho DW, Ng MN, et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell. 2008;13:153–66.

    PubMed  CAS  Google Scholar 

  30. Kawabata Y, Hirokawa M, Komatsuda A, Sawada K. Clinical applications of CD34+ cell-selected peripheral blood stem cells. Ther Apher Dial. 2003;7:298–304.

    PubMed  CAS  Google Scholar 

  31. Helgason GV, Young GA, Holyoake TL. Targeting chronic myeloid leukemia stem cells. Curr Hematol Malig Rep. 2010;5:81–7.

    PubMed  Google Scholar 

  32. Wu Y, Wu PY. CD133 as a marker for cancer stem cells: progresses and concerns. Stem Cells Dev. 2009;18:1127–34.

    PubMed  CAS  Google Scholar 

  33. Ferrandina G, Petrillo M, Bonanno G, Scambia G. Targeting CD133 antigen in cancer. Expert Opin Ther Targets. 2009;13:823–37.

    PubMed  CAS  Google Scholar 

  34. Lin T, Islam O, Heese K. ABC transporters, neural stem cells and neurogenesis—a different perspective. Cell Res. 2006;16:857–71.

    PubMed  CAS  Google Scholar 

  35. Hadnagy A, Gaboury L, Beaulieu R, Balicki D. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res. 2006;312:3701–10.

    PubMed  CAS  Google Scholar 

  36. Perego M, Tortoreto M, Tragni G, et al. Heterogeneous phenotype of human melanoma cells with in vitro and in vivo features of tumor-initiating cells. J Invest Dermatol. 2010;130:1877–86.

    PubMed  CAS  Google Scholar 

  37. Dey D, Saxena M, Paranjape AN, et al. Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture. PLoS One. 2009;4:e5329.

    PubMed  Google Scholar 

  38. Fang D, Nguyen TK, Leishear K, et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 2005;65:9328–37.

    PubMed  CAS  Google Scholar 

  39. Baaten G, Voogd AC, Wagstaff J. A systematic review of the relation between interleukin-2 schedule and outcome in patients with metastatic renal cell cancer. Eur J Cancer. 2004;40:1127–44.

    PubMed  CAS  Google Scholar 

  40. Baguley BC. Tumor stem cell niches: a new functional framework for the action of anticancer drugs. Recent Patents Anticancer Drug Discov. 2006;1:121–7.

    CAS  Google Scholar 

  41. Voog J, Jones DL. Stem cells and the niche: a dynamic duo. Cell Stem Cell. 2010;6:103–15.

    PubMed  CAS  Google Scholar 

  42. LaBarge MA. The difficulty of targeting cancer stem cell niches. Clin Cancer Res. 2010;16:3121–9.

    PubMed  CAS  Google Scholar 

  43. Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–48.

    PubMed  CAS  Google Scholar 

  44. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–68.

    PubMed  CAS  Google Scholar 

  45. Shackleton M, Quintana E. Progress in understanding melanoma propagation. Mol Oncol. 2010;4:451–7.

    PubMed  Google Scholar 

  46. Dewanji A, Goddard MJ, Krewski D, Moolgavkar SH. Two stage model for carcinogenesis: number and size distributions of premalignant clones in longitudinal studies. Math Biosci. 1999;155:1–12.

    PubMed  CAS  Google Scholar 

  47. Roschke AV, Tonon G, Gehlhaus KS, et al. Karyotypic complexity of the NCI-60 drug-screening panel. Cancer Res. 2003;63:8634–47.

    PubMed  CAS  Google Scholar 

  48. Osawa M, Egawa G, Mak SS, et al. Molecular characterization of melanocyte stem cells in their niche. Development. 2005;132:5589–99.

    PubMed  CAS  Google Scholar 

  49. Shinin V, Gayraud-Morel B, Gomes D, Tajbakhsh S. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol. 2006;8:677–87.

    PubMed  CAS  Google Scholar 

  50. Nishimura EK, Jordan SA, Oshima H, et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature. 2002;416:854–60.

    PubMed  CAS  Google Scholar 

  51. Roesch A, Fukunaga-Kalabis M, Schmidt EC, et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell. 2010;141:583–94.

    PubMed  CAS  Google Scholar 

  52. Nishimura EK, Granter SR, Fisher DE. Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science. 2005;307:720–4.

    PubMed  CAS  Google Scholar 

  53. Grichnik JM. Melanoma, nevogenesis, and stem cell biology. J Invest Dermatol. 2008;128:2365–80.

    PubMed  CAS  Google Scholar 

  54. Chudnovsky Y, Adams AE, Robbins PB, Lin Q, Khavari PA. Use of human tissue to assess the oncogenic activity of melanoma-associated mutations. Nat Genet. 2005;37:745–9.

    PubMed  CAS  Google Scholar 

  55. Tsao H, Goel V, Wu H, Yang G, Haluska FG. Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol. 2004;122:337–41.

    PubMed  CAS  Google Scholar 

  56. Grichnik JM, Burch JA, Schulteis RD, et al. Melanoma, a tumor based on a mutant stem cell? J Invest Dermatol. 2006;126:142–53.

    PubMed  CAS  Google Scholar 

  57. Klonisch T, Wiechec E, Hombach-Klonisch S, et al. Cancer stem cell markers in common cancers—­therapeutic implications. Trends Mol Med. 2008;14:450–60.

    PubMed  CAS  Google Scholar 

  58. Huntly BJ, Shigematsu H, Deguchi K, et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell. 2004;6:587–96.

    PubMed  CAS  Google Scholar 

  59. Zhang M, Behbod F, Atkinson RL, et al. Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Res. 2008;68:4674–82.

    PubMed  CAS  Google Scholar 

  60. Real C, Glavieux-Pardanaud C, Le Douarin NM, Dupin E. Clonally cultured differentiated pigment cells can dedifferentiate and generate multipotent progenitors with self-renewing potential. Dev Biol. 2006;300:656–69.

    PubMed  CAS  Google Scholar 

  61. Herlyn M, Thurin J, Balaban G, et al. Characteristics of cultured human melanocytes isolated from different stages of tumor progression. Cancer Res. 1985;45:5670–6.

    PubMed  CAS  Google Scholar 

  62. Herlyn M, Clark WH, Rodeck U, Mancianti ML, Jambrosic J, Koprowski H. Biology of tumor progression in human melanocytes. Lab Invest. 1987;56:461–74.

    PubMed  CAS  Google Scholar 

  63. Wang E, Voiculescu S, Le Poole IC, et al. Clonal persistence and evolution during a decade of recurrent melanoma. J Invest Dermatol. 2006;126:1372–7.

    PubMed  CAS  Google Scholar 

  64. Sabatino M, Zhao Y, Voiculescu S, et al. Conservation of a core of genetic alterations over a decade of recurrent melanoma supports the melanoma stem cell hypothesis. Cancer Res. 2008;68:222–31.

    Google Scholar 

  65. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    PubMed  CAS  Google Scholar 

  66. Okada M, Oka M, Yoneda Y. Effective culture conditions for the induction of pluripotent stem cells. Biochim Biophys Acta. 2010;1800(9):956–63.

    PubMed  CAS  Google Scholar 

  67. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313–7.

    PubMed  CAS  Google Scholar 

  68. Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 2007;1:55–70.

    PubMed  CAS  Google Scholar 

  69. Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007;448:318–24.

    PubMed  CAS  Google Scholar 

  70. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.

    PubMed  CAS  Google Scholar 

  71. Lowry WE, Richter L, Yachechko R, et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA. 2008;105:2883–8.

    PubMed  CAS  Google Scholar 

  72. Huangfu D, Osafune K, Maehr R, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol. 2008;26:1269–75.

    PubMed  CAS  Google Scholar 

  73. Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439:84–8.

    PubMed  CAS  Google Scholar 

  74. Boiko AD, Razorenova OV, Van de Rijn M, et al. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature. 2010;466:133–7.

    PubMed  CAS  Google Scholar 

  75. Na YR, Seok SH, Kim DJ, et al. Isolation and characterization of spheroid cells from human malignant melanoma cell line WM-266-4. Tumour Biol. 2009;30:300–9.

    PubMed  CAS  Google Scholar 

  76. Monzani E, Facchetti F, Galmozzi E, et al. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer. 2007;43:935–46.

    PubMed  CAS  Google Scholar 

  77. Mizrak D, Brittan M, Alison MR. CD133: molecule of the moment. J Pathol. 2008;214:3–9.

    PubMed  CAS  Google Scholar 

  78. Klein WM, Wu BP, Zhao S, Wu H, Klein-Szanto AJ, Tahan SR. Increased expression of stem cell markers in malignant melanoma. Mod Pathol. 2007;20:102–7.

    PubMed  CAS  Google Scholar 

  79. Keshet GI, Goldstein I, Itzhaki O, et al. MDR1 expression identifies human melanoma stem cells. Biochem Biophys Res Commun. 2008;368:930–6.

    PubMed  CAS  Google Scholar 

  80. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ. Efficient tumour formation by single human melanoma cells. Nature. 2008;456:593–8.

    PubMed  CAS  Google Scholar 

  81. Quintana E, Shackleton M, Foster HR, et al. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell. 2010;18:510–23.

    PubMed  CAS  Google Scholar 

  82. Bittner M, Meltzer P, Chen Y, et al. Molecular classification of cutaneous malignant melanoma by gene expression: shifting from a countinuous spectrum to distinct biologic entities. Nature. 2000;406:536–840.

    PubMed  CAS  Google Scholar 

  83. Hendrix MJ, Seftor EA, Seftor RE, Kasemeier-Kulesa J, Kulesa PM, Postovit LM. Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer. 2007;7:246–55.

    PubMed  CAS  Google Scholar 

  84. Pinner S, Jordan P, Sharrock K, et al. Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination. Cancer Res. 2009;69:7969–77.

    PubMed  CAS  Google Scholar 

  85. Held MA, Curley DP, Dankort D, McMahon M, Muthusamy V, Bosenberg MW. Characterization of melanoma cells capable of propagating tumors from a single cell. Cancer Res. 2010;70:388–97.

    PubMed  CAS  Google Scholar 

  86. Lee JT, Herlyn M. Microenvironmental influences in melanoma progression. J Cell Biochem. 2007;101:862–72.

    PubMed  CAS  Google Scholar 

  87. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438:820–7.

    PubMed  CAS  Google Scholar 

  88. Wang E, Ngalame Y, Panelli MC, et al. Peritoneal and sub-peritoneal stroma may facilitate regional spread of ovarian cancer. Clin Cancer Res. 2005;11:113–22.

    PubMed  CAS  Google Scholar 

  89. Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449:557–63.

    PubMed  CAS  Google Scholar 

  90. Alphonso A, Alahari SK. Stromal cells and integrins: conforming to the needs of the tumor microenvironment. Neoplasia. 2009;11:1264–71.

    PubMed  CAS  Google Scholar 

  91. Hendrix MJ, Seftor EA, Hess AR, Seftor RE. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer. 2003;3:411–21.

    PubMed  CAS  Google Scholar 

  92. Husemann Y, Geigl JB, Schubert F, et al. Systemic spread is an early step in breast cancer. Cancer Cell. 2008;13:58–68.

    PubMed  Google Scholar 

  93. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5:219–34.

    PubMed  CAS  Google Scholar 

  94. Yilmaz OH, Valdez R, Theisen BK, et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature. 2006;441:475–82.

    PubMed  CAS  Google Scholar 

  95. Rossi DJ, Weissman IL. Pten, tumorigenesis, and stem cell self-renewal. Cell. 2006;125:229–31.

    PubMed  CAS  Google Scholar 

  96. Hassane DC, Guzman ML, Corbett C, et al. Discovery of agents that eradicate leukemia stem cells using an in silico screen of public gene expression data. Blood. 2008;111:5654–62.

    PubMed  CAS  Google Scholar 

  97. Schatton T, Schutte U, Frank NY, et al. Modulation of T-cell activation by malignant melanoma initiating cells. Cancer Res. 2010;70:697–708.

    PubMed  CAS  Google Scholar 

  98. Sabatino M, Stroncek DF, Klein H, Marincola FM, Wang E. Stem cells in melanoma development. Cancer Lett. 2009;279:119–25.

    PubMed  CAS  Google Scholar 

  99. Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea—a paradigm shift. Cancer Res. 2006;66:1883–90.

    PubMed  CAS  Google Scholar 

  100. Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.

    PubMed  CAS  Google Scholar 

  101. Greijer AE, van der Groep P, Kemming D, et al. Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). J Pathol. 2005;206:291–304.

    PubMed  CAS  Google Scholar 

  102. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. Tumor growth need not be driven by rare cancer stem cells. Science. 2007;317:337.

    PubMed  CAS  Google Scholar 

  103. Ascierto PA, Kirkwood JM. Adjuvant therapy of melanoma with interferon: lessons of the past decade. J Transl Med. 2008;6:62.

    PubMed  Google Scholar 

  104. Ascierto PA, Streicher HZ, Sznol M. Melanoma: a model for testing new agents in combination therapies. J Transl Med. 2010;8:38.

    PubMed  Google Scholar 

  105. Costa FF, Le BK, Brodin B. Concise review: cancer/testis antigens, stem cells, and cancer. Stem Cells. 2007;25:707–11.

    PubMed  CAS  Google Scholar 

  106. Robbins PF, el-Gamil M, Li YF, et al. A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med. 1996;183:1185–92.

    PubMed  CAS  Google Scholar 

  107. Lennerz V, Fatho M, Gentilini C, et al. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci USA. 2005;102:16013–8.

    PubMed  CAS  Google Scholar 

  108. Al-Hajj M. Cancer stem cells and oncology therapeutics. Curr Opin Oncol. 2007;19:61–4.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ena Wang M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, Q., Sabatino, M., Stroncek, D.F., Jin, P., Marincola, F.M., Wang, E. (2012). Melanoma Cell Propagation: Cancer Stem Cell, Clonal Evolution and Interconversion Models of Tumorigenicity. In: Murphy, M. (eds) Diagnostic and Prognostic Biomarkers and Therapeutic Targets in Melanoma. Current Clinical Pathology. Springer, New York, NY. https://doi.org/10.1007/978-1-60761-433-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-433-3_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60761-432-6

  • Online ISBN: 978-1-60761-433-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics