Skip to main content

The Interaction Between Genetic Variation and Exercise and Physical Activity in the Determination of Body Composition and Obesity Status

  • Chapter
  • First Online:

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Obesity, currently affecting more than one third of all adults in the United States, is a complex disease with a multifactorial etiology involving genetic and environmental factors. Public health prevention programs designed to reduce the risk and occurrence of obesity and overweight commonly focuses on modifiable environments and behaviors such as diet and physical activity with varied results among individuals. This heterogeneity in response to body weight interventions is at least in part of genetic origin. While it is widely accepted, genetic variation plays a substantial role in the determination of body composition, fat topography, and obesity outcomes, genetic factors can also affect an individual’s response to changes in environments such as nutrition and physical activity. The present chapter examines the complex relationships between physical activity/exercise behaviors and genetic variation in genes related to body mass and composition in the determination of body fatness and obesity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mokdad AH, Marks JS, Stroup DF, Gerberding JL. Actual causes of death in the united states, 2000. JAMA. 2004;291(10):1238–45.

    Article  PubMed  Google Scholar 

  2. Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM. Prevalence of overweight and obesity in the united states, 1999–2004. JAMA. 2006;295(13):1549–55.

    Article  PubMed  CAS  Google Scholar 

  3. Adams KF, Schatzkin A, Harris TB, Kipnis V, Mouw T, Ballard-Barbash R, et al. Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N Engl J Med. 2006;355(8):763–78.

    Article  PubMed  CAS  Google Scholar 

  4. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38.

    Article  PubMed  Google Scholar 

  5. WHO Consultation on Obesity: preventing and managing the global epidemic. report of a WHO consultation on Obesity. World Health Organ Tech Rep Ser. 2000;894:i–xii, 1–253.

    Google Scholar 

  6. Carey VJ, Walters EE, Colditz GA, Solomon CG, Willett WC, Rosner BA, et al. Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. the nurses’ health study. Am J Epidemiol. 1997;145(7):614–9.

    PubMed  CAS  Google Scholar 

  7. Folsom AR, Prineas RJ, Kaye SA, Munger RG. Incidence of hypertension and stroke in relation to body fat distribution and other risk factors in older women. Stroke. 1990;21(5):701–6.

    Article  PubMed  CAS  Google Scholar 

  8. Despres JP, Moorjani S, Lupien PJ, Tremblay A, Nadeau A, Bouchard C. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis. 1990;10(4):497–511.

    Article  PubMed  CAS  Google Scholar 

  9. Finkelstein EA, Trogdon JG, Cohen JW, Dietz W. Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Aff (Millwood). 2009;28(5):w822–31.

    Article  Google Scholar 

  10. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126–31.

    PubMed  CAS  Google Scholar 

  11. Thompson WR, Gordon NF, Pescatello LS, American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2009.

    Google Scholar 

  12. Di Pietro L, Dziura J, Blair SN. Estimated change in physical activity level (PAL) and prediction of 5-year weight change in men: the aerobics center longitudinal study. Int J Obes Relat Metab Disord. 2004;28(12):1541–7.

    Article  PubMed  Google Scholar 

  13. Donnelly JE, Hill JO, Jacobsen DJ, Potteiger J, Sullivan DK, Johnson SL, et al. Effects of a 16-month randomized controlled exercise trial on body weight and composition in young, overweight men and women: The midwest exercise trial. Arch Intern Med. 2003;163(11):1343–50.

    Article  PubMed  Google Scholar 

  14. Schmitz KH, Jacobs Jr DR, Leon AS, Schreiner PJ, Sternfeld B. Physical activity and body weight: associations over ten years in the CARDIA study. Coronary artery risk development in young adults. Int J Obes Relat Metab Disord. 2000;24(11):1475–87.

    Article  PubMed  CAS  Google Scholar 

  15. Haapanen N, Miilunpalo S, Pasanen M, Oja P, Vuori I. Association between leisure time physical activity and 10-year body mass change among working-aged men and women. Int J Obes Relat Metab Disord. 1997;21(4):288–96.

    Article  PubMed  CAS  Google Scholar 

  16. Williamson DF, Madans J, Anda RF, Kleinman JC, Kahn HS, Byers T. Recreational physical activity and ten-year weight change in a US national cohort. Int J Obes Relat Metab Disord. 1993;17(5):279–86.

    PubMed  CAS  Google Scholar 

  17. Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK. American College of Sports Medicine. American college of sports medicine position stand. appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41(2):459–71.

    Article  PubMed  Google Scholar 

  18. Rice T, Borecki IB, Bouchard C, Rao DC. Segregation analysis of body mass index in an unselected French-Canadian sample: the Quebec family study. Obes Res. 1993;1(4):288–94.

    PubMed  CAS  Google Scholar 

  19. Comuzzie AG, Blangero J, Mahaney MC, Mitchell BD, Hixson JE, Samollow PB, et al. Major gene with sex-specific effects influences fat mass in mexican americans. Genet Epidemiol. 1995;12(5):475–88.

    Article  PubMed  CAS  Google Scholar 

  20. Bouchard C, Rice T, Lemieux S, Despres JP, Perusse L, Rao DC. Major gene for abdominal visceral fat area in the Quebec family study. Int J Obes Relat Metab Disord. 1996;20(5):420–7.

    PubMed  CAS  Google Scholar 

  21. Maes HH, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human adiposity. Behav Genet. 1997;27(4):325–51.

    Article  PubMed  CAS  Google Scholar 

  22. Borjeson M. The aetiology of obesity in children. A study of 101 twin pairs. Acta Paediatr Scand. 1976;65(3):279–87.

    Article  PubMed  CAS  Google Scholar 

  23. Stunkard AJ, Foch TT, Hrubec Z. A twin study of human obesity. JAMA. 1986;256(1):51–4.

    Article  PubMed  CAS  Google Scholar 

  24. Sorensen TI, Holst C, Stunkard AJ, Skovgaard LT. Correlations of body mass index of adult adoptees and their biological and adoptive relatives. Int J Obes Relat Metab Disord. 1992;16(3):227–36.

    PubMed  CAS  Google Scholar 

  25. MacLean L, Rhode B. Does genetic predisposition influence surgical results of operations for obesity? Obes Surg. 1996;6(2):132–7.

    Article  PubMed  Google Scholar 

  26. Adams TD, Hunt SC, Mason LA, Ramirez ME, Fisher AG, Williams RR. Familial aggregation of morbid obesity. Obes Res. 1993;1(4):261–70.

    PubMed  CAS  Google Scholar 

  27. Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, et al. The human obesity gene map: The 2005 update. Obesity (Silver Spring). 2006;14(4):529–644.

    Article  Google Scholar 

  28. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.

    Article  PubMed  CAS  Google Scholar 

  29. Chen G, Koyama K, Yuan X, Lee Y, Zhou YT, O’Doherty R, et al. Disappearance of body fat in normal rats induced by adenovirus-mediated leptin gene therapy. Proc Natl Acad Sci U S A. 1996;93(25):14795–9.

    Article  PubMed  CAS  Google Scholar 

  30. Cohen B, Novick D, Rubinstein M. Modulation of insulin activities by leptin. Science. 1996;274(5290):1185–8.

    Article  PubMed  CAS  Google Scholar 

  31. Collins S, Kuhn CM, Petro AE, Swick AG, Chrunyk BA, Surwit RS. Role of leptin in fat regulation. Nature. 1996;380(6576):677.

    Article  PubMed  CAS  Google Scholar 

  32. Muoio DM, Dohm GL, Fiedorek Jr FT, Tapscott EB, Coleman RA. Leptin directly alters lipid partitioning in skeletal muscle. Diabetes. 1997;46(8):1360–3.

    Article  PubMed  CAS  Google Scholar 

  33. Israel D, Chua Jr S. Leptin receptor modulation of adiposity and fertility. Trends Endocrinol Metab. 2010;21(1):10–6.

    Article  PubMed  CAS  Google Scholar 

  34. Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. Leptin enters the brain by a saturable system independent of insulin. Peptides. 1996;17(2):305–11.

    Article  PubMed  CAS  Google Scholar 

  35. Elmquist JK. Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Int J Obes Relat Metab Disord. 2001;25 Suppl 5:S78–82.

    Article  PubMed  CAS  Google Scholar 

  36. Zamorano PL, Mahesh VB, De Sevilla LM, Chorich LP, Bhat GK, Brann DW. Expression and localization of the leptin receptor in endocrine and neuroendocrine tissues of the rat. Neuroendocrinology. 1997;65(3):223–8.

    Article  PubMed  CAS  Google Scholar 

  37. Kelley AE, Berridge KC. The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci. 2002;22(9):3306–11.

    PubMed  CAS  Google Scholar 

  38. Kelley AE, Baldo BA, Pratt WE, Will MJ. Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav. 2005;86(5):773–95.

    Article  PubMed  CAS  Google Scholar 

  39. Vaisse C, Clement K, Durand E, Hercberg S, Guy-Grand B, Froguel P. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest. 2000;106(2):253–62.

    Article  PubMed  CAS  Google Scholar 

  40. Farooqi IS, Yeo GS, Keogh JM, Aminian S, Jebb SA, Butler G, et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest. 2000;106(2):271–9.

    Article  PubMed  CAS  Google Scholar 

  41. Hinney A, Schmidt A, Nottebom K, Heibult O, Becker I, Ziegler A, et al. Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J Clin Endocrinol Metab. 1999;84(4):1483–6.

    Article  PubMed  CAS  Google Scholar 

  42. Vaisse C, Clement K, Guy-Grand B, Froguel P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet. 1998;20(2):113–4.

    Article  PubMed  CAS  Google Scholar 

  43. Yeo GS, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG, O’Rahilly S. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet. 1998;20(2):111–2.

    Article  PubMed  CAS  Google Scholar 

  44. O’Rahilly S, Gray H, Humphreys PJ, Krook A, Polonsky KS, White A, et al. Brief report: Impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function. N Engl J Med. 1995;333(21):1386–90.

    Article  PubMed  Google Scholar 

  45. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1998;19(2):155–7.

    Article  PubMed  CAS  Google Scholar 

  46. Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998;392(6674):398–401.

    Article  PubMed  CAS  Google Scholar 

  47. Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet. 1998;18(3):213–5.

    Article  PubMed  CAS  Google Scholar 

  48. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature. 1997;387(6636):903–8.

    Article  PubMed  CAS  Google Scholar 

  49. Govaerts C, Srinivasan S, Shapiro A, Zhang S, Picard F, Clement K, et al. Obesity-associated mutations in the melanocortin 4 receptor provide novel insights into its function. Peptides. 2005;26(10):1909–19.

    Article  PubMed  CAS  Google Scholar 

  50. Bouchard C. The biological predisposition to obesity: beyond the thrifty genotype scenario. Int J Obes (Lond). 2007;31(9):1337–9.

    Article  CAS  Google Scholar 

  51. Katsanos CS. Prescribing aerobic exercise for the regulation of postprandial lipid metabolism: current research and recommendations. Sports Med. 2006;36(7):547–60.

    Article  PubMed  Google Scholar 

  52. Tunstall RJ, Mehan KA, Wadley GD, Collier GR, Bonen A, Hargreaves M, Cameron-Smith D. Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endocrinol Metab. 2002;283(1):E66–72.

    PubMed  CAS  Google Scholar 

  53. Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol. 2003;546(Pt 3):851–8.

    Article  PubMed  CAS  Google Scholar 

  54. Yan ZC, Liu DY, Zhang LL, Shen CY, Ma QL, Cao TB, et al. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta. Biochem Biophys Res Commun. 2007;354(2):427–33.

    Article  PubMed  CAS  Google Scholar 

  55. Keller P, Keller C, Steensberg A, Robinson LE, Pedersen BK. Leptin gene expression and systemic levels in healthy men: effect of exercise, carbohydrate, interleukin-6, and epinephrine. J Appl Physiol. 2005;98(5):1805–12.

    Article  PubMed  CAS  Google Scholar 

  56. Zeng Q, Fu L, Takekoshi K, Kawakami Y, Isobe K. Effects of short-term exercise on adiponectin and adiponectin receptor levels in rats. J Atheroscler Thromb. 2007;14(5):261–5.

    Article  PubMed  CAS  Google Scholar 

  57. Zeng Q, Fu L, Takekoshi K, Kawakami Y, Isobe K. Effects of exercise on adiponectin and adiponectin receptor levels in rats. Life Sci. 2007;80(5):454–9.

    Article  PubMed  CAS  Google Scholar 

  58. Berggren JR, Hulver MW, Houmard JA. Fat as an endocrine organ: influence of exercise. J Appl Physiol. 2005;99(2):757–64.

    Article  PubMed  CAS  Google Scholar 

  59. Rankinen T, Perusse L, Rauramaa R, Rivera MA, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes. Med Sci Sports Exerc. 2001;33(6):855–67.

    Article  PubMed  CAS  Google Scholar 

  60. Rankinen T, Perusse L, Rauramaa R, Rivera MA, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2001 update. Med Sci Sports Exerc. 2002;34(8):1219–33.

    Article  PubMed  CAS  Google Scholar 

  61. Perusse L, Rankinen T, Rauramaa R, Rivera MA, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2002 update. Med Sci Sports Exerc. 2003;35(8):1248–64.

    Article  PubMed  CAS  Google Scholar 

  62. Rankinen T, Perusse L, Rauramaa R, Rivera MA, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2003 update. Med Sci Sports Exerc. 2004;36(9):1451–69.

    Article  PubMed  Google Scholar 

  63. Wolfarth B, Bray MS, Hagberg JM, Perusse L, Rauramaa R, Rivera MA, et al. The human gene map for performance and health-related fitness phenotypes: The 2004 update. Med Sci Sports Exerc. 2005;37(6):881–903.

    PubMed  CAS  Google Scholar 

  64. Rankinen T, Bray MS, Hagberg JM, Perusse L, Roth SM, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: The 2005 update. Med Sci Sports Exerc. 2006;38(11):1863–88.

    Article  PubMed  Google Scholar 

  65. Bray MS, Hagberg JM, Perusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: The 2006-2007 update. Med Sci Sports Exerc. 2009;41(1):35–73.

    Article  PubMed  CAS  Google Scholar 

  66. Anderson LA, McTernan PG, Barnett AH, Kumar S. The effects of androgens and estrogens on preadipocyte proliferation in human adipose tissue: Influence of gender and site. J Clin Endocrinol Metab. 2001;86(10):5045–51.

    Article  PubMed  CAS  Google Scholar 

  67. Rankinen T, Rice T, Teran-Garcia M, Rao DC, Bouchard C. FTO genotype is associated with exercise training-induced changes in body composition. Obesity (Silver Spring). 2010;18(2):322–6.

    Article  Google Scholar 

  68. Mitchell JA, Church TS, Rankinen T, Earnest CP, Sui X, Blair SN. FTO genotype and the weight loss benefits of moderate intensity exercise. Obesity (Silver Spring). 2010;18(3):641–3.

    Article  Google Scholar 

  69. Vimaleswaran KS, Li S, Zhao JH, Luan J, Bingham SA, Khaw KT, et al. Physical activity attenuates the body mass index-increasing influence of genetic variation in the FTO gene. Am J Clin Nutr. 2009;90(2):425–8.

    Article  PubMed  CAS  Google Scholar 

  70. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94.

    Article  PubMed  CAS  Google Scholar 

  71. Price RA, Li WD, Zhao H. FTO gene SNPs associated with extreme obesity in cases, controls and extremely discordant sister pairs. BMC Med Genet. 2008;9:4.

    Article  PubMed  CAS  Google Scholar 

  72. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007;3(7):e115.

    Article  PubMed  CAS  Google Scholar 

  73. Wardle J, Carnell S, Haworth CM, Farooqi IS, O’Rahilly S, Plomin R. Obesity associated genetic variation in FTO is associated with diminished satiety. J Clin Endocrinol Metab. 2008;93(9):3640–3.

    Article  PubMed  CAS  Google Scholar 

  74. Fredriksson R, Hagglund M, Olszewski PK, Stephansson O, Jacobsson JA, Olszewska AM, et al. The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology. 2008;149(5):2062–71.

    Article  PubMed  CAS  Google Scholar 

  75. Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, Hewitson KS, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007;318(5855):1469–72.

    Article  PubMed  CAS  Google Scholar 

  76. Stratigopoulos G, Padilla SL, LeDuc CA, Watson E, Hattersley AT, McCarthy MI, et al. Regulation of Fto/Ftm gene expression in mice and humans. Am J Physiol Regul Integr Comp Physiol. 2008;294(4):R1185–96.

    Article  PubMed  CAS  Google Scholar 

  77. Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, Bruning JC, Ruther U. Inactivation of the fto gene protects from obesity. Nature. 2009;458(7240):894–8.

    Article  PubMed  CAS  Google Scholar 

  78. Church C, Lee S, Bagg EA, McTaggart JS, Deacon R, Gerken T, et al. A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene. PLoS Genet. 2009;5(8):e1000599.

    Article  PubMed  CAS  Google Scholar 

  79. Prins JB, O’Rahilly S. Regulation of adipose cell number in man. Clin Sci (Lond). 1997;92(1):3–11.

    CAS  Google Scholar 

  80. Kyle UG, Gremion G, Genton L, Slosman DO, Golay A, Pichard C. Physical activity and fat-free and fat mass by bioelectrical impedance in 3853 adults. Med Sci Sports Exerc. 2001;33(4):576–84.

    PubMed  CAS  Google Scholar 

  81. Darlington GJ, Ross SE, MacDougald OA. The role of C/EBP genes in adipocyte differentiation. J Biol Chem. 1998;273(46):30057–60.

    Article  PubMed  CAS  Google Scholar 

  82. Wu Z, Puigserver P, Spiegelman BM. Transcriptional activation of adipogenesis. Curr Opin Cell Biol. 1999;11(6):689–94.

    Article  PubMed  CAS  Google Scholar 

  83. Rangwala SM, Lazar MA. Transcriptional control of adipogenesis. Annu Rev Nutr. 2000;20:535–59.

    Article  PubMed  CAS  Google Scholar 

  84. Lindi V, Sivenius K, Niskanen L, Laakso M, Uusitupa MI. Effect of the Pro12Ala polymorphism of the PPAR-gamma2 gene on long-term weight change in finnish non-diabetic subjects. Diabetologia. 2001;44(7):925–6.

    Article  PubMed  CAS  Google Scholar 

  85. Lindi VI, Uusitupa MI, Lindstrom J, Louheranta A, Eriksson JG, Valle TT, et al. Association of the Pro12Ala polymorphism in the PPAR-gamma2 gene with 3-year incidence of type 2 diabetes and body weight change in the finnish diabetes prevention study. Diabetes. 2002;51(8):2581–6.

    Article  PubMed  CAS  Google Scholar 

  86. Nicklas BJ, van Rossum EF, Berman DM, Ryan AS, Dennis KE, Shuldiner AR. Genetic variation in the peroxisome proliferator-activated receptor-gamma2 gene (Pro12Ala) affects metabolic responses to weight loss and subsequent weight regain. Diabetes. 2001;50(9):2172–6.

    Article  PubMed  CAS  Google Scholar 

  87. Ostergard T, Ek J, Hamid Y, Saltin B, Pedersen OB, Hansen T, Schmitz O. Influence of the PPAR-gamma2 Pro12Ala and ACE I/D polymorphisms on insulin sensitivity and training effects in healthy offspring of type 2 diabetic subjects. Horm Metab Res. 2005;37(2):99–105.

    Article  PubMed  CAS  Google Scholar 

  88. Liggett SB. Plastic adenylyl cyclase. Am J Respir Cell Mol Biol. 1999;21(5):564–6.

    PubMed  CAS  Google Scholar 

  89. Meirhaeghe A, Helbecque N, Cottel D, Amouyel P. Beta2-adrenoceptor gene polymorphism, body weight, and physical activity. Lancet. 1999;353(9156):896.

    Article  PubMed  CAS  Google Scholar 

  90. Macho-Azcarate T, Calabuig J, Marti A, Martinez JA. A maximal effort trial in obese women carrying the beta2-adrenoceptor Gln27Glu polymorphism. J Physiol Biochem. 2002;58(2):103–8.

    Article  PubMed  CAS  Google Scholar 

  91. Garenc C, Perusse L, Chagnon YC, Rankinen T, Gagnon J, Borecki IB, et al. Effects of beta2-adrenergic receptor gene variants on adiposity: The HERITAGE family study. Obes Res. 2003;11(5):612–8.

    Article  PubMed  CAS  Google Scholar 

  92. Phares DA, Halverstadt AA, Shuldiner AR, Ferrell RE, Douglass LW, Ryan AS, et al. Association between body fat response to exercise training and multilocus ADR genotypes. Obes Res. 2004;12(5):807–15.

    Article  PubMed  CAS  Google Scholar 

  93. Corbalan MS, Marti A, Forga L, Martinez-Gonzalez MA, Martinez JA. The 27Glu polymorphism of the beta2-adrenergic receptor gene interacts with physical activity influencing obesity risk among female subjects. Clin Genet. 2002;61(4):305–7.

    Article  PubMed  CAS  Google Scholar 

  94. Yao L, Delmonico MJ, Roth SM, Hand BD, Johns J, Conway J, et al. Adrenergic receptor genotype influence on midthigh intermuscular fat response to strength training in middle-aged and older adults. J Gerontol A Biol Sci Med Sci. 2007;62(6):658–63.

    PubMed  Google Scholar 

  95. Siffert W, Rosskopf D, Siffert G, Busch S, Moritz A, Erbel R, et al. Association of a human G-protein beta3 subunit variant with hypertension. Nat Genet. 1998;18(1):45–8.

    PubMed  CAS  Google Scholar 

  96. Siffert W, Forster P, Jockel KH, Mvere DA, Brinkmann B, Naber C, et al. Worldwide ethnic distribution of the G protein beta3 subunit 825T allele and its association with obesity in caucasian, chinese, and black african individuals. J Am Soc Nephrol. 1999;10(9):1921–30.

    Article  PubMed  CAS  Google Scholar 

  97. Rankinen T, Rice T, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C. G protein beta 3 polymorphism and hemodynamic and body composition phenotypes in the HERITAGE family study. Physiol Genomics. 2002;8(2):151–7.

    PubMed  CAS  Google Scholar 

  98. Grove ML, Morrison A, Folsom AR, Boerwinkle E, Hoelscher DM, Bray MS. Gene-environment interaction and the GNB3 gene in the atherosclerosis risk in communities study. Int J Obes (Lond). 2007;31(6):919–26.

    Article  CAS  Google Scholar 

  99. Collins S, Surwit RS. The beta-adrenergic receptors and the control of adipose tissue metabolism and thermogenesis. Recent Prog Horm Res. 2001;56:309–28.

    Article  PubMed  CAS  Google Scholar 

  100. Sakane N, Yoshida T, Umekawa T, Kogure A, Takakura Y, Kondo M. Effects of Trp64Arg mutation in the beta 3-adrenergic receptor gene on weight loss, body fat distribution, glycemic control, and insulin resistance in obese type 2 diabetic patients. Diabetes Care. 1997;20(12):1887–90.

    Article  PubMed  CAS  Google Scholar 

  101. Shiwaku K, Nogi A, Anuurad E, Kitajima K, Enkhmaa B, Shimono K, Yamane Y. Difficulty in losing weight by behavioral intervention for women with Trp64Arg polymorphism of the beta3-adrenergic receptor gene. Int J Obes Relat Metab Disord. 2003;27(9):1028–36.

    Article  PubMed  CAS  Google Scholar 

  102. Kahara T, Takamura T, Hayakawa T, Nagai Y, Yamaguchi H, Katsuki T, et al. Prediction of exercise-mediated changes in metabolic markers by gene polymorphism. Diabetes Res Clin Pract. 2002;57(2):105–10.

    Article  PubMed  CAS  Google Scholar 

  103. Marti A, Corbalan MS, Martinez-Gonzalez MA, Martinez JA. TRP64ARG polymorphism of the beta 3-adrenergic receptor gene and obesity risk: effect modification by a sedentary lifestyle. Diabetes Obes Metab. 2002;4(6):428–30.

    Article  PubMed  CAS  Google Scholar 

  104. Rask-Andersen M, Olszewski PK, Levine AS, Schioth HB. Molecular mechanisms underlying anorexia nervosa: focus on human gene association studies and systems controlling food intake. Brain Res Rev. 2010;62(2):147–64.

    Article  PubMed  CAS  Google Scholar 

  105. Tworoger SS, Chubak J, Aiello EJ, Yasui Y, Ulrich CM, Farin FM, et al. The effect of CYP19 and COMT polymorphisms on exercise-induced fat loss in postmenopausal women. Obes Res. 2004;12(6):972–81.

    Article  PubMed  CAS  Google Scholar 

  106. Anderson LA, McTernan PG, Barnett AH, Kumar S. The effects of androgens and estrogens on preadipocyte proliferation in human adipose tissue: influence of gender and site. J Clin Endocrinol Metab. 2001;86(10):5045–51.

    Article  PubMed  CAS  Google Scholar 

  107. Dieudonne MN, Pecquery R, Leneveu MC, Giudicelli Y. Opposite effects of androgens and estrogens on adipogenesis in rat preadipocytes: evidence for sex and site-related specificities and possible involvement of insulin-like growth factor 1 receptor and peroxisome proliferator-activated receptor gamma2. Endocrinology. 2000;141(2):649–56.

    Article  PubMed  CAS  Google Scholar 

  108. Mikolajczyk E, Grzywacz A, Samochowiec J. The association of catechol-O-methyltransferase genotype with the phenotype of women with eating disorders. Brain Res. 2010;1307:142–8.

    Article  PubMed  CAS  Google Scholar 

  109. Frieling H, Romer KD, Wilhelm J, Hillemacher T, Kornhuber J, de Zwaan M, et al. Association of catecholamine-O-methyltransferase and 5-HTTLPR genotype with eating disorder-related behavior and attitudes in females with eating disorders. Psychiatr Genet. 2006;16(5):205–8.

    Article  PubMed  Google Scholar 

  110. Hersrud SL, Stoltenberg SF. Epistatic interaction between COMT and DAT1 genes on eating behavior: a pilot study. Eat Behav. 2009;10(2):131–3.

    Article  PubMed  Google Scholar 

  111. Annerbrink K, Westberg L, Nilsson S, Rosmond R, Holm G, Eriksson E. Catechol O-methyltransferase val158-met polymorphism is associated with abdominal obesity and blood pressure in men. Metabolism. 2008;57(5):708–11.

    Article  PubMed  CAS  Google Scholar 

  112. Kring SI, Werge T, Holst C, Toubro S, Astrup A, Hansen T, et al. Polymorphisms of serotonin receptor 2A and 2C genes and COMT in relation to obesity and type 2 diabetes. PLoS One. 2009;4(8):e6696.

    Article  PubMed  CAS  Google Scholar 

  113. Wang SS, Morton LM, Bergen AW, Lan EZ, Chatterjee N, Kvale P, et al. Genetic variation in catechol-O-methyltransferase (COMT) and obesity in the prostate, lung, colorectal, and ovarian (PLCO) cancer screening trial. Hum Genet. 2007;122(1):41–9.

    Article  PubMed  CAS  Google Scholar 

  114. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics. 1996;6(3):243–50.

    Article  PubMed  CAS  Google Scholar 

  115. Armellini F, Zamboni M, Bosello O. Hormones and body composition in humans: clinical studies. Int J Obes Relat Metab Disord. 2000;24 Suppl 2:S18–21.

    PubMed  CAS  Google Scholar 

  116. McTernan PG, Anwar A, Eggo MC, Barnett AH, Stewart PM, Kumar S. Gender differences in the regulation of P450 aromatase expression and activity in human adipose tissue. Int J Obes Relat Metab Disord. 2000;24(7):875–81.

    Article  PubMed  CAS  Google Scholar 

  117. Montgomery H, Clarkson P, Barnard M, Bell J, Brynes A, Dollery C, et al. Angiotensin-converting-enzyme gene insertion/deletion polymorphism and response to physical training. Lancet. 1999;353(9152):541–5.

    Article  PubMed  CAS  Google Scholar 

  118. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86(4):1343–6.

    Article  PubMed  CAS  Google Scholar 

  119. Moran CN, Vassilopoulos C, Tsiokanos A, Jamurtas AZ, Bailey ME, Wilson RH, Pitsiladis YP. Effects of interaction between angiotensin I-converting enzyme polymorphisms and lifestyle on adiposity in adolescent greeks. Obes Res. 2005;13(9):1499–504.

    Article  PubMed  CAS  Google Scholar 

  120. Kritchevsky SB, Nicklas BJ, Visser M, Simonsick EM, Newman AB, Harris TB, et al. Angiotensin-converting enzyme insertion/deletion genotype, exercise, and physical decline. JAMA. 2005;294(6):691–8.

    Article  PubMed  CAS  Google Scholar 

  121. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360(15):1518–25.

    Article  PubMed  CAS  Google Scholar 

  122. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–17.

    Article  PubMed  CAS  Google Scholar 

  123. Dulloo AG, Samec S. Uncoupling proteins: their roles in adaptive thermogenesis and substrate metabolism reconsidered. Br J Nutr. 2001;86(2):123–39.

    Article  PubMed  CAS  Google Scholar 

  124. Otabe S, Clement K, Dina C, Pelloux V, Guy-Grand B, Froguel P, Vasseur F. A genetic variation in the 5’ flanking region of the UCP3 gene is associated with body mass index in humans in interaction with physical activity. Diabetologia. 2000;43(2):245–9.

    Article  PubMed  CAS  Google Scholar 

  125. Lanouette CM, Chagnon YC, Rice T, Perusse L, Muzzin P, Giacobino JP, et al. Uncoupling protein 3 gene is associated with body composition changes with training in HERITAGE study. J Appl Physiol. 2002;92(3):1111–8.

    PubMed  CAS  Google Scholar 

  126. Poirier P, Despres JP. Exercise in weight management of obesity. Cardiol Clin. 2001;19(3):459–70.

    Article  PubMed  CAS  Google Scholar 

  127. Martinez-Botas J, Anderson JB, Tessier D, Lapillonne A, Chang BH, Quast MJ, et al. Absence of perilipin results in leanness and reverses obesity in lepr(db/db) mice. Nat Genet. 2000;26(4):474–9.

    Article  PubMed  CAS  Google Scholar 

  128. Kanadys WM, Oleszczuk J. Pathophysiological aspects of adipose tissue development in women. Ginekol Pol. 1999;70(6):456–63.

    PubMed  CAS  Google Scholar 

  129. Garenc C, Perusse L, Bergeron J, Gagnon J, Chagnon YC, Borecki IB, et al. Evidence of LPL gene-exercise interaction for body fat and LPL activity: The HERITAGE family study. J Appl Physiol. 2001;91(3):1334–40.

    PubMed  CAS  Google Scholar 

  130. Reichman SE, Balasekaran G, Roth SM, Ferrell RE. Association of interleukin-15 protein and interleukin-15 receptor genetic variation with resistance exercise training responses. J Appl Physiol. 2004;97(6):2214–9.

    Article  PubMed  CAS  Google Scholar 

  131. Peters WR, MacMurry JP, Walker J, Giese Jr RJ, Comings DE. Phenylethanolamine N-methyltransferase G-148A genetic variant and weight loss in obese women. Obes Res. 2003;11(3):415–9.

    Article  PubMed  CAS  Google Scholar 

  132. Sun G, Gagnon J, Chagnon YC, Perusse L, Despres JP, Leon AS, et al. Association and linkage between an insulin-like growth factor-1 gene polymorphism and fat free mass in the HERITAGE family study. Int J Obes Relat Metab Disord. 1999;23(9):929–35.

    Article  PubMed  CAS  Google Scholar 

  133. Park S, Han T, Son T, Kang HS. PC-1 genotype and IRS response to exercise training. Int J Sports Med. 2008;29(4):294–9.

    Article  PubMed  CAS  Google Scholar 

  134. Pizzuti A, Frittitta L, Argiolas A, Baratta R, Goldfine ID, Bozzali M, et al. A polymorphism (K121Q) of the human glycoprotein PC-1 gene coding region is strongly associated with insulin resistance. Diabetes. 1999;48(9):1881–4.

    Article  PubMed  CAS  Google Scholar 

  135. Matsuoka N, Patki A, Tiwari HK, Allison DB, Johnson SB, Gregersen PK, et al. Association of K121Q polymorphism in ENPP1 (PC-1) with BMI in caucasian and african-american adults. Int J Obes (Lond). 2006;30(2):233–7.

    Article  CAS  Google Scholar 

  136. Meyre D, Bouatia-Naji N, Tounian A, Samson C, Lecoeur C, Vatin V, et al. Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. Nat Genet. 2005;37(8):863–7.

    Article  PubMed  CAS  Google Scholar 

  137. Uthurralt J, Gordish-Dressman H, Bradbury M, Tesi-Rocha C, Devaney J, Harmon B, et al. PPARalpha L162V underlies variation in serum triglycerides and subcutaneous fat volume in young males. BMC Med Genet. 2007;8:55.

    Article  PubMed  CAS  Google Scholar 

  138. Bray MS. Implications of gene-behavior interactions: prevention and intervention for obesity. Obesity (Silver Spring). 2008;16 Suppl 3:S72–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Molly S. Bray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sailors, M.H., Bray, M.S. (2011). The Interaction Between Genetic Variation and Exercise and Physical Activity in the Determination of Body Composition and Obesity Status. In: Pescatello, L., Roth, S. (eds) Exercise Genomics. Molecular and Translational Medicine. Humana Press. https://doi.org/10.1007/978-1-60761-355-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-355-8_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-354-1

  • Online ISBN: 978-1-60761-355-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics