Skip to main content

Paraoxonase 1 Attenuates Human Plaque Atherogenicity: Relevance to the Enzyme Lactonase Activity

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 660))

Abstract

Human atherosclerotic lesions contain a variety of lipids and oxidized lipids, which can induce atherogenic properties such as macrophage oxidation, lipoprotein oxidation and inhibition of cholesterol efflux from macrophages. These atherogenic properties of the plaque’s lipid fraction are associated with the inhibition of paraoxonase 1 (PON1) lactonase activity. In contrast, incubation of PON1 with the plaque’s lipid fraction reduces the lesion’s atherogenic properties by lowering the capacity of the oxidized lipids to induce further oxidation. The mechanism of PON1’s protective action and its endogenous substrate however remain elusive. Modeling studies may characterize PON1’s possible active site, and help envisage the structure of potential endogenous and exogenous lactones as PON1 ligands. Such modeling thus may lead to a better understanding of PON1’s anti-atherogenic mechanism of action.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CVD:

cardiovascular disease

EtAc:

ethyl acetate

HDL:

high density lipoprotein

7-keto-ch:

7-ketocholesterol

LDL:

low density lipoproteins

LE:

lesion extract

LT:

N-linoleoyl tyrosine

LTG:

N-linoleoyl tyrosine 2’-deoxyguanosyl ester

MPM:

mouse peritoneal macrophages

7-OH-ch:

7-hydroxycholesterols

7-OOH-ch:

7-hydroperoxycholesterols

OS:

oxidative-stress

Ox-LDL:

oxidized low density lipoproteins

PON1:

paraoxonase 1

rePON1:

recombinant PON1

TBARS:

thiobarbituric acid-reactive substance

References

  • Ahmed, Z.; Ravandi, A.; Maguire, G. F.; Emili, A.; Draganov, D.; La Du, B. N.; Kuksis, A.; Connelly, P. W. Multiple substrates for paraoxonase-1 during oxidation of phosphatidylcholine by peroxynitrite. Biochem Biophys Res Commun 290 :391–396; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed, Z.; Ravandi, A.; Maguire, G. F.; Emili, A.; Draganov, D.; La Du, B. N.; Kuksis, A.; Connelly, P. W. Apolipoprotein A-I promotes the formation of phosphatidylcholine core aldehydes that are hydrolyzed by paraoxonase (PON-1) during high density lipoprotein oxidation with a peroxynitrite donor. J Biol Chem 276 :24473–24481; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Aviram, M. Review of human studies on oxidative damage and antioxidant protection related to cardiovascular diseases. Free Radic Res 33 (Suppl):S85–S97; 2000.

    CAS  PubMed  Google Scholar 

  • Aviram, M.; Hardak, E.; Vaya, J.; Mahmood, S.; Milo, S.; Hoffman, A.; Billicke, S.; Draganov, D.; Rosenblat, M. Human serum paraoxonases (PON1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions: PON1 esterase and peroxidase-like activities. Circulation 101 :2510–2517; 2000.

    CAS  PubMed  Google Scholar 

  • Aviram, M.; Kaplan, M.; Rosenblat, M.; Fuhrman, B. Dietary antioxidants and paraoxonases against LDL oxidation and atherosclerosis development. Handb Exp Pharmacol 170 :263–300; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Aviram, M.; Maor, I.; Keidar, S.; Hayek, T.; Oiknine, J.; Bar-El, Y.; Adler, Z.; Kertzman, V.; Milo, S. Lesioned low density lipoprotein in atherosclerotic apolipoprotein E-deficient transgenic mice and in humans is oxidized and aggregated. Biochem Biophys Res Commun 216 :501–513; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Aviram, M.; Rosenblat, M.; Bisgaier, C. L.; Newton, R. S.; Primo-Parmo, S. L.; La Du, B. N. Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. J Clin Invest 101:1581–1590; 1998.

    Article  CAS  PubMed  Google Scholar 

  • Billecke, S.; Draganov, D.; Counsell, R.; Stetson, P.; Watson, C.; Hsu, C.; La Du, B. N. Human serum paraoxonase (PON1) isozymes Q and R hydrolyze lactones and cyclic carbonate esters. Drug Metab Dispos 28 :1335–1342; 2000.

    CAS  PubMed  Google Scholar 

  • Bonete, M. J.; Perez-Pomares, F.; Ferrer, J.; Camacho, M. L. NAD-glutamate dehydrogenase from Halobacterium halobium: inhibition and activation by TCA intermediates and amino acids. Biochim Biophys Acta 1289 :14–24; 1996.

    PubMed  Google Scholar 

  • Costa, L. G.; Vitalone, A.; Cole, T. B.; Furlong, C. E. Modulation of paraoxonase (PON1) activity. Biochem Pharmacol 69 :541–550; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Deakin, S. P.; James, R. W. Genetic and environmental factors modulating serum concentrations and activities of the antioxidant enzyme paraoxonase-1. Clin Sci (Lond) 107 :435–447; 2004.

    Article  CAS  Google Scholar 

  • Draganov, D. I.; La Du, B. N. Pharmacogenetics of paraoxonases: a brief review. Naunyn Schmiedebergs Arch Pharmacol 369 :78–88; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Draganov, D. I.; Teiber, J. F.; Speelman, A.; Osawa, Y.; Sunahara, R.; La Du, B. N. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res 46 :1239–1247; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Efrat, M.; Aviram, M. Macrophage paraoxonase 1 (PON1) binding sites. Biochem Biophys Res Commun 376:105–110; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Efrat, M.; Rosenblat, M.; Mahmood, S.; Vaya, J.; Aviram, M. Di-oleoyl phosphatidylcholine (PC-18:1) stimulates paraoxonase 1 (PON1) enzymatic and biological activities: In vitro and in vivo studies. Atherosclerosis 202:461–469; 2008.

    Article  PubMed  Google Scholar 

  • Fuhrman, B.; Judith, O.; Keidar, S.; Ben-Yaish, L.; Kaplan, M.; Aviram, M. Increased uptake of LDL by oxidized macrophages is the result of an initial enhanced LDL receptor activity and of a further progressive oxidation of LDL. Free Radic Biol Med 23 :34–46; 1997.

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman, B.; Oiknine, J.; Aviram, M. Iron induces lipid peroxidation in cultured macrophages, increases their ability to oxidatively modify LDL, and affects their secretory properties. Atherosclerosis 111 :65–78; 1994.

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman, B.; Shiner, M.; Volkova, N.; Aviram, M. Cell-induced copper ion-mediated low density lipoprotein oxidation increases during in vivo monocyte-to-macrophage differentiation. Free Radic Biol Med 37 :259–271; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Gaidukov, L.; Rosenblat, M.; Aviram, M.; Tawfik, D. S. The 192R/Q polymorphs of serum paraoxonase PON1 differ in HDL binding, lipolactonase stimulation, and cholesterol efflux. J Lipid Res 47 :2492–2502; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Gaidukov, L.; Tawfik, D. S. The development of human sera tests for HDL-bound serum PON1 and its lipolactonase activity. J Lipid Res 48 :1637–1646; 2007.

    Article  CAS  PubMed  Google Scholar 

  • [20] Glass, C. K.; Witztum, J. L. Atherosclerosis. the road ahead. Cell 104 :503–516; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Goodsell, D. S.; Morris, G. M.; Olson, A. J. Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 9 :1–5; 1996.

    Article  CAS  PubMed  Google Scholar 

  • Guardiola, F.; Codony, R.; Addis, P. B.; Rafecas, M.; Boatella, J. Biological effects of oxysterols: current status. Food Chem Toxicol 34 :193–211; 1996.

    Article  CAS  PubMed  Google Scholar 

  • Harel, M.; Aharoni, A.; Gaidukov, L.; Brumshtein, B.; Khersonsky, O.; Meged, R.; Dvir, H.; Ravelli, R. B.; McCarthy, A.; Toker, L.; Silman, I.; Sussman, J. L.; Tawfik, D. S. Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat Struct Mol Biol 11 :412–419; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Ibanez, B.; Vilahur, G.; Badimon, J. J. Plaque progression and regression in atherothrombosis. J Thromb Haemost 5(Suppl 1):292–299; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski, H.; Zhang, L.; Bardeguez, A.; Aviv, A. Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis. Circ Res 87 :45–51; 2000.

    CAS  PubMed  Google Scholar 

  • Khan-Merchant, N.; Penumetcha, M.; Meilhac, O.; Parthasarathy, S. Oxidized fatty acids promote atherosclerosis only in the presence of dietary cholesterol in low-density lipoprotein receptor knockout mice. J Nutr 132 :3256–3262; 2002.

    CAS  PubMed  Google Scholar 

  • Khatib, S.; Musa, R.; Vaya, J. An exogenous marker: a novel approach for the characterization of oxidative stress. Bioorg Med Chem 15 :3661–3666; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Khatib, S.; Nerya, O.; Musa, R.; Tamir, S.; Peter, T.; Vaya, J. Enhanced substituted resorcinol hydrophobicity augments tyrosinase inhibition potency. J Med Chem 50 :2676–2681; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Khersonsky, O.; Tawfik, D. S. Structure-reactivity studies of serum paraoxonase PON1 suggest that its native activity is lactonase. Biochemistry 44 :6371–6382; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Khersonsky, O.; Tawfik, D. S. The histidine 115-histidine 134 dyad mediates the lactonase activity of mammalian serum paraoxonases. J Biol Chem 281 :7649–7656; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Kriska, T.; Marathe, G. K.; Schmidt, J. C.; McIntyre, T. M.; Girotti, A. W. Phospholipase action of platelet-activating factor acetylhydrolase, but not paraoxonase-1, on long fatty acyl chain phospholipid hydroperoxides. J Biol Chem 282: 100–108; 2007.

    Article  CAS  PubMed  Google Scholar 

  • La Du, B. N. Genetic Factors Influencing the Metabolism of Foreign Compounds. New York: (international encyclopedia of pharmacology and therapeutics), Pergamon Press; 1992.

    Google Scholar 

  • La Du, B. N.; Aviram, M.; Billecke, S.; Navab, M.; Primo-Parmo, S.; Sorenson, R. C.; Standiford, T. J. On the physiological role(s) of the paraoxonases. Chem Biol Interact 119–120 :379–388; 1999.

    PubMed  Google Scholar 

  • Lusis, A. J. Atherosclerosis. Nature 407 :233–241; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Lyons, M. A.; Brown, A. J. 7-Ketocholesterol. Int J Biochem Cell Biol 31 :369–375; 1999.

    Article  CAS  PubMed  Google Scholar 

  • Mackness, B.; Hunt, R.; Durrington, P. N.; Mackness, M. I. Increased immunolocalization of paraoxonase, clusterin, and apolipoprotein A-I in the human artery wall with the progression of atherosclerosis. Arterioscler Thromb Vasc Biol 17 :1233–1238; 1997.

    CAS  PubMed  Google Scholar 

  • Mackness, B.; Quarck, R.; Verreth, W.; Mackness, M.; Holvoet, P. Human paraoxonase-1 overexpression inhibits atherosclerosis in a mouse model of metabolic syndrome. Arterioscler Thromb Vasc Biol 26 :1545–1550; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Marathe, G. K.; Zimmerman, G. A.; McIntyre, T. M. Platelet-activating factor acetylhydrolase, and not paraoxonase-1, is the oxidized phospholipid hydrolase of high density lipoprotein particles. J Biol Chem 278 :3937–3947; 2003.

    Article  CAS  PubMed  Google Scholar 

  • March, J. Advanced Organic Chemistry. NewYork: Wiley-Interscience; 1985.

    Google Scholar 

  • Murphy, R. C.; Johnson, K. M. Cholesterol, reactive oxygen species, and the formation of biologically active mediators. J Biol Chem 283 :15521–15525; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Navab, M.; Berliner, J. A.; Watson, A. D.; Hama, S. Y.; Territo, M. C.; Lusis, A. J.; Shih, D. M.; Van Lenten, B. J.; Frank, J. S.; Demer, L. L.; Edwards, P. A.; Fogelman, A. M. The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler Thromb Vasc Biol 16 :831–842; 1996.

    CAS  PubMed  Google Scholar 

  • Paravicini, T. M.; Touyz, R. M. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 31 (Suppl 2):S170-S180; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy, S.; Litvinov, D.; Selvarajan, K.; Garelnabi, M. Lipid peroxidation and decomposition––conflicting roles in plaque vulnerability and stability. Biochim Biophys Acta 1781 :221–231; 2008.

    CAS  PubMed  Google Scholar 

  • Rosenblat, M.; Gaidukov, L.; Khersonsky, O.; Vaya, J.; Oren, R.; Tawfik, D. S.; Aviram, M. The catalytic histidine dyad of high density lipoprotein-associated serum paraoxonase-1 (PON1) is essential for PON1-mediated inhibition of low density lipoprotein oxidation and stimulation of macrophage cholesterol efflux. J Biol Chem 281 :7657–7665; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Rosenblat, M.; Vaya, J.; Shih, D.; Aviram, M. Paraoxonase 1 (PON1) enhances HDL-mediated macrophage cholesterol efflux via the ABCA1 transporter in association with increased HDL binding to the cells: a possible role for lysophosphatidylcholine. Atherosclerosis 179 :69–77; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Rozenberg, O.; Rosenblat, M.; Coleman, R.; Shih, D. M.; Aviram, M. Paraoxonase (PON1) deficiency is associated with increased macrophage oxidative stress: studies in PON1-knockout mice. Free Radic Biol Med 34 :774–784; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Rozenberg, O.; Shih, D. M.; Aviram, M. Human serum paraoxonase 1 decreases macrophage cholesterol biosynthesis: possible role for its phospholipase-A2-like activity and lysophosphatidylcholine formation. Arterioscler Thromb Vasc Biol 23 :461–467; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Santanam, N.; Parthasarathy, S. Aspirin is a substrate for paraoxonase-like activity: implications in atherosclerosis. Atherosclerosis 191 :272–275; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Sheng, G. D. M. a. X. C. Yields of excited carbonyl species from alkoxy1 and from alkylperoxyl radical dismutations. J Am Chem Soc 113:8976–8977; 1991.

    Article  Google Scholar 

  • Shih, D. M.; Welch, C.; Lusis, A. J. New insights into atherosclerosis from studies with mouse models. Mol Med Today 1 :364–372; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Skoczynska, A. The role of lipids in atherogenesis. Postepy Hig Med Dosw (Online) 59 :346–357; 2005.

    Google Scholar 

  • Stadler, N.; Stanley, N.; Heeneman, S.; Vacata, V.; Daemen, M. J.; Bannon, P. G.; Waltenberger, J.; Davies, M. J. Accumulation of zinc in human atherosclerotic lesions correlates with calcium levels but does not protect against protein oxidation. Arterioscler Thromb Vasc Biol 28 :1024–1030; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Stocker, R.; Keaney, J. F., Jr. Role of oxidative modifications in atherosclerosis. Physiol Rev 84 :1381–1478; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Szuchman, A.; Aviram, M.; Musa, R.; Khatib, S.; Vaya, J. Characterization of oxidative stress in blood from diabetic vs. hypercholesterolaemic patients, using a novel synthesized marker. Biomarkers 13 :119–131; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Szuchman, A.; Aviram, M.; Soliman, K.; Tamir, S.; Vaya, J. Exogenous N-linoleoyl tyrosine marker as a tool for the characterization of cellular oxidative stress in macrophages. Free Radic Res 40 :41–52; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Tavori, H.; Aviram, M.; Khatib, S.; Musa, R.; Nitecki, S.; Hofman, A.; Vaya, J. Human carotid atherosclerotic plaque increases oxidative stress of macrophages and LDL, whereas paraoxonase 1 (PON1) decreases such atherogenic effects. Free Radic Biol Med 46:607–15;2009.

    Google Scholar 

  • Tavori, H.; Khatib, S.; Aviram, M.; Vaya, J. Characterization of the PON1 active site using modeling simulation, in relation to PON1 lactonase activity. Bioorg Med Chem 16 :7504–7509; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Teiber, J. F.; Draganov, D. I.; La Du, B. N. Lactonase and lactonizing activities of human serum paraoxonase (PON1) and rabbit serum PON3. Biochem Pharmacol 66 :887–896; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Vaya, J.; Aviram, M.; Mahmood, S.; Hayek, T.; Grenadir, E.; Hoffman, A.; Milo, S. Selective distribution of oxysterols in atherosclerotic lesions and human plasma lipoproteins. Free Radic Res 34 :485–497; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Vejux, A.; Malvitte, L.; Lizard, G. Side effects of oxysterols: cytotoxicity, oxidation, inflammation, and phospholipidosis. Braz J Med Biol Res 41 :545–556; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Wamil, M.; Andrew, R.; Chapman, K. E.; Street, J.; Morton, N. M.; Seckl, J. R. 7-Oxysterols modulate glucocorticoid activity in adipocytes through competition for 11{beta}-hydroxysteroid dehydrogense type 11. Endocrinology 149(12):5907–5908; 2008.

    Article  Google Scholar 

  • Watson, A. D.; Berliner, J. A.; Hama, S. Y.; La Du, B. N.; Faull, K. F.; Fogelman, A. M.; Navab, M. Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J Clin Invest 96 :2882–2891; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Williams, K. J.; Feig, J. E.; Fisher, E. A. Rapid regression of atherosclerosis: insights from the clinical and experimental literature. Nat Clin Pract Cardiovasc Med 5 :91–102; 2008.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hagai Tavori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Tavori, H., Vaya, J., Aviram, M. (2010). Paraoxonase 1 Attenuates Human Plaque Atherogenicity: Relevance to the Enzyme Lactonase Activity. In: Reddy, S. (eds) Paraoxonases in Inflammation, Infection, and Toxicology. Advances in Experimental Medicine and Biology, vol 660. Humana Press. https://doi.org/10.1007/978-1-60761-350-3_10

Download citation

Publish with us

Policies and ethics