Skip to main content

Immunoisolation in Cell Transplantation

  • Chapter
  • First Online:
  • 1285 Accesses

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Cell therapy represents an increasingly promising approach for the cure of many chronic and degenerative disorders, such as type 1 (insulin-dependent) diabetes mellitus and Parkinson’s disease. Replacement of diseased cells with healthy and functional cells could allow repair and restoration of organ function. This is particularly relevant for organs that execute highly-complex physiological tasks, such as the endocrine pancreas, which maintains glucose homeostasis. However, cell therapy based on the use of allogeneic primary adult cells or progenitor/stem cells faces several fundamental problems. In addition to the need to overcome allograft rejection, optimal function of the transplanted cells may be achieved only if they are embedded in a surrogate extracellular matrix that creates a three-dimensional tissue structure mimicking that of the normal tissue. Cell microencapsulation in artificial membranes made of highly-purified and biocompatible biopolymers can provide immunoprotection and preserve cell viability by allowing passage of oxygen and nutrients across the membrane and blocking humoral or cellular components of the host immune system. The microencapsulated cells are embedded in a three-dimensional configuration that mimics their original site and enhances their function. This chapter reviews the latest advances and applications of this technology, as well as its future prospects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Babensee JE, Sefton MV (2000) Viability of HEMA-MMA microencapsulated model hepatoma cells in rats and the host response. Tissue Eng 6: 165–182.

    Article  CAS  PubMed  Google Scholar 

  • Baruch L, Machluf M (2006) Alginate-chitosan complex coacervation for cell encapsulation: effect on mechanical properties and on long-term viability. Biopolymers 82: 570–579.

    Article  CAS  PubMed  Google Scholar 

  • Basta G, Sarchielli P, Luca G, et al. (2004) Optimized parameters for microencapsulation of pancreatic islet cells: an in vitro study clueing on islet graft immunoprotection in type 1 diabetes mellitus. Transpl Immunol 13: 289–296.

    Article  CAS  PubMed  Google Scholar 

  • Brunetti P, Basta G, Falorni A, et al. (1991) Immunoprotection of pancreatic islet grafts within artificial microcapsules. Int J Artif Organs 14: 789.

    CAS  PubMed  Google Scholar 

  • Calafiore R (1992) Transplantation of microencapsulated pancreatic islets contained in a vascular prosthesis: preliminary results. ASAIOJ 38(1): 34–37.

    Article  CAS  PubMed  Google Scholar 

  • Calafiore R, Basta G (2007) Artificial pancreas to treat type 1 diabetes mellitus. Methods Mol Med 140: 197–236.

    Article  CAS  PubMed  Google Scholar 

  • Calafiore R, Basta G, Osticioli L, et al. (1996) Coherent microcapsules for pancreatic islet transplantation: a new approach for bioartificial pancreas. Transpl Proc 28: 812–813.

    CAS  Google Scholar 

  • Calafiore R, Basta G, Luca G, et al. (1998) Transplantation of allogeneic/xenogeneic pancreatic islet containing coherent microcapsules in adult pigs. Transpl Proc 30: 482.

    Article  CAS  Google Scholar 

  • Calafiore R, Basta G, Luca G, et al. (2006) Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Artificial pancreas to treat type 1 diabetes mellitus. Diabetes Care 29: 137–138.

    Article  PubMed  Google Scholar 

  • Colton CK (1995) Implantable biohybrid artificial organ. Cell Trans 4: 415–436.

    Article  CAS  Google Scholar 

  • Darrabie MD, Kendall WF Jr, Opara EC (2005) Characteristics of poly-L-ornithine-coated alginate microcapsules. Biomaterials 26: 6846–6852.

    Article  CAS  PubMed  Google Scholar 

  • De Castro, Orive G, Hernandez RM, et al. (2005) Comparative study of microcapsules elaborated with three polycations (PLL, PDL, PLO) for cell immobilization. J Microencapsul 22: 303–315.

    Article  CAS  Google Scholar 

  • de Vos P, Wolters GH, van Schilfgaarde R (1994) Possible relationship between fibrotic overgrowth of alginate-polylysine-alginate microencapsulated pancreatic islets and the microcapsule integrity. Transpl Proc 26: 782–783.

    Google Scholar 

  • de Vos P, Hillebrands JL, De Haan BJ, et al. (1997) Efficacy of a prevascularized expanded polytetrafluoroethylene solid support system as a transplantation site for pancreatic islets. Transplantation 63: 824–830.

    Article  PubMed  Google Scholar 

  • de Vos P, Andersson A, Tam SK, et al. (2006) Advances and barriers in mammalian cell encapsulation for treatment of diabetes. Immunol Endocr Metabol Agents Med Chem 6: 139–153.

    Article  Google Scholar 

  • de Vos P, Bucko M, Gemeiner P, et al. (2009) Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials 30: 2559–2570.

    Article  PubMed  CAS  Google Scholar 

  • Desai TA, Chu WH, Rasi G, et al. (1999) Microfabricated biocapsules provide short-term immunoisolation of insulinoma xenografts. Biomed Microdevices 1: 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Dusseault J, Tam SK, Ménard M, et al. (2006) Evaluation of alginate purification methods: effects on polyphenol, endotoxin, and protein contamination. J Biomed Mater Res A 76: 243–251.

    PubMed  Google Scholar 

  • Elbert DL, Hubbel JA (2001) Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules 2: 430–441.

    Article  CAS  PubMed  Google Scholar 

  • Elliott RB, Escobar L, Garkavenko O, et al. (2000) No evidence of infection with porcine endogenous retrovirus in recipients of encapsulated porcine islet xenografts. Cell Transplant 9: 895–901.

    CAS  PubMed  Google Scholar 

  • Elliott RB, Escobar L, Tan PL, et al. (2005) Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cynomolgus primates. Transpl Proc 8: 3505–3508.

    Article  CAS  Google Scholar 

  • Elliott RB, Escobar L, Tan PL, et al. (2007) Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation 14: 157–161.

    Article  PubMed  Google Scholar 

  • Emerich DF, Thanos CG, Goddard M, et al. (2006) Extensive neuroprotection by choroid plexus transplants in excitotoxin lesioned monkeys. Neurobiol Dis 23: 471–480.

    Article  PubMed  Google Scholar 

  • Fan MY, Lum ZP, Fu XW, et al. (1990) Reversal of diabetes in BB rats by transplantation of encapsulated pancreatic islets. Diabetes 39: 519–522.

    Article  CAS  PubMed  Google Scholar 

  • Fishman JA, Patience C (2004) Xenotransplantation: infectious risk revisited. Am J Transplant 9: 1383–1390.

    Article  Google Scholar 

  • Grewal IS, Flavell RA (1998) CD40 and CD154 in cell-mediated immunity. Ann Rev Immunol 16: 111–135.

    Article  CAS  Google Scholar 

  • Iwata H, Ikada Y (1999) Agarose. In: Kuhtreiber WM, Lanza RP, Chick WL (eds) Cell Encapsulation Technology and Therapeutics. Birkhauser: Boston.

    Google Scholar 

  • Iwata H, Amemiya H, Matsuda T, et al. (1989) Evaluation of microencapsulated islets in agarose gel as bioartificial pancreas by studies of hormone secretion in culture and by xenotransplantation. Diabetes 38: 224–225.

    PubMed  Google Scholar 

  • Kim SK, Choi J, Balmaceda EA, et al. (1999) Chitosan. In: Kuhtreiber WM, Lanza RP, Chick WL (eds) Cell Encapsulation Technology and Therapeutics. Birkhauser: Boston.

    Google Scholar 

  • Kin T, O‘Neil JJ, Pawlick R, et al. (2008) The use of an approved biodegradable polymer scaffold as a solid support system for improvement of islet engraftment. Artif Organs 32: 990–993.

    Article  PubMed  Google Scholar 

  • Kobayashi T, Aomatsu Y, Iwata H, et al. (2006) Survival of microencapsulated islets at 400 days posttransplantation in the omental pouch of NOD mice. Cell Transplant 15: 359–365.

    Article  PubMed  Google Scholar 

  • Lacy PE, Hegre OD, Gerasimidi-Vazeou A, et al. (1991) Subcutaneous xenografts of rat islets in acrylic copolymer capsules maintain normoglycemia in diabetic mice. Science 254: 1782–1784.

    Article  CAS  PubMed  Google Scholar 

  • Lanza RP, Borland KM, Staruk JE, et al. (1992) Transplantation of encapsulated canine islets into spontaneously diabetic BB/Wor rats without immunosuppression. Endocrinology 131: 637–642.

    Article  CAS  PubMed  Google Scholar 

  • Lanza RP, Beyer AM, Staruk JE, et al. (1993) Biohybrid artificial pancreas: long-term function of discordant islet xenografts in streptozotocin-diabetic rats. Transplantation 56: 1067–1072.

    Article  CAS  PubMed  Google Scholar 

  • Lanza RP, Ecker DM, Kuhtreiber WM, et al. (1999) Transplantation of islets using microencapsulation: studies in diabetic rodents and dogs. J Mol Med 77: 206–210.

    Article  CAS  PubMed  Google Scholar 

  • Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210: 908–910.

    Article  CAS  PubMed  Google Scholar 

  • Loudovaris T, Jacobs S, Young S, et al. (1999) Correction of diabetic NOD mice with insulinomas implanted within Baxter immunoisolation devices. J Mol Med 77: 219–222.

    Article  CAS  PubMed  Google Scholar 

  • Luca G, Nastruzzi C, Basta G, et al. (2000) Effects of anti-oxidizing vitamins on in vitro cultured porcine neonatal pancreatic islet cells. Diabetes Nutr Metab 6: 301–307.

    Google Scholar 

  • Luca G, Nastruzzi C, Calvitti M, et al. (2005) Accelerated functional maturation of isolated neonatal porcine cell clusters: in vitro and in vivo results in NOD mice. Cell Transplant 14: 249–261.

    Article  PubMed  Google Scholar 

  • Lum ZP, Tai IT, Krestow M, et al. (1991) Prolonged reversal of diabetic state in NOD mice by xenografts of microencapsulated rat islets. Diabetes 40: 1511–1516.

    Article  CAS  PubMed  Google Scholar 

  • Maki T, Otsu I, O‘Neil JJ, et al. (1996) Treatment of diabetes by xenogeneic islets without immunosuppression: use of a vascularized bioartificial pancreas. Diabetes 45: 342–347.

    Article  CAS  PubMed  Google Scholar 

  • Marsich E, Borgogna M, Donati I, et al. (2008) Alginate/lactose-modified chitosan hydrogels: a bioactive biomaterial for chondrocyte encapsulation. J Biomed Mater Res A 84: 364–376.

    PubMed  Google Scholar 

  • Morch A, Donati I, Strand BL, et al. (2007) Molecular engineering as an approach to design new functional properties of alginate. Biomacromolecules 8: 2809–2814.

    Article  CAS  PubMed  Google Scholar 

  • Murua A, Portero A, Orive G, et al. (2008) Cell microencapsulation technology: towards clinical application. J Controlled Release 132: 76–83.

    Article  CAS  Google Scholar 

  • Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32: 762–798.

    Article  CAS  Google Scholar 

  • Orive G, Hernández RM, Gascón AR, et al. (2003) Cell encapsulation: promise and progress. Nat Med 9: 104–107.

    Article  CAS  PubMed  Google Scholar 

  • Pakhomov O, Martignat L, Honiger J, et al. (2005) AN69 hollow fiber membrane will reduce but not abolish the risk of transmission of porcine endogenous retroviruses. Cell Transplant 10: 749–756.

    Article  Google Scholar 

  • Patience C, Takeuchi Y, Weiss RA (1997) Infection of human cells by an endogenous retrovirus of pigs. Nat Med 3: 282–286.

    Article  CAS  PubMed  Google Scholar 

  • Petruzzo P, Pibiri L, De Giudici MA, et al. (1991) Xenotransplantation of microencapsulated pancreatic islets contained in a vascular prosthesis: preliminary results. Transpl Int 4: 200–204.

    CAS  PubMed  Google Scholar 

  • Ricci M, Blasi P, Giovagnoli S, et al. (2005) Ketoprofen controlled release from composite microcapsules for cell encapsulation: effect on post-transplant acute inflammation. J Control Release 3: 395–407.

    Article  CAS  Google Scholar 

  • Sakai S, Mu C, Kawabata K, et al. (2006) Biocompatibility of subsieve-size capsules versus conventional-size microcapsules. J Biomed Mater Res 78: 394–398.

    Article  CAS  Google Scholar 

  • Sakai S, Hashimoto I, Kawakami K (2007) Agarose-gelatin conjugate for adherent cell-enclosing capsules. Biotechnol Lett 29: 731–735.

    Article  CAS  PubMed  Google Scholar 

  • Sawhney S (1999) Poly(ethylene glycol). In: Kuhtreiber WM, Lanza RP, Chick WL (eds) Cell Encapsulation Technology and Therapeutics. Birkhauser: Boston.

    Google Scholar 

  • Sawhney A, Hubbell JA (1992) Poly(ethylene oxide)-graft-poly(l-lysine) copolymers to enhance the biocompatibility of poly(l-lysine)-alginate microcapsule membrane. Biomaterials 13: 863–870.

    Article  CAS  PubMed  Google Scholar 

  • Sawhney A, Pathak CP, Hubbell JA (1994) Modification of Langerhans islet surfaces with immunoprotective poly(ethylene glycol) coatings. Biotechnol Bioeng 44: 383–386.

    Article  CAS  PubMed  Google Scholar 

  • Sefton MV, Stevenson WTK (1993) Microencapsulation of live animal cells using polyacrylates. Adv Polymer Sci 107: 145.

    Google Scholar 

  • Soon-Shiong P, Heintz RE, Merideth N, et al. (1994) Insulin-independence in a type I diabetic patient after encapsulated islet transplantation. Lancet 343: 950–951.

    Article  CAS  PubMed  Google Scholar 

  • Strand BL, Gåserød O, Kulseng B, et al. (2002) Alginate-polylysine-alginate microcapsules: effect of size reduction on capsule properties. J Microencapsul 9: 615–630.

    Article  CAS  Google Scholar 

  • Sun X, Ma X, Zhou D, et al. (1996) Normalization of diabetes in spontaneously diabetic cynomologous monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest 98: 1417–1422.

    Article  CAS  PubMed  Google Scholar 

  • Tessmar JK, Göpferich AM (2007) Customized PEG-derived copolymers for tissue-engineering applications. Macromol Biosci 5: 23–39.

    Article  CAS  Google Scholar 

  • Thanos CG, Calafiore R, Basta G, et al. (2007) Formulating the alginate-polyornithine biocapsule for prolonged stability: evaluation of composition and manufacturing technique. J Biomed Mater Res A 83: 216–224.

    CAS  PubMed  Google Scholar 

  • Vallbacka JJ, Sefton MV (2007) Vascularization and improved in vivo survival of VEGF-secreting cells microencapsulated in HEMA-MMA. Tissue Eng 13: 2259–2269.

    Article  CAS  PubMed  Google Scholar 

  • Weber CJ, Safley S, Hagler M, et al. (1999) Evaluation of graft-host response for various tissue resources and animal models. In: Hunkeler D, Prokop A, Cherrington A et al. (eds) Bioartificial Organs II, Technology, Medicine & Materials. Ann NY Acad Sci 875: 233–254.

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Avgoustiniatos ES, Swette L, et al. (1999) In situ electrochemical oxygen generation with an immunoisolation device. In: Hunkeler D, Prokop A, Cherrington A et al. (eds) Bioartificial Organs II, Technology, Medicine & Materials. Ann NY Acad Sci 875: 105–125.

    Article  CAS  PubMed  Google Scholar 

  • Yasuhara T, Date I (2007) Intracerebral transplantation of genetically engineered cells for Parkinson’s disease: toward clinical application. Cell Transplant 16: 125–132.

    PubMed  Google Scholar 

Download references

Acknowledgments

Technical assistance of Dr. Pia Montanucci is gratefully acknowledged. This work has been supported by the Consorzio Interuniversitario per I Trapianti d’Organo, Rome, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Calafiore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Calafiore, R., Basta, G. (2010). Immunoisolation in Cell Transplantation. In: Efrat, S. (eds) Stem Cell Therapy for Diabetes. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-60761-366-4_12

Download citation

Publish with us

Policies and ethics