Skip to main content

Zinc Intervention Strategies: Costs and Health Benefits

  • Chapter
  • First Online:

Part of the book series: Nutrition and Health ((NH))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AMD:

Age-related macular degeneration

AREDS:

Age-Related Eye Disease Study

BCR:

Benefit-to-cost ratio

DALYs:

Disability adjusted life years

EAR:

Estimated average requirement

GA:

Geographic atrophy

IZiNCG:

International Zinc Nutrition Consultative Group

NPK:

Nitrogen phosphorus and potassium

UNICEF:

United Nations Children’s Fund

References

  1. Stefanidou M, Maravelias C, Dona A, Spiliopoulou C. Zinc: a multipurpose trace element. Arch Toxicol. 2006;80(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  2. Jackson KA, Valentine RA, Coneyworth LJ, Mathers JC, Ford D. Mechanisms of mammalian zinc-regulated gene expression. Biochem Soc Trans. 2008;36(Pt 6):1262–6.

    Article  PubMed  CAS  Google Scholar 

  3. Overbeck S, Rink L, Haase H. Modulating the immune response by oral zinc supplementation: a single approach for multiple diseases. Arch Immunol Ther Exp. 2008;56(1):15–30.

    Article  CAS  Google Scholar 

  4. Prasad AS. Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr Metab Care. 2009;12(6):646–52.

    Article  PubMed  CAS  Google Scholar 

  5. McClung JP, Tarr TN, Barnes BR, Scrimgeour AG, Young AJ. Effect of supplemental dietary zinc on the mammalian target of rapamycin (mTOR) signaling pathway in skeletal muscle and liver from post-absorptive mice. Biol Trace Elem Res. 2007;118(1):65–76.

    Article  PubMed  CAS  Google Scholar 

  6. Lansdown AB, Mirastschijski U, Stubbs N, Scanlon E, Agren MS. Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair Regen. 2007;15(1):2–16.

    Article  PubMed  Google Scholar 

  7. Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board, Institute of Medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington: National Academy Press; 2001.

    Google Scholar 

  8. Ryu JM, Lee MY, Yun SP, Han HJ. Zinc chloride stimulates DNA synthesis of mouse embryonic stem cells: involvement of PI3K/Akt, MAPKs, and mTOR. J Cell Physiol. 2009;218(3):558–67.

    Article  PubMed  CAS  Google Scholar 

  9. Clegg MS, Hanna LA, Niles BJ, Momma TY, Keen CL. Zinc deficiency-induced cell death. IUBMB Life. 2005;57(10):661–9.

    Article  PubMed  CAS  Google Scholar 

  10. Brown KH, Peerson JM, Baker SK, Hess SY. Preventive zinc supplementation among infants, preschoolers, and older prepubertal children. Food Nutr Bull. 2009;30(1 Suppl):S12–40.

    PubMed  Google Scholar 

  11. Hess SY, King JC. Effects of maternal zinc supplementation on pregnancy and lactation outcomes. Food Nutr Bull. 2009;30(1 Suppl):S60–78.

    PubMed  Google Scholar 

  12. Maret W, Sandstead HH. Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol. 2006;20(1):3–18.

    Article  PubMed  CAS  Google Scholar 

  13. Rink L, Gabriel P. Zinc and the immune system. Proc Nutr Soc. 2000;59:541–52.

    Article  PubMed  CAS  Google Scholar 

  14. Copenhagen Consensus 2008. Accessed at www.copenhagenconsensus.com

  15. Brown KH, Hess SY. International Zinc Nutrition Consultative Group (IZiNCG) Technical Document #2. Systematic reviews of zinc intervention strategies. Food Nutr Bull. 2009;30(1):S3–184.

    Google Scholar 

  16. Hotz C, Brown KH. Assessment of zinc deficiency in populations, and options for its control. Food Nutr Bull. 2004;25(1 Suppl 2):S99–203.

    PubMed  Google Scholar 

  17. Caulfield LE, Richard SA, Black RE. Zinc deficiency. In: Ezzati M, Lopez AD, Rodgers A, Murray CJ, editors. Comparative quantification of health risks. 1st ed. Geneva: World Health Organization; 2004. p. 256–79.

    Google Scholar 

  18. Black RE. Zinc deficiency, infectious disease and mortality in the developing world. J Nutr. 2003;133(5 Suppl 1):1485S–9.

    PubMed  CAS  Google Scholar 

  19. Kennedy L, Ell P, Crawford E, Clarkson L. Mapping the great Irish famine. Portland: Four Courts Press; 1999.

    Google Scholar 

  20. Assefa F, Jabarkhil MZ, Salama P, Spiegel P. Malnutrition and mortality in Kohistan District, Afghanistan, April, 2001. J Am Med Assoc. 2001;5, 286(21):2723–8.

    Article  Google Scholar 

  21. Salama P, Spiegel P, Talley L, Waldman R. Lessons learned from complex emergencies over past decade. Lancet. 2004;364(9447):1801–13.

    Article  PubMed  Google Scholar 

  22. Schwartz BS, Harris JB, Khan AI, et al. Diarrheal epidemics in Dhaka, Bangladesh, during three consecutive floods: 1988, 1998, and 2004. Am J Trop Med Hyg. 2006;74(6):1067–73.

    PubMed  Google Scholar 

  23. Baqui AH, Black RE, Arifeen SE, et al. Effect of zinc supplementation started during diarrhoea on morbidity and mortality in Bangladeshi children: community randomised trial. Br Med J. 2002;325(7372):1059–66.

    Article  CAS  Google Scholar 

  24. Bhutta ZA, Bird SM, Black RE, et al. Therapeutic effects of oral zinc in acute and persistent diarrhea in children in developing countries: pooled analysis of randomized controlled trials. Am J Clin Nutr. 2000 December;72(6):1516–22.

    PubMed  CAS  Google Scholar 

  25. Robberstad B, Strand T, Black RE, Sommerfelt H. Cost-effectiveness of zinc as adjunct therapy for acute childhood diarrhoea in developing countries. Bull World Health Organ. 2004 July;82(7):523–31.

    PubMed  Google Scholar 

  26. Prudhon C, Prinzo ZW, Briend A, Daelmans BM, Mason JB. Proceedings of the WHO, UNICEF, and SCN informal consultation on community-based management of severe malnutrition in children. Food Nutr Bull. 2006 September;27(3 Suppl):S99–104.

    PubMed  Google Scholar 

  27. Black RE, Allen LH, Bhutta ZA, et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet. 2008 January 19;371(9608):243–60.

    Article  PubMed  Google Scholar 

  28. Fischer Walker CL, Kordas K, Stoltzfus RJ, Black RE. Interactive effects of iron and zinc on biochemical and functional outcomes in supplementation trials. Am J Clin Nutr. 2005 July;82(1):5–12.

    PubMed  Google Scholar 

  29. Mason J, Bailes A, Beda-Andourou M, et al. Recent trends in malnutrition in developing regions: vitamin A deficiency, anemia, iodine deficiency, and child underweight. Food Nutr Bull. 2005 March;26(1):59–108.

    PubMed  Google Scholar 

  30. Meenakshi JV, Johnson NL, Manyong VM, et al. How cost-effective is biofortification in combating micronutrient malnutrition? An ex ante assessment. World Dev. 2010;38(1):64–75.

    Article  Google Scholar 

  31. Prasad AS. Zinc deficiency. Br Med J. 2003 February 22;326(7386):409–10.

    Article  Google Scholar 

  32. Hininger-Favier I, Andriollo-Sanchez M, Arnaud J, et al. Age- and sex-dependent effects of long-term zinc supplementation on essential trace element status and lipid metabolism in European subjects: the Zenith study. Br J Nutr. 2007 March;97(3):569–78.

    Article  PubMed  CAS  Google Scholar 

  33. Hambidge M. Human zinc deficiency. J Nutr. 2000;130:1344S–9.

    PubMed  CAS  Google Scholar 

  34. Ho E. Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem. 2004 October;15(10):572–8.

    Article  PubMed  CAS  Google Scholar 

  35. WHO and UNICEF. Joint statement on the clinical management of acute diarrhoea. Geneva: World Health Assembly; 2004.

    Google Scholar 

  36. Brown KH, Baker SK. Galvanizing action: conclusions and next steps for mainstreaming zinc interventions in public health programs. Food Nutr Bull. 2009 March;30(1 Suppl):S179–84.

    PubMed  Google Scholar 

  37. Boschi-Pinto C, Velebit L, Shibuya K. Estimating child mortality due to diarrhoea in developing countries. Bull World Health Organ. 2008 September;86(9):710–7.

    Article  PubMed  Google Scholar 

  38. Patro B, Golicki D, Szajewska H. Meta-analysis: zinc supplementation for acute gastroenteritis in children. Aliment Pharmacol Ther. 2008 July 1;28:713–23.

    Article  PubMed  CAS  Google Scholar 

  39. Lukacik M, Thomas RL, Aranda JV. A meta-analysis of the effects of oral zinc in the treatment of acute and persistent diarrhea. Pediatrics. 2008 February;121(2):326–36.

    Article  PubMed  Google Scholar 

  40. Sturniolo GC, Montino MC, Rossetto L, et al. Inhibition of gastric acid secretion reduces zinc absorption in man. J Am Coll Nutr. 1991 August;10(4):372–5.

    PubMed  CAS  Google Scholar 

  41. Barrie SA, Wright JV, Pizzorno JE, Kutter E, Barron PC. Comparative absorption of zinc picolinate, zinc citrate and zinc gluconate in humans. Agents Actions. 1987 June;21(1–2):223–8.

    Article  PubMed  CAS  Google Scholar 

  42. Henderson LM, Brewer GJ, Dressman JB, et al. Effect of intragastric pH on the absorption of oral zinc acetate and zinc oxide in young healthy volunteers. J Parenter Enteral Nutr. 1995 September;19(5):393–7.

    Article  CAS  Google Scholar 

  43. Prasad AS, Beck FW, Nowak J. Comparison of absorption of five zinc preparations in humans using oral zinc tolerance test. J Trace Elem Exp Med. 1993;6:109–15.

    CAS  Google Scholar 

  44. Buff CE, Bollinger DW, Ellersieck MR, Brommelsiek WA, Veum TL. Comparison of growth performance and zinc absorption, retention, and excretion in weanling pigs fed diets supplemented with zinc-polysaccharide or zinc oxide. J Anim Sci. 2005 October;83(10):2380–6.

    PubMed  CAS  Google Scholar 

  45. Brown KH, Rivera JA, Bhutta Z, et al. International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull. 2004 March;25(1 Suppl 2):S99–203.

    PubMed  Google Scholar 

  46. Wolfe SA, Gibson RS, Gadowsky SL, ÓConnor DL. Zinc status of a group of pregnant adolescents at 36 weeks gestation living in southern Ontario. J Am Coll Nutr. 1994 April;13(2):154–64.

    PubMed  CAS  Google Scholar 

  47. Miller M, Humphrey J, Johnson E, Marinda E, Brookmeyer R, Katz J. Why do children become vitamin A deficient? J Nutr. 2002 September;132(9 Suppl):2867S–80.

    PubMed  CAS  Google Scholar 

  48. Long KZ, Montoya Y, Hertzmark E, Santos JI, Rosado JL. A double-blind, randomized, clinical trial of the effect of vitamin A and zinc supplementation on diarrheal disease and respiratory tract infections in children in Mexico City, Mexico. Am J Clin Nutr. 2006 March;83(3):693–700.

    PubMed  CAS  Google Scholar 

  49. Long KZ, Rosado JL, Montoya Y, et al. Effect of vitamin A and zinc supplementation on gastrointestinal parasitic infections among Mexican children. Pediatrics. 2007 October;120(4):e846–55.

    Article  PubMed  Google Scholar 

  50. Cantorna MT, Nashold FE, Hayes CE. In vitamin A deficiency multiple mechanisms establish a regulatory T helper cell imbalance with excess Th1 and insufficient Th2 function. J Immunol. 1994 February 15;152(4):1515–22.

    PubMed  CAS  Google Scholar 

  51. Long KZ, Estrada-Garcia T, Rosado JL, et al. The effect of vitamin A supplementation on the intestinal immune response in Mexican children is modified by pathogen infections and diarrhea. J Nutr. 2006 May;136(5):1365–70.

    PubMed  CAS  Google Scholar 

  52. Cantorna MT, Nashold FE, Hayes CE. Vitamin A deficiency results in a priming environment conducive for Th1 cell development. Eur J Immunol. 1995 June;25(6):1673–9.

    Article  PubMed  CAS  Google Scholar 

  53. Slifka MK, Whitton JL. Clinical implications of dysregulated cytokine production. J Mol Med. 2000;78(2):74–80.

    Article  PubMed  CAS  Google Scholar 

  54. Bao B, Prasad AS, Beck FW, Godmere M. Zinc modulates mRNA levels of cytokines. Am J Physiol Endocrinol Metab. 2003 November;285(5):E1095–102.

    PubMed  CAS  Google Scholar 

  55. Prasad AS, Beck FW, Grabowski SM, Kaplan J, Mathog RH. Zinc deficiency: changes in cytokine production and T-cell subpopulations in patients with head and neck cancer and in noncancer subjects. Proc Assoc Am Physicians. 1997;109(1):68–77.

    PubMed  CAS  Google Scholar 

  56. Cousins RJ, Blanchard RK, Popp MP, et al. A global view of the selectivity of zinc deprivation and excess on genes expressed in human THP-1 mononuclear cells. Proc Natl Acad Sci USA. 2003 June 10;100(12):6952–7.

    Article  PubMed  CAS  Google Scholar 

  57. Driessen C, Hirv K, Kirchner H, Rink L. Divergent effects of zinc on different bacterial pathogenic agents. J Infect Dis. 1995 February;171(2):486–9.

    Article  PubMed  CAS  Google Scholar 

  58. Aydemir TB, Blanchard RK, Cousins RJ. Zinc supplementation of young men alters metallothionein, zinc transporter, and cytokine gene expression in leukocyte populations. Proc Natl Acad Sci USA. 2006 February 7;103(6):1699–704.

    Article  PubMed  CAS  Google Scholar 

  59. Cravioto A, Reyes RE, Trujillo F, et al. Risk of diarrhea during the first year of life associated with initial and subsequent colonization by specific enteropathogens. Am J Epidemiol. 1990 May;131(5):886–904.

    PubMed  CAS  Google Scholar 

  60. Calva JJ, Ruiz-Palacios GM, Lopez-Vidal AB, Ramos A, Bojalil R. Cohort study of intestinal infection with campylobacter in Mexican children. Lancet. 1988 March 5;1(8584):503–6.

    Article  PubMed  CAS  Google Scholar 

  61. World Health Organization/Food and Agriculture Organization. Guidelines on food fortification with micronutrients. Geneva: World Health Organization; 2006.

    Google Scholar 

  62. Dary O. The importance and limitations of food fortification for the management of nutritional anemias. In: Kraemer K, Zimmermann MB, editors. nutritional anemia. Basel: Sight and Life Press; 2007. p. 315–36.

    Google Scholar 

  63. Hess SY, Brown KH. Impact of zinc fortification on zinc nutrition. Food Nutr Bull. 2009 March;30(1 Suppl):S79–107.

    PubMed  Google Scholar 

  64. Haider BA, Bhutta ZA. The effect of therapeutic zinc supplementation among young children with selected infections: a review of the evidence. Food Nutr Bull. 2009 March;30(1 Suppl):S41–59.

    PubMed  Google Scholar 

  65. Hess SY, Lonnerdal B, Hotz C, Rivera JA, Brown KH. Recent advances in knowledge of zinc nutrition and human health. Food Nutr Bull. 2009 March;30(1 Suppl):S5–11.

    PubMed  Google Scholar 

  66. Gibson RS, Ferguson EL. Nutrition intervention strategies to combat zinc deficiency in developing countries. Nutr Res Rev. 1998;11:115–31.

    Article  PubMed  CAS  Google Scholar 

  67. Jones G, Steketee RW, Black RE, Bhutta ZA, Morris SS. How many child deaths can we prevent this year? Lancet. 2003 July 5;362(9377):65–71.

    Article  PubMed  Google Scholar 

  68. Brown KH, Engle-Stone R, Krebs NF, Peerson JM. Dietary intervention strategies to enhance zinc nutrition: promotion and support of breastfeeding for infants and young children. Food Nutr Bull. 2009 March;30(1 Suppl):S144–71.

    PubMed  Google Scholar 

  69. The World Health Organization’s infant feeding recommendation. 2009. Geneva, WHO; Accessed at www.who.int/nutrition/topics

  70. Rahman MM, Vermund SH, Wahed MA, Fuchs GJ, Baqui AH, Alvarez JO. Simultaneous zinc and vitamin A supplementation in Bangladeshi children: randomised double blind controlled trial. Br Med J. 2001 August 11;323(7308):314–8.

    Article  CAS  Google Scholar 

  71. Bates CJ, Evans PH, Dardenne M, et al. A trial of zinc supplementation in young rural Gambian children. Br J Nutr. 1993 January;69(1):243–55.

    Article  PubMed  CAS  Google Scholar 

  72. Shrimpton R, Gross R, Darnton-Hill I, Young M. Zinc deficiency: what are the most appropriate interventions? Br Med J. 2005 February 12;330(7487):347–9.

    Article  Google Scholar 

  73. Zinc supplementation for the treatment of diarrhea: moving from research to practice. The USAID micronutrient program. 2009. Accessed at www.mostproject.org/ZINC

  74. Hunt JR, Beiseigel JM, Johnson LK. Adaptation in human zinc absorption as influenced by dietary zinc and bioavailability. Am J Clin Nutr. 2008 May;87(5):1336–45.

    PubMed  CAS  Google Scholar 

  75. Sandstrom B, Arvidsson B, Cederblad A, Bjorn-Rasmussen E. Zinc absorption from composite meals. I. The significance of wheat extraction rate, zinc, calcium, and protein content in meals based on bread. Am J Clin Nutr. 1980 April;33(4):739–45.

    PubMed  CAS  Google Scholar 

  76. de Lopez Romana D, Lonnerdal B, Brown KH. Absorption of zinc from wheat products fortified with iron and either zinc sulfate or zinc oxide. Am J Clin Nutr. 2003 August;78(2):279–83.

    Google Scholar 

  77. Gibson RS, Anderson VP. A review of interventions based on dietary diversification or modification strategies with the potential to enhance intakes of total and absorbable zinc. Food Nutr Bull. 2009 March;30(1 Suppl):S108–43.

    PubMed  Google Scholar 

  78. Galal OM, Harrison GG, Abdou AI, Zein el AA. The impact of a small-scale agricultural intervention on socio-economic and health status. Food Nutr. 1987;13(1):35–43.

    CAS  Google Scholar 

  79. Roos N, Islam M, Thilsted SH. Small fish is an important dietary source of vitamin A and calcium in rural Bangladesh. Int J Food Sci Nutr. 2003 September;54(5):329–39.

    Article  PubMed  CAS  Google Scholar 

  80. Hotz C, Gibson RS, Temple L. A home-based method to reduce phytate content and increase zinc bioavailability in maize-based complementary diets. Int J Food Sci Nutr. 2001 March;52(2):133–42.

    Article  PubMed  CAS  Google Scholar 

  81. WHO and UNICEF. Complementary feeding of young children in developing countries: a review of current scientific knowledge. Geneva: World Health Organization; 1998.

    Google Scholar 

  82. Gibson RS, Yeudall F, Drost N, Mtitimuni BM, Cullinan TR. Experiences of a community-based dietary intervention to enhance micronutrient adequacy of diets low in animal source foods and high in phytate: a case study in rural Malawian children. J Nutr. 2003 November;133(11 Suppl 2):3992S–9.

    PubMed  CAS  Google Scholar 

  83. Gibson RS. Zinc: the missing link in combating micronutrient malnutrition in developing countries. Proc Nutr Soc. 2006 February;65(1):51–60.

    Article  PubMed  CAS  Google Scholar 

  84. Penny ME, Creed-Kanashiro HM, Robert RC, Narro MR, Caulfield LE, Black RE. Effectiveness of an ­educational intervention delivered through the health services to improve nutrition in young children: a cluster-randomised controlled trial. Lancet. 2005 May 28;365(9474):1863–72.

    Article  PubMed  Google Scholar 

  85. Lartey A, Manu A, Brown KH, Peerson JM, Dewey KG. A randomized, community-based trial of the effects of improved, centrally processed complementary foods on growth and micronutrient status of Ghanaian infants from 6 to 12 mo of age. Am J Clin Nutr. 1999 September;70(3):391–404.

    PubMed  CAS  Google Scholar 

  86. Siekmann JH, Allen LH, Bwibo NO, Demment MW, Murphy SP, Neumann CG. Kenyan school children have multiple micronutrient deficiencies, but increased plasma vitamin B-12 is the only detectable micronutrient response to meat or milk supplementation. J Nutr. 2003 November;133(11 Suppl 2):3972S–80.

    PubMed  CAS  Google Scholar 

  87. Guldan GS, Fan HC, Ma X, Ni ZZ, Xiang X, Tang MZ. Culturally appropriate nutrition education improves infant feeding and growth in rural Sichuan, China. J Nutr. 2000 May;130(5):1204–11.

    PubMed  CAS  Google Scholar 

  88. Navarro Silvera SA, Rohan TE. Trace elements and cancer risk: a review of the epidemiologic evidence. Cancer Causes Control. 2007 February;18(1):7–27.

    Article  PubMed  Google Scholar 

  89. Franklin RB, Costello LC. The important role of the apoptotic effects of zinc in the development of cancers. J Cell Biochem. 2009 April 1;106(5):750–7.

    Article  PubMed  CAS  Google Scholar 

  90. Ho E, Song Y. Zinc and prostatic cancer. Curr Opin Clin Nutr Metab Care. 2009 August 13;12(6):640–5.

    Article  PubMed  CAS  Google Scholar 

  91. Wu CY, Steffen J, Eide DJ. Cytosolic superoxide dismutase (SOD1) is critical for tolerating the oxidative stress of zinc deficiency in yeast. PLoS ONE. 2009;4(9):e7061.

    Article  PubMed  CAS  Google Scholar 

  92. Wakimoto P, Block G. Dietary intake, dietary patterns, and changes with age: an epidemiological perspective. J Gerontol A Biol Sci Med Sci. 2001 October;56:65–80.

    Article  PubMed  Google Scholar 

  93. Oteiza PI, Clegg MS, Zago MP, Keen CL. Zinc deficiency induces oxidative stress and AP-1 activation in 3 T3 cells. Free Radic Biol Med. 2000 April 1;28(7):1091–9.

    Article  PubMed  CAS  Google Scholar 

  94. Song Y, Elias V, Loban A, Scrimgeour AG, Ho E. Marginal zinc deficiency increases oxidative DNA damage in the prostate after chronic exercise. Free Radic Biol Med. 2010;48(1):82–8.

    Article  PubMed  CAS  Google Scholar 

  95. Song Y, Chung CS, Bruno RS, et al. Dietary zinc restriction and repletion affects DNA integrity in healthy men. Am J Clin Nutr. 2009 August;90(2):321–8.

    Article  PubMed  CAS  Google Scholar 

  96. Fong LY, Jiang Y, Farber JL. Zinc deficiency potentiates induction and progression of lingual and esophageal tumors in p53-deficient mice. Carcinogenesis. 2006 July;27(7):1489–96.

    Article  PubMed  CAS  Google Scholar 

  97. Taccioli C, Wan SG, Liu CG, et al. Zinc replenishment reverses overexpression of the proinflammatory mediator S100A8 and esophageal preneoplasia in the rat. Gastroenterology. 2009 March;136(3):953–66.

    Article  PubMed  CAS  Google Scholar 

  98. Oteiza PI, Clegg MS, Keen CL. Short-term zinc deficiency affects nuclear factor-kappab nuclear binding activity in rat testes. J Nutr. 2001 January;131(1):21–6.

    PubMed  CAS  Google Scholar 

  99. Oteiza PI, Olin KL, Fraga CG, Keen CL. Zinc deficiency causes oxidative damage to proteins, lipids and DNA in rat testes. J Nutr. 1995 April;125(4):823–9.

    PubMed  CAS  Google Scholar 

  100. Ho E, Courtemanche C, Ames BN. Zinc deficiency induces oxidative DNA damage and increases p53 expression in human lung fibroblasts. J Nutr. 2003 August;133(8):2543–8.

    PubMed  CAS  Google Scholar 

  101. Ho E, Ames BN. Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFkappa B, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proc Natl Acad Sci USA. 2002 December 24;99(26):16770–5.

    Article  PubMed  CAS  Google Scholar 

  102. Costello LC, Franklin RB. The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol Cancer. 2006;5:17.

    Article  PubMed  CAS  Google Scholar 

  103. Dimitropoulou P, Nayee S, Liu JF, et al. Dietary zinc intake and brain cancer in adults: a case-control study. Br J Nutr. 2008 March;99(3):667–73.

    Article  PubMed  CAS  Google Scholar 

  104. Federico A, Iodice P, Federico P, et al. Effects of selenium and zinc supplementation on nutritional status in patients with cancer of digestive tract. Eur J Clin Nutr. 2001 April;55(4):293–7.

    Article  PubMed  CAS  Google Scholar 

  105. Prasad AS, Kucuk O. Zinc in cancer prevention. Cancer Metastasis Rev. 2002;21(3–4):291–5.

    Article  PubMed  CAS  Google Scholar 

  106. Franklin RB, Milon B, Feng P, Costello LC. Zinc and zinc transporters in normal prostate and the pathogenesis of prostate cancer. Front Biosci. 2005;10:2230–9.

    Article  PubMed  CAS  Google Scholar 

  107. Murakami M, Hirano T. Intracellular zinc homeostasis and zinc signaling. Cancer Sci. 2008 August;99(8):1515–22.

    Article  PubMed  CAS  Google Scholar 

  108. Yan M, Song Y, Wong CP, Hardin K, Ho E. Zinc deficiency alters DNA damage response genes in normal human prostate epithelial cells. J Nutr. 2008 April;138(4):667–73.

    PubMed  CAS  Google Scholar 

  109. Bataineh ZM, Bani HI, Al-Alami JR. Zinc in normal and pathological human prostate gland. Saudi Med J. 2002 February;23(2):218–20.

    PubMed  Google Scholar 

  110. Platz EA, Helzlsouer KJ. Selenium, zinc, and prostate cancer. Epidemiol Rev. 2001;23(1):93–101.

    PubMed  CAS  Google Scholar 

  111. Golovine K, Makhov P, Uzzo RG, Kunkle D, Kolenko VM. Overexpression of the zinc uptake transporter hZIP1 inhibits nuclear factor-kappaB and reduces the malignant potential of prostate cancer cells in vitro and in vivo. Clin Cancer Res. 2008;14:5376–84.

    Article  PubMed  CAS  Google Scholar 

  112. Kristal AR, Arnold KB, Schenk JM, et al. Dietary patterns, supplement use, and the risk of symptomatic benign prostatic hyperplasia: results from the prostate cancer prevention trial. Am J Epidemiol. 2008 April 15;167(8):925–34.

    Article  PubMed  Google Scholar 

  113. Zhang Y, Coogan P, Palmer JR, Strom BL, Rosenberg L. Vitamin and mineral use and risk of prostate cancer: the case-control surveillance study. Cancer Causes Control. 2009 July;20(5):691–8.

    Article  PubMed  CAS  Google Scholar 

  114. Gonzalez A, Peters U, Lampe JW, White E. Zinc intake from supplements and diet and prostate cancer. Nutr Cancer. 2009;61(2):206–15.

    Article  PubMed  CAS  Google Scholar 

  115. Shah MR, Kriedt CL, Lents NH, et al. Direct intra-tumoral injection of zinc-acetate halts tumor growth in a xenograft model of prostate cancer. J Exp Clin Cancer Res. 2009;28:84.

    Article  PubMed  CAS  Google Scholar 

  116. Gupta SK, Singh SP, Shukla VK. Copper, zinc, and Cu/Zn ratio in carcinoma of the gallbladder. J Surg Oncol. 2005 September 1;91(3):204–8.

    Article  PubMed  CAS  Google Scholar 

  117. McTiernan A, Porter P, Potter JD. Breast cancer prevention in countries with diverse resources. Cancer. 2008 October 15;113(8 Suppl):2325–30.

    Article  PubMed  Google Scholar 

  118. Andriole GL. Overview of pivotal studies for prostate cancer risk reduction, past and present. Urology. 2009 May;73(5 Suppl):S36–43.

    Article  PubMed  Google Scholar 

  119. de Benoist B, Darnton-Hill I, Davidsson L, Fontaine O, Hotz C. Conclusions of the joint WHO/UNICEF/IAEA/IZiNCG interagency meeting on zinc status indicators. Food Nutr Bull. 2007 September;28(3 Suppl):S480–4.

    PubMed  Google Scholar 

  120. Fischer Walker CL, Black RE. Functional indicators for assessing zinc deficiency. Food Nutr Bull. 2007;28(3 Suppl):S454–79.

    PubMed  Google Scholar 

  121. Hess SY, Peerson JM, King JC, Brown KH. Use of serum zinc concentration as an indicator of population zinc status. Food Nutr Bull. 2007 September;28(3 Suppl):S403–29.

    PubMed  Google Scholar 

  122. Hotz C, Peerson JM, Brown KH. Suggested lower cutoffs of serum zinc concentrations for assessing zinc status: reanalysis of the second National Health and Nutrition Examination Survey data (1976–1980). Am J Clin Nutr. 2003 October;78(4):756–64.

    PubMed  CAS  Google Scholar 

  123. Hotz C. Dietary indicators for assessing the adequacy of population zinc intakes. Food Nutr Bull. 2007 September;28(3 Suppl):S430–53.

    PubMed  Google Scholar 

  124. Gibson RS, Hess SY, Hotz C, Brown KH. Indicators of zinc status at the population level: a review of the evidence. Br J Nutr. 2008 June;99 Suppl 3:S14–23.

    PubMed  CAS  Google Scholar 

  125. Bhutta ZA, Black RE, Brown KH, et al. Prevention of diarrhea and pneumonia by zinc supplementation in children in developing countries: pooled analysis of randomized controlled trials. Zinc Investigators’ Collaborative Group. J Pediatr. 1999 December;135(6):689–97.

    Article  PubMed  CAS  Google Scholar 

  126. Brown KH, Peerson JM, Rivera J, Allen LH. Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2002;75:1062–71.

    PubMed  CAS  Google Scholar 

  127. WHO. WHO growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. Geneva: World Health Organization; 2006.

    Google Scholar 

  128. de Lopez Romana D, Salazar M, Hambidge KM, et al. Longitudinal measurements of zinc absorption in Peruvian children consuming wheat products fortified with iron only or iron and 1 of 2 amounts of zinc. Am J Clin Nutr. 2005 March;81(3):637–47.

    Google Scholar 

  129. Herman S, Griffin IJ, Suwarti S, et al. Cofortification of iron-fortified flour with zinc sulfate, but not zinc oxide, decreases iron absorption in Indonesian children. Am J Clin Nutr. 2002 October;76(4):813–7.

    PubMed  CAS  Google Scholar 

  130. Hotz C, Dehaene J, Woodhouse LR, Villalpando S, Rivera JA, King JC. Zinc absorption from zinc oxide, zinc sulfate, zinc oxide + EDTA, or sodium-zinc EDTA does not differ when added as fortificants to maize tortillas. J Nutr. 2005 May;135(5):1102–5.

    PubMed  CAS  Google Scholar 

  131. Bouis HE. Plant breeding: a new tool for fighting micronutrient malnutrition. J Nutr. 2002 March;132(3):491S–4.

    PubMed  CAS  Google Scholar 

  132. Welch RM, Graham RD. Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot. 2004 February;55(396):353–64.

    Article  PubMed  CAS  Google Scholar 

  133. Hotz C. The potential to improve zinc status through biofortification of staple food crops with zinc. Food Nutr Bull. 2009 March;30(1 Suppl):S172–8.

    PubMed  Google Scholar 

  134. Rosado JL, Hambidge KM, Miller LV, et al. The quantity of zinc absorbed from wheat in adult women is enhanced by biofortification. J Nutr. 2009 October;139(10):1920–5.

    Article  PubMed  CAS  Google Scholar 

  135. Nestel P, Bouis HE, Meenakshi JV, Pfeiffer W. Biofortification of staple food crops. J Nutr. 2006 April;136(4):1064–7.

    PubMed  CAS  Google Scholar 

  136. Stein AJ, Nestel P, Meenakshi JV, Qaim M, Sachdev HP, Bhutta ZA. Plant breeding to control zinc deficiency in India: how cost-effective is biofortification? Public Health Nutr. 2007 May;10(5):492–501.

    Article  PubMed  Google Scholar 

  137. Schnable PS, Ware D, Fulton RS, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326(5956):1112–5.

    Article  PubMed  CAS  Google Scholar 

  138. Tripathi B, Platel K. Finger millet (Eleucine coracana) flour as a vehicle for fortification with zinc. J Trace Elem Med Biol. 2010;24(1):46–51.

    Article  PubMed  CAS  Google Scholar 

  139. Alloway BJ. Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health. 2009 October;31(5):537–48.

    Article  PubMed  CAS  Google Scholar 

  140. Yang XE, Chen WR, Feng Y. Improving human micronutrient nutrition through biofortification in the soil-plant system: China as a case study. Environ Geochem Health. 2007 October;29(5):413–28.

    Article  PubMed  CAS  Google Scholar 

  141. Cakmak I. Enrichment of fertilizers with zinc: an excellent investment for humanity and crop production in India. J Trace Elem Med Biol. 2009;23(4):281–9.

    Article  PubMed  CAS  Google Scholar 

  142. Mayer JE, Pfeiffer WH, Beyer P. Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol. 2008 April;11(2):166–70.

    Article  PubMed  CAS  Google Scholar 

  143. Cakmak I. Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant Soil. 2002;247:3–24.

    Article  CAS  Google Scholar 

  144. Yilmaz A, Ekiz H, Torun B, et al. Effect of different zinc application methods on grain yield and zinc concentration in wheat grown on zinc-deficient calcerous soils in central Anatolia. J Plant Nutr. 1997;20:461–71.

    Article  CAS  Google Scholar 

  145. Ranjbar GA, Bahmaniar MA. Effects of soil and foliar application of Zn fertilizer on yield and growth characteristics of bread wheat (Triticum aestivum) cultivars. Asian J Plant Sci. 2007;6(6):1000–5.

    Article  CAS  Google Scholar 

  146. Shivay YS, Prasad R, Rahal A. Relative efficiency of zinc oxide and zinc sulphate-enriched urea for spring wheat. Nutr Cycl Agroecosyst. 2008;82:259–64.

    Article  CAS  Google Scholar 

  147. Champ MM. Non-nutrient bioactive substances of pulses. Br J Nutr. 2002 December;88 Suppl 3:S307–19.

    Article  PubMed  CAS  Google Scholar 

  148. Lott JNA, Ockenden I, Raboy V, Batten GD. Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Sci Res. 2000;10:11–33.

    CAS  Google Scholar 

  149. Iqbal TH, Lewis KO, Cooper BT. Phytase activity in the human and rat small intestine. Gut. 1994 September;35(9):1233–6.

    Article  PubMed  CAS  Google Scholar 

  150. Revy PS, Jondreville C, Dourmad JY, Nys Y. Assessment of dietary zinc requirement of weaned piglets fed diets with or without microbial phytase. J Anim Physiol Anim Nutr. 2006 February;90(1–2):50–9.

    Article  CAS  Google Scholar 

  151. Stahl CH, Roneker KR, Pond WG, Lei XG. Effects of combining three fungal phytases with a bacterial phytase on plasma phosphorus status of weanling pigs fed a corn–soy diet. J Anim Sci. 2004 June;82(6):1725–31.

    PubMed  CAS  Google Scholar 

  152. Troesch B, Egli I, Zeder C, Hurrell RF, de PS, Zimmermann MB. Optimization of a phytase-containing micronutrient powder with low amounts of highly bioavailable iron for in-home fortification of complementary foods. Am J Clin Nutr. 2009 February;89(2):539–44.

    Article  PubMed  CAS  Google Scholar 

  153. Thacher TD, Aliu O, Griffin IJ, et al. Meals and dephytinization affect calcium and zinc absorption in Nigerian children with rickets. J Nutr. 2009 May;139(5):926–32.

    Article  PubMed  CAS  Google Scholar 

  154. Hambidge KM, Mazariegos M, Solomons NW, et al. Intestinal excretion of endogenous zinc in Guatemalan school children. J Nutr. 2007 July;137(7):1747–9.

    PubMed  CAS  Google Scholar 

  155. Mazariegos M, Hambidge KM, Krebs NF, et al. Zinc absorption in Guatemalan schoolchildren fed normal or low-phytate maize. Am J Clin Nutr. 2006 January;83(1):59–64.

    PubMed  CAS  Google Scholar 

  156. Egli I, Davidsson L, Zeder C, Walczyk T, Hurrell R. Dephytinization of a complementary food based on wheat and soy increases zinc, but not copper, apparent absorption in adults. J Nutr. 2004 May;134(5):1077–80.

    PubMed  CAS  Google Scholar 

  157. Manary MJ, Hotz C, Krebs NF, et al. Zinc homeostasis in Malawian children consuming a high-phytate, maize-based diet. Am J Clin Nutr. 2002 June;75(6):1057–61.

    PubMed  CAS  Google Scholar 

  158. Kaur P, Kunze G, Satyanarayana T. Yeast phytases: present scenario and future perspectives. Crit Rev Biotechnol. 2007 April;27(2):93–109.

    Article  PubMed  CAS  Google Scholar 

  159. Walz OP, Pallauf J. The effect of the combination of microbial phytase and amino acid supplementation of diets for finishing pigs on P and N excretion and carcass quality. Arch Tierernähr. 2003 December;57(6):413–28.

    PubMed  CAS  Google Scholar 

  160. Walz OP, Pallauf J. Microbial phytase combined with amino acid supplementation reduces P and N excretion of growing and finishing pigs without loss of performance. Int J Food Sci Technol. 2002;37(7):835–48.

    Article  CAS  Google Scholar 

  161. Oberleas D, Harland BF. Treatment of zinc deficiency without zinc fortification. J Zhejiang Univ Sci B. 2008;9(3):192–6.

    Article  PubMed  CAS  Google Scholar 

  162. McClung JP, Stahl CH, Marchitelli LJ, et al. Effects of dietary phytase on body weight gain, body composition, and bone biomechanics in growing rats fed a low zinc diet. J Nutr Biochem. 2006;170:190–6.

    Article  CAS  Google Scholar 

  163. Scrimgeour AG, Marchitelli LJ, Whicker JS, Song Y, Ho E, Young AJ. Phytase supplementation increases bone mineral density, lean body mass and voluntary physical activity in rats fed a low-zinc diet. J Nutr Biochem 2010 January 1;in press

    Google Scholar 

  164. Frontela C, Scarino ML, Ferruzza S, Ros G, Martinez C. Effect of dephytinization on bioavailability of iron, calcium and zinc from infant cereals assessed in the Caco-2 cell model. World J Gastroenterol. 2009 April 28;15(16):1977–84.

    Article  PubMed  CAS  Google Scholar 

  165. Haros M, Carlsson NG, Almgren A, Larsson-Alminger M, Sandberg AS, Andlid T. Phytate degradation by human gut isolated Bifidobacterium pseudocatenulatum ATCC27919 and its probiotic potential. Int J Food Microbiol. 2009 September 30;135(1):7–14.

    Article  PubMed  CAS  Google Scholar 

  166. Fredlund K, Bergman EL, Rossander-Hulthen L, Isaksson M, Almgren A, Sandberg AS. Hydrothermal treatment and malting of barley improved zinc absorption but not calcium absorption in humans. Eur J Clin Nutr. 2003 December;57(12):1507–13.

    Article  PubMed  CAS  Google Scholar 

  167. Rodgers A, Vaughan P. The World Health Report. Geneva: The World Health Organization; 2002.

    Google Scholar 

  168. United Nations Administrative Committee on Coordination/Sub-Committee on Nutrition. Fourth Report on the World Nutrition Situation. 2000. Report No.: ACC/SCN

    Google Scholar 

  169. Sanchez PA, Swaminathan MS. Public health. Cutting world hunger in half. Science. 2005 January 21;307(5708):357–9.

    Article  PubMed  CAS  Google Scholar 

  170. Boy E, Mannar V, Pandav C, et al. Achievements, challenges, and promising new approaches in vitamin and mineral deficiency control. Nutr Rev. 2009;67 Suppl 1:S24–30.

    Article  PubMed  Google Scholar 

  171. Sen A. Development as freedom. New York: Oxford University Press; 1999.

    Google Scholar 

  172. Webb P. Food as medicine: can famine relief meet health and hunger goals simultaneously? Lancet. 2003 December;362(Suppl):s40–1.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angus G. Scrimgeour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Scrimgeour, A.G., Condlin, M.L., Otieno, L., Bovill, M.E. (2011). Zinc Intervention Strategies: Costs and Health Benefits. In: Gerald, J., Watson, R., Preedy, V. (eds) Nutrients, Dietary Supplements, and Nutriceuticals. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-60761-308-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-308-4_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-307-7

  • Online ISBN: 978-1-60761-308-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics