Skip to main content

Cost-Effectiveness of Nutritional Interventions for Bone Health in Children and Young Adults – What is Known and Where are the Gaps?

  • Chapter
  • First Online:

Part of the book series: Nutrition and Health ((NH))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. NIH Consensus Development Panel on Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285:785–795.

    Google Scholar 

  2. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726–33.

    Article  PubMed  CAS  Google Scholar 

  3. Cooley H, Jones G. A population-based study of fracture incidence in southern Tasmania: lifetime fracture risk and evidence for geographic variations within the same country. Osteoporos Int. 2001;12:124–30.

    Article  PubMed  CAS  Google Scholar 

  4. Jones G, Nguyen T, Sambrook PN, Kelly PJ, Gilbert C, Eisman JA. Symptomatic fracture incidence in elderly men and women: the Dubbo Osteoporosis Epidemiology Study (DOES). Osteoporos Int. 1994;4:277–82.

    Article  PubMed  CAS  Google Scholar 

  5. Pasco JA, Sanders KM, Hoekstra FM, Henry MJ, Nicholson GC, Kotowicz MA. The human cost of fracture. Osteoporos Int. 2005;16:2046–52.

    Article  PubMed  Google Scholar 

  6. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22:465–75.

    Article  PubMed  Google Scholar 

  7. Anonymous. The burden of brittle bones: epidemiology, costs and burden of osteoporosis in Australia. International Osteoporosis Foundation and Osteoporosis, Australia. 2007.

    Google Scholar 

  8. Finnern HW, Sykes DP. The hospital cost of vertebral fractures in the EU: estimates using national datasets. Osteoporos Int. 2003;14:429–36.

    Article  PubMed  Google Scholar 

  9. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312:1254–9.

    PubMed  CAS  Google Scholar 

  10. Nguyen T, Sambrook P, Kelly P, Jones G, Lord S, Freund J, et al. Prediction of osteoporotic fractures by postural instability and bone density. BMJ. 1993;307:1111–5.

    Article  PubMed  CAS  Google Scholar 

  11. Hansen MA, Overgaard K, Riis BJ, Christiansen C. Role of peak bone mass and bone loss in postmenopausal osteoporosis: 12 year study. BMJ. 1991;303:961–4.

    Article  PubMed  CAS  Google Scholar 

  12. Riis BJ, Hansen MA, Jensen AM, Overgaard K, Christiansen C. Low bone mass and fast rate of bone loss at menopause: equal risk factors for future fracture: a 15-year follow-up study. Bone. 1996;19:9–12.

    Article  PubMed  CAS  Google Scholar 

  13. Ma D, Jones G. The association between bone mineral density, metacarpal morphometry, and upper limb fractures in children: a population-based case-control study. J Clin Endocrinol Metab. 2003;88:1486–91.

    Article  PubMed  CAS  Google Scholar 

  14. Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Barned NJ. Bone mineral density in girls with forearm fractures. J Bone Miner Res. 1998;13:143–8.

    Article  PubMed  CAS  Google Scholar 

  15. Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ. Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr. 2001;139:509–15.

    Article  PubMed  CAS  Google Scholar 

  16. Honkanen R, Tuppurainen M, Kroger H, Alhava E, Puntila E. Associations of early premenopausal fractures with subsequent fractures vary by sites and mechanisms of fractures. Calcif Tissue Int. 1997;60:327–31.

    Article  PubMed  CAS  Google Scholar 

  17. Hung LK, Wu HT, Leung PC, Qin L. Low BMD is a risk factor for low-energy Colles’ fractures in women before and after menopause. Clin Orthop Relat Res. 2005;435:219–25.

    Article  PubMed  Google Scholar 

  18. Goulding A, Gold E, Walker R, Lewis-Barned N. Women with past history of bone fracture have low spinal bone density before menopause. N Z Med J. 1997;110:232–3.

    PubMed  CAS  Google Scholar 

  19. Horowitz M, Wishart JM, Bochner M, Need AG, Chatterton BE, Nordin BE. Mineral density of bone in the forearm in premenopausal women with fractured wrists. BMJ. 1988;297:1314–5.

    Article  PubMed  CAS  Google Scholar 

  20. Cox ML, Khan SA, Gau DW, Cox SA, Hodkinson HM. Determinants of forearm bone density in premenopausal women: a study in one general practice. Br J Gen Pract. 1991;41:194–6.

    PubMed  CAS  Google Scholar 

  21. Torgerson DJ, Campbell MK, Thomas RE, Reid DM. Prediction of perimenopausal fractures by bone mineral density and other risk factors. J Bone Miner Res. 1996;11:293–7.

    Article  PubMed  CAS  Google Scholar 

  22. Wu F, Mason B, Horne A, Ames R, Clearwater J, Liu M, et al. Fractures between the ages of 20 and 50 years increase women’s risk of subsequent fractures. Arch Intern Med. 2002;162:33–6.

    Article  Google Scholar 

  23. Hosmer WD, Genant HK, Browner WS. Fractures before menopause: a red flag for physicians. Osteoporos Int. 2002;13:337–41.

    Article  PubMed  CAS  Google Scholar 

  24. Favus MJ, American Society for Bone and Mineral Research. Primer on the metabolic bone diseases and disorders of mineral metabolism. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2003.

    Google Scholar 

  25. Koo WW, Bush AJ, Walters J, Carlson SE. Postnatal development of bone mineral status during infancy. J Am Coll Nutr. 1998;17:65–70.

    PubMed  CAS  Google Scholar 

  26. Katzman DK, Bachrach LK, Carter DR, Marcus R. Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab. 1991;73:1332–9.

    Article  PubMed  CAS  Google Scholar 

  27. Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999;14:1672–9.

    Article  PubMed  CAS  Google Scholar 

  28. Riggs BL, Khosla S, Melton 3rd LJ. The assembly of the adult skeleton during growth and maturation: implications for senile osteoporosis. J Clin Invest. 1999;104:671–2.

    Article  PubMed  CAS  Google Scholar 

  29. Whiting SJ, Vatanparast H, Baxter-Jones A, Faulkner RA, Mirwald R, Bailey DA. Factors that affect bone ­mineral accrual in the adolescent growth spurt. J Nutr. 2004;134:696S–700S.

    PubMed  Google Scholar 

  30. Saggese G, Baroncelli GI, Bertelloni S. Puberty and bone development. Best Pract Res Clin Endocrinol Metab. 2002;16:53–64.

    Article  PubMed  CAS  Google Scholar 

  31. Tudor-Locke C, McColl RS. Factors related to variation in premenopausal bone mineral status: a health promotion approach. Osteoporos Int. 2000;11:1–24.

    Article  PubMed  CAS  Google Scholar 

  32. Bainbridge KE, Sowers MF, Crutchfield M, Lin X, Jannausch M, Harlow SD. Natural history of bone loss over 6 years among premenopausal and early postmenopausal women. Am J Epidemiol. 2002;156:410–7.

    Article  PubMed  CAS  Google Scholar 

  33. Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, et al. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest. 1994;93:799–808.

    Article  PubMed  CAS  Google Scholar 

  34. Mazess RB, Barden H. Bone density of the spine and femur in adult white females. Calcif Tissue Int. 1999;65:91–9.

    Article  PubMed  CAS  Google Scholar 

  35. Emaus N, Berntsen GK, Joakimsen RM, Fonnebo V. Longitudinal changes in forearm bone mineral density in women and men aged 25–44 years: the Tromso study: a population-based study. Am J Epidemiol. 2005;162:633–43.

    Article  PubMed  CAS  Google Scholar 

  36. Berenson AB, Rahman M, Wilkinson G. Racial difference in the correlates of bone mineral content/density and age at peak among reproductive-aged women. Osteoporos Int. 2009;20:1439–49.

    Article  PubMed  CAS  Google Scholar 

  37. Recker RR, Davies KM, Hinders SM, Heaney RP, Stegman MR, Kimmel DB. Bone gain in young adult women. JAMA. 1992;268:2403–8.

    Article  PubMed  CAS  Google Scholar 

  38. Riggs BL, Wahner HW, Seeman E, Offord KP, Dunn WL, Mazess RB, et al. Changes in bone mineral density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes. J Clin Invest. 1982;70:716–23.

    Article  PubMed  CAS  Google Scholar 

  39. Recker R, Lappe J, Davies K, Heaney R. Characterization of perimenopausal bone loss: a prospective study. J Bone Miner Res. 2000;15:1965–73.

    Article  PubMed  CAS  Google Scholar 

  40. Riggs BL, Wahner HW, Melton 3rd LJ, Richelson LS, Judd HL, Offord KP. Rates of bone loss in the appendicular and axial skeletons of women. Evidence of substantial vertebral bone loss before menopause. J Clin Invest. 1986;77:1487–91.

    Article  PubMed  CAS  Google Scholar 

  41. Slemenda C, Longcope C, Peacock M, Hui S, Johnston CC. Sex steroids, bone mass, and bone loss. A prospective study of pre-, peri-, and postmenopausal women. J Clin Invest. 1996;97:14–21.

    Article  PubMed  CAS  Google Scholar 

  42. Aloia JF, Vaswani A, Ross P, Cohn SH. Aging bone loss from the femur, spine, radius, and total skeleton. Metabolism. 1990;39:1144–50.

    Article  PubMed  CAS  Google Scholar 

  43. Pouilles JM, Tremollieres F, Ribot C. The effects of menopause on longitudinal bone loss from the spine. Calcif Tissue Int. 1993;52:340–3.

    Article  PubMed  CAS  Google Scholar 

  44. Prior JC, Vigna YM, Barr SI, Kennedy S, Schulzer M, Li DK. Ovulatory premenopausal women lose cancellous spinal bone: a five year prospective study. Bone. 1996;18:261–7.

    Article  PubMed  CAS  Google Scholar 

  45. Baran D, Sorensen A, Grimes J, Lew R, Karellas A, Johnson B, et al. Dietary modification with dairy products for preventing vertebral bone loss in premenopausal women: a three-year prospective study. J Clin Endocrinol Metab. 1990;70:264–70.

    Article  PubMed  CAS  Google Scholar 

  46. Chapurlat RD, Garnero P, Sornay-Rendu E, Arlot ME, Claustrat B, Delmas PD. Longitudinal study of bone loss in pre- and perimenopausal women: evidence for bone loss in perimenopausal women. Osteoporos Int. 2000;11:493–8.

    Article  PubMed  CAS  Google Scholar 

  47. Salamone LM, Gregg E, Wolf RL, Epstein RS, Black D, Palermo L, et al. Are menopausal symptoms associated with bone mineral density and changes in bone mineral density in premenopausal women? Maturitas. 1998;29:179–87.

    Article  PubMed  CAS  Google Scholar 

  48. Perrone G, Galoppi P, Capri O, Anelli G, Borrello M, Zichella L. Lumbar and femoral bone density in perimenopausal women with irregular cycles. Int J Fertil Menopausal Stud. 1995;40:120–5.

    PubMed  CAS  Google Scholar 

  49. Hernandez CJ, Beaupre GS, Carter DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int. 2003;14:843–7.

    Article  PubMed  CAS  Google Scholar 

  50. Cooper C, Westlake S, Harvey N, Javaid K, Dennison E, Hanson M. Review: developmental origins of osteoporotic fracture. Osteoporos Int. 2006;17:337–47.

    Article  PubMed  Google Scholar 

  51. Raman L, Rajalakshmi K, Krishnamachari KA, Sastry JG. Effect of calcium supplementation to undernourished mothers during pregnancy on the bone density of the bone density of the neonates. Am J Clin Nutr. 1978;31:466–9.

    PubMed  CAS  Google Scholar 

  52. Chan GM, McElligott K, McNaught T, Gill G. Effects of dietary calcium intervention on adolescent mothers and newborns: a randomized controlled trial. Obstet Gynecol. 2006;08:565–71.

    Article  Google Scholar 

  53. Koo WW, Walters JC, Esterlitz J, Levine RJ, Bush AJ, Sibai B. Maternal calcium supplementation and fetal bone mineralization. Obstet Gynecol. 1999;94:577–82.

    Article  PubMed  CAS  Google Scholar 

  54. Jarjou LM, Prentice A, Sawo Y, Laskey MA, Bennett J, Goldberg GR, et al. Randomized, placebo-controlled, calcium supplementation study in pregnant Gambian women: effects on breast-milk calcium concentrations and infant birth weight, growth, and bone mineral accretion in the first year of life. Am J Clin Nutr. 2006;83:657–66.

    PubMed  CAS  Google Scholar 

  55. Jones G, Riley MD, Dwyer T. Maternal diet during pregnancy is associated with bone mineral density in children: a longitudinal study. Eur J Clin Nutr. 2000;54:749–56.

    Article  PubMed  CAS  Google Scholar 

  56. Tobias JH, Steer CD, Emmett PM, Tonkin RJ, Cooper C, Ness AR. Bone mass in childhood is related to maternal diet in pregnancy. Osteoporos Int. 2005;16:1731–41.

    Article  PubMed  CAS  Google Scholar 

  57. Cole ZA, Gale CR, Javaid MK, Robinson SM, Law C, Boucher BJ, et al. Maternal dietary patterns during pregnancy and childhood bone mass: a longitudinal study. J Bone Miner Res. 2009;24:663–8.

    Article  PubMed  Google Scholar 

  58. Ganpule A, Yajnik CS, Fall CH, Rao S, Fisher DJ, Kanade A, et al. Bone mass in Indian children–relationships to maternal nutritional status and diet during pregnancy: the Pune Maternal Nutrition Study. J Clin Endocrinol Metab. 2006;91:2994–3001.

    Article  PubMed  CAS  Google Scholar 

  59. Javaid MK, Crozier SR, Harvey NC, Gale CR, Dennison EM, Boucher BJ, et al. Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet. 2006;367:36–43.

    Article  PubMed  CAS  Google Scholar 

  60. Mahon P, Harvey N, Crozier S, Inskip H, Robinson S, Arden N, et al. Low maternal vitamin D status and fetal bone development: Cohort study. J Bone Miner Res. 2010;25:14–9.

    Google Scholar 

  61. Brooke OG, Brown IR, Bone CD, Carter ND, Cleeve HJ, Maxwell JD, et al. Vitamin D supplements in pregnant Asian women: effects on calcium status and fetal growth. Br Med J. 1980;280:751–4.

    Article  PubMed  CAS  Google Scholar 

  62. Marya RK, Rathee S, Dua V, Sangwan K. Effect of vitamin D supplementation during pregnancy on foetal growth. Indian J Med Res. 1988;88:488–92.

    PubMed  CAS  Google Scholar 

  63. Merialdi M, Caulfield LE, Zavaleta N, Figueroa A, Costigan KA, Dominici F, et al. Randomized controlled trial of prenatal zinc supplementation and fetal bone growth. Am J Clin Nutr. 2004;79:826–30.

    PubMed  CAS  Google Scholar 

  64. Morley R, Lucas A. Influence of early diet on outcome in preterm infants. Acta Paediatr Suppl. 1994;405:123–6.

    Article  PubMed  CAS  Google Scholar 

  65. Specker B. Nutrition influences bone development from infancy through toddler years. J Nutr. 2004;134:691S–5S.

    PubMed  Google Scholar 

  66. Specker BL, Beck A, Kalkwarf H, Ho M. Randomized trial of varying mineral intake on total body bone mineral accretion during the first year of life. Pediatrics. 1997;99:E12.

    Article  PubMed  CAS  Google Scholar 

  67. Jones G, Riley M, Dwyer T. Breastfeeding in early life and bone mass in prepubertal children: a longitudinal study. Osteoporos Int. 2000;11:146–52.

    Article  PubMed  CAS  Google Scholar 

  68. Micklesfield L, Levitt N, Dhansay M, Norris S, van der Merwe L, Lambert E. Maternal and early life influences on calcaneal ultrasound parameters and metacarpal morphometry in 7- to 9-year-old children. J Bone Miner Metab. 2006;24:235–42.

    Article  PubMed  Google Scholar 

  69. Kurl S, Heinonen K, Jurvelin JS, Lansimies E. Lumbar bone mineral content and density measured using a Lunar DPX densitometer in healthy full-term infants during the first year of life. Clin Physiol Funct Imaging. 2002;22:222–5.

    Article  PubMed  Google Scholar 

  70. Young RJ, Antonson DL, Ferguson PW, Murray ND, Merkel K, Moore TE. Neonatal and infant feeding: effect on bone density at 4 years. J Pediatr Gastroenterol Nutr. 2005;41:88–93.

    Article  PubMed  Google Scholar 

  71. Laskey MA, de Bono S, Smith EC, Prentice A. Influence of birth weight and early diet on peripheral bone in premenopausal Cambridge women: a pQCT study. J Musculoskelet Neuronal Interact. 2007;7:83.

    PubMed  CAS  Google Scholar 

  72. Ma DQ, Jones G. Clinical risk factors but not bone density are associated with prevalent fractures in prepubertal children. J Paediatr Child Health. 2002;38:497–500.

    Article  PubMed  CAS  Google Scholar 

  73. Manias K, McCabe D, Bishop N. Fractures and recurrent fractures in children; varying effects of environmental factors as well as bone size and mass. Bone. 2006;39:652–7.

    Article  PubMed  Google Scholar 

  74. Jones IE, Williams SM, Goulding A. Associations of birth weight and length, childhood size, and smoking with bone fractures during growth: evidence from a birth cohort study. Am J Epidemiol. 2004;59:343–50.

    Article  Google Scholar 

  75. Zamora SA, Rizzoli R, Belli DC, Slosman DO, Bonjour JP. Vitamin D supplementation during infancy is ­associated with higher bone mineral mass in prepubertal girls. J Clin Endocrinol Metab. 1999;84:4541–4.

    Article  PubMed  CAS  Google Scholar 

  76. Lanou AJ, Berkow SE, Barnard ND. Calcium, dairy products, and bone health in children and young adults: a reevaluation of the evidence. Pediatrics. 2005;115:736–43.

    Article  PubMed  Google Scholar 

  77. Ma D, Jones G. Soft drink and milk consumption, physical activity, bone mass, and upper limb fractures in ­children: a population-based case-control study. Calcif Tissue Int. 2004;75:286–91.

    Article  PubMed  CAS  Google Scholar 

  78. Goulding A, Grant AM, Williams SM. Bone and body composition of children and adolescents with repeated forearm fractures. J Bone Miner Res. 2005;20:2090–6.

    Article  PubMed  Google Scholar 

  79. Winzenberg TM, Shaw K, Fryer J, Jones G. Calcium supplementation for improving bone mineral density in children. The Cochrane Database of Systematic Reviews CD005119. 2006. doi:10.1002/14651858.CD005119.pub2

  80. Winzenberg T, Shaw K, Fryer J, Jones G. Effects of calcium supplementation on bone density in healthy children: meta-analysis of randomised controlled trials. Br Med J. 2006;333:775.

    Article  CAS  Google Scholar 

  81. Lau EMC, Lee WTK, Leung S, Cheng J. Milk supplementation – A feasible and effective way to enhance bone gain for Chinese adolescents in Hong Kong? Journal of Applied Nutrition. 1992;44:16–21.

    Google Scholar 

  82. Chan GM, Hoffman K, McMurry M. Effects of dairy products on bone and body composition in pubertal girls. J Pediatr. 1995 Apr;126:551–6.

    Article  PubMed  CAS  Google Scholar 

  83. Cadogan J, Eastell R, Jones N, Barker ME. Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. BMJ. 1997 Nov 15;315:1255–60.

    PubMed  CAS  Google Scholar 

  84. Merrilees MJ, Smart EJ, Gilchrist NL, Frampton C, Turner JG, Hooke E, et al. Effects of diary food supplements on bone mineral density in teenage girls. Eur J Nutr. 2000 Dec;39:256–62.

    Article  PubMed  CAS  Google Scholar 

  85. Lau EM, Lynn H, Chan YH, Lau W, Woo J. Benefits of milk powder supplementation on bone accretion in Chinese children. Osteoporos Int. 2004 Aug;15:654–8.

    Article  PubMed  CAS  Google Scholar 

  86. Du X, Zhu K, Trube A, Zhang Q, Ma G, Hu X, et al. School-milk intervention trial enhances growth and bone mineral accretion in Chinese girls aged 10–12 years in Beijing. Br J Nutr. 2004 Jul;92:159–68.

    Article  PubMed  CAS  Google Scholar 

  87. Zhu K, Zhang Q, Foo LH, Trube A, Ma G, Hu X, et al. Growth, bone mass, and vitamin D status of Chinese adolescent girls 3 y after withdrawal of milk supplementation. Am J Clin Nutr. 2006 Mar;83:714–21.

    PubMed  CAS  Google Scholar 

  88. Vitamin D and adult bone health in Australia and New Zealand: a position statement. Med J Aust. 21 Mar 2005;182:281–5.

    Google Scholar 

  89. Cheng S, Tylavsky F, Kroger H, Karkkainen M, Lyytikainen A, Koistinen A, et al. Association of low 25-hydroxyvitamin D concentrations with elevated parathyroid hormone concentrations and low cortical bone density in early pubertal and prepubertal Finnish girls. Am J Clin Nutr. 2003 Sep;78:485–92.

    PubMed  CAS  Google Scholar 

  90. Lehtonen-Veromaa MK, Mottonen TT, Nuotio IO, Irjala KM, Leino AE, Viikari JS. Vitamin D and attainment of peak bone mass among peripubertal Finnish girls: a 3-y prospective study. Am J Clin Nutr. 2002 Dec;76:1446–53.

    PubMed  CAS  Google Scholar 

  91. Outila TA, Karkkainen MU, Lamberg-Allardt CJ. Vitamin D status affects serum parathyroid hormone concentrations during winter in female adolescents: associations with forearm bone mineral density. Am J Clin Nutr. 2001 Aug;74:206–10.

    PubMed  CAS  Google Scholar 

  92. Cashman KD, Hill TR, Cotter AA, Boreham CA, Dubitzky W, Murray L, et al. Low vitamin D status adversely affects bone health parameters in adolescents. Am J Clin Nutr. 2008 Apr;87:1039–44.

    PubMed  CAS  Google Scholar 

  93. Munns C, Zacharin MR, Rodda CP, Batch JA, Morley R, Cranswick NE, et al. Prevention and treatment of infant and childhood vitamin D deficiency in Australia and New Zealand: a consensus statement. Med J Aust. 2006 Sep 4;185:268–72.

    PubMed  Google Scholar 

  94. Guillemant J, Le HT, Maria A, Allemandou A, Peres G, Guillemant S. Wintertime vitamin D deficiency in male adolescents: effect on parathyroid function and response to vitamin D3 supplements. Osteoporos Int. 2001;12:875–9.

    Article  PubMed  CAS  Google Scholar 

  95. Tylavsky FA, Cheng S, Lyytikainen A, Viljakainen H, Lamberg-Allardt C. Strategies to improve vitamin D status in northern European children: exploring the merits of vitamin D fortification and supplementation. J Nutr. 2006 Apr;136:1130–4.

    PubMed  CAS  Google Scholar 

  96. Looker AC, Dawson-Hughes B, Calvo MS, Gunter EW, Sahyoun NR. Serum 25-hydroxyvitamin D status of adolescents and adults in two seasonal subpopulations from NHANES III. Bone. 2002 May;30:771–7.

    Article  PubMed  CAS  Google Scholar 

  97. El-Hajj Fuleihan G, Nabulsi M, Choucair M, Salamoun M, Hajj Shahine C, Kizirian A, et al. Hypovitaminosis D in healthy schoolchildren. Pediatrics. 2001 Apr;107:E53.

    Article  PubMed  CAS  Google Scholar 

  98. Rockell JE, Skeaff CM, Williams SM, Green TJ. Serum 25-hydroxyvitamin D concentrations of New Zealanders aged 15 years and older. Osteoporos Int. 2006;17:1382–9.

    Article  PubMed  CAS  Google Scholar 

  99. Rockell JE, Green TJ, Skeaff CM, Whiting SJ, Taylor RW, Williams SM, et al. Season and ethnicity are determinants of serum 25-hydroxyvitamin D concentrations in New Zealand children aged 5–14 y. J Nutr. 2005 Nov;135:2602–8.

    PubMed  CAS  Google Scholar 

  100. Jones G, Blizzard C, Riley MD, Parameswaran V, Greenaway TM, Dwyer T. Vitamin D levels in prepubertal children in Southern Tasmania: prevalence and determinants. Eur J Clin Nutr. 1999 Oct;53:824–9.

    Article  PubMed  CAS  Google Scholar 

  101. Jones G, Dwyer T, Hynes KL, Parameswaran V, Greenaway TM. Vitamin D insufficiency in adolescent males in Southern Tasmania: prevalence, determinants, and relationship to bone turnover markers. Osteoporos Int. 2005 Jun;16:636–41.

    Article  PubMed  CAS  Google Scholar 

  102. El-Hajj Fuleihan G, Nabulsi M, Tamim H, Maalouf J, Salamoun M, Choucair M, et al. Impact of vitamin D supplementation on musculoskeletal parameters in adolescents: a randomised trial. J Bone Miner Res. 2004 Oct;19:S13.

    Google Scholar 

  103. El-Hajj Fuleihan G, Nabulsi M, Tamim H, Maalouf J, Salamoun M, Khalife H, et al. Effect of vitamin D replacement on musculoskeletal parameters in school children: a randomized controlled trial. J Clin Endocrinol Metab. 2006 Feb;91:405–12.

    Article  PubMed  CAS  Google Scholar 

  104. Andersen R, Molgaard C, Skovgaard LT, Brot C, Cashman KD, Jakobsen J, et al. Effect of vitamin D supplementation on bone and vitamin D status among Pakistani immigrants in Denmark: a randomised double-blinded placebo-controlled intervention study. Br J Nutr. 2008 Jul;100:197–207.

    Article  PubMed  CAS  Google Scholar 

  105. Viljakainen HT, Natri AM, Karkkainen M, Huttunen MM, Palssa A, Jakobsen J, et al. A positive dose-response effect of vitamin D supplementation on site-specific bone mineral augmentation in adolescent girls: a double-blinded randomized placebo-controlled 1-year intervention. J Bone Miner Res. 2006 Jun;21:836–44.

    Article  PubMed  CAS  Google Scholar 

  106. Jones G, Dwyer T, Hynes K, Dalais FS, Parameswaran V, Greenaway TM. A randomized controlled trial of phytoestrogen supplementation, growth and bone turnover in adolescent males. Eur J Clin Nutr. 2003 Feb;57:324–7.

    Article  PubMed  CAS  Google Scholar 

  107. Jones G, Riley MD, Whiting S. Association between urinary potassium, urinary sodium, current diet, and bone density in prepubertal children. Am J Clin Nutr. 2001 Apr;73:839–44.

    PubMed  CAS  Google Scholar 

  108. Tylavsky FA, Holliday K, Danish R, Womack C, Norwood J, Carbone L. Fruit and vegetable intakes are an independent predictor of bone size in early pubertal children. Am J Clin Nutr. 2004 Feb;79:311–7.

    PubMed  CAS  Google Scholar 

  109. McGartland CP, Robson PJ, Murray LJ, Cran GW, Savage MJ, Watkins DC, et al. Fruit and vegetable consumption and bone mineral density: the Northern Ireland Young Hearts Project. Am J Clin Nutr. 2004 Oct;80:1019–23.

    PubMed  CAS  Google Scholar 

  110. Prynne CJ, Mishra GD, óConnell MA, Muniz G, Laskey MA, Yan L, et al. Fruit and vegetable intakes and bone mineral status: a cross sectional study in 5 age and sex cohorts. Am J Clin Nutr. 2006 Jun;83:1420–8.

    PubMed  CAS  Google Scholar 

  111. Vatanparast H, Baxter-Jones A, Faulkner RA, Bailey DA, Whiting SJ. Positive effects of vegetable and fruit consumption and calcium intake on bone mineral accrual in boys during growth from childhood to adolescence: the University of Saskatchewan Pediatric Bone Mineral Accrual Study. Am J Clin Nutr. 2005 Sep;82:700–6.

    PubMed  CAS  Google Scholar 

  112. Hirota T, Kusu T, Hirota K. Improvement of nutrition stimulates bone mineral gain in Japanese school children and adolescents. Osteoporos Int. 2005 Sep;16:1057–64.

    Article  PubMed  Google Scholar 

  113. New SA, Robins SP, Campbell MK, Martin JC, Garton MJ, Bolton-Smith C, et al. Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? Am J Clin Nutr. 2000 Jan;71:142–51.

    PubMed  CAS  Google Scholar 

  114. Knai C, Pomerleau J, Lock K, McKee M. Getting children to eat more fruit and vegetables: a systematic review. Prev Med. 2006 Feb;42:85–95.

    Article  PubMed  Google Scholar 

  115. Jones G, Dwyer T, Hynes KL, Parameswaran V, Udayan R, Greenaway TM. A prospective study of urinary electrolytes and bone turnover in adolescent males. Clin Nutr. 2007 Oct;26:619–23.

    Article  PubMed  CAS  Google Scholar 

  116. óBrien KO, Abrams SA, Stuff JE, Liang LK, Welch TR. Variables related to urinary calcium excretion in young girls. J Pediatr Gastroenterol Nutr. 1996 Jul;23:8–12.

    Article  Google Scholar 

  117. Matkovic V, Ilich JZ, Andon MB, Hsieh LC, Tzagournis MA, Lagger BJ, et al. Urinary calcium, sodium, and bone mass of young females. Am J Clin Nutr. 1995 Aug;62:417–25.

    PubMed  CAS  Google Scholar 

  118. Duff TL, Whiting SJ. Calciuric effects of short-term dietary loading of protein, sodium chloride and potassium citrate in prepubescent girls. J Am Coll Nutr. 1998 Apr;17:148–54.

    PubMed  CAS  Google Scholar 

  119. Hoppe C, Molgaard C, Michaelsen KF. Bone size and bone mass in 10-year-old Danish children: effect of current diet. Osteoporos Int. 2000;11:1024–30.

    Article  PubMed  CAS  Google Scholar 

  120. Whiting S, Heaky A, Psiuk S, Mirwald R, Kowalski K, Bailey DA. Relationship between carbonated and other low nutrient dense beverages and bone mineral content of adolescents. Nutr Res. 2001;21:1107–15.

    Article  CAS  Google Scholar 

  121. McGartland C, Robson PJ, Murray L, Cran G, Savage MJ, Watkins D, et al. Carbonated soft drink consumption and bone mineral density in adolescence: the Northern Ireland Young Hearts project. J Bone Miner Res. 2003 Sep;18:1563–9.

    Article  PubMed  CAS  Google Scholar 

  122. Wyshak G, Frisch RE. Carbonated beverages, dietary calcium, the dietary calcium/phosphorus ratio, and bone fractures in girls and boys. J Adolesc Health. 1994 May;15:210–5.

    Article  PubMed  CAS  Google Scholar 

  123. Petridou E, Karpathios T, Dessypris N, Simou E, Trichopoulos D. The role of dairy products and non alcoholic beverages in bone fractures among schoolage children. Scand J Soc Med. 1997 Jun;25:119–25.

    PubMed  CAS  Google Scholar 

  124. Black RE, Williams SM, Jones IE, Goulding A. Children who avoid drinking cow milk have low dietary calcium intakes and poor bone health. Am J Clin Nutr. 2002 Sep;76:675–80.

    PubMed  CAS  Google Scholar 

  125. Goulding A, Rockell JE, Black RE, Grant AM, Jones IE, Williams SM. Children who avoid drinking cow’s milk are at increased risk for prepubertal bone fractures. J Am Diet Assoc. 2004 Feb;104:250–3.

    Article  PubMed  Google Scholar 

  126. Vatanparast H, Whiting SJ. Early milk intake, later bone health: results from using the milk history questionnaire. Nutr Rev. 2004 Jun;62:256–60.

    Article  PubMed  Google Scholar 

  127. Kalkwarf HJ, Khoury JC, Lanphear BP. Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in US women. Am J Clin Nutr. 2003 Jan;77:257–65.

    PubMed  CAS  Google Scholar 

  128. Ilich JZ, Kerstetter JE. Nutrition in bone health revisited: a story beyond calcium. J Am Coll Nutr. 2000 Nov–Dec;19:715–37.

    PubMed  CAS  Google Scholar 

  129. Rizzoli R. Nutrition: its role in bone health. Best Pract Res Clin Endocrinol Metab. 2008 Oct;22:813–29.

    Article  PubMed  CAS  Google Scholar 

  130. Bassey EJ, Littlewood JJ, Rothwell MC, Pye DW. Lack of effect of supplementation with essential fatty acids on bone mineral density in healthy pre- and postmenopausal women: two randomized controlled trials of Efacal v. calcium alone. Br J Nutr. 2000 Jun;83:629–35.

    Article  PubMed  CAS  Google Scholar 

  131. Prentice A. Diet, nutrition and the prevention of osteoporosis. Public Health Nutr. 2004 Feb;7:227–43.

    Article  PubMed  CAS  Google Scholar 

  132. Cumming RG. Calcium intake and bone mass: a quantitative review of the evidence. Calcif Tissue Int. 1990 Oct;47:194–201.

    Article  PubMed  CAS  Google Scholar 

  133. Welten DC, Kemper HC, Post GB, van Staveren WA. A meta-analysis of the effect of calcium intake on bone mass in young and middle aged females and males. J Nutr. 1995 Nov;125:2802–13.

    PubMed  CAS  Google Scholar 

  134. Elders PJ, Lips P, Netelenbos JC, van Ginkel FC, Khoe E, van der Vijgh WJ, et al. Long-term effect of calcium supplementation on bone loss in perimenopausal women. J Bone Miner Res. 1994 Jul;9:963–70.

    Article  PubMed  CAS  Google Scholar 

  135. Rico H, Revilla M, Villa LF, Alvarez de Buergo M, Arribas I. Longitudinal study of the effect of calcium pidolate on bone mass in eugonadal women. Calcif Tissue Int. 1994 Jun;54:477–80.

    Article  PubMed  CAS  Google Scholar 

  136. Smith EL, Gilligan C, Smith PE, Sempos CT. Calcium supplementation and bone loss in middle-aged women. Am J Clin Nutr. 1989 Oct;50:833–42.

    PubMed  CAS  Google Scholar 

  137. Heaney RP. The bone remodeling transient: interpreting interventions involving bone-related nutrients. Nutr Rev. 2001 Oct;59:327–34.

    Article  PubMed  CAS  Google Scholar 

  138. Prior JC, Vigna YM, Barr SI, Rexworthy C, Lentle BC. Cyclic medroxyprogesterone treatment increases bone density: a controlled trial in active women with menstrual cycle disturbances. Am J Med. 1994 Jun;96:521–30.

    Article  PubMed  CAS  Google Scholar 

  139. van der Mei IA, Ponsonby AL, Dwyer T, Blizzard L, Simmons R, Taylor BV, et al. Past exposure to sun, skin phenotype, and risk of multiple sclerosis: case-control study. Bmj. 2003 Aug 9;327:316.

    Article  PubMed  Google Scholar 

  140. Pasco JA, Henry MJ, Nicholson GC, Sanders KM, Kotowicz MA. Vitamin D status of women in the Geelong Osteoporosis Study: association with diet and casual exposure to sunlight. Med J Aust. 2001 Oct 15;175:401–5.

    PubMed  CAS  Google Scholar 

  141. ranney A, Horsley T, O’Donnell S, Weiler H, Puil L, Ooi D, et al. Effectiveness and safety of vitamin D in relation to bone health. Evid Rep Technol Assess (Full Rep). 2007 Aug(158):1–235.

    Google Scholar 

  142. Bischoff-Ferrari HA, Dietrich T, Orav EJ, Dawson-Hughes B. Positive association between 25-hydroxy vitamin D levels and bone mineral density: a population-based study of younger and older adults. Am J Med. 2004 May 1;116:634–9.

    Article  PubMed  CAS  Google Scholar 

  143. Saadi HF, Reed RL, Carter AO, Al-Suhaili AR. Correlation of quantitative ultrasound parameters of the calcaneus with bone density of the spine and hip in women with prevalent hypovitaminosis D. J Clin Densitom. 2004 Fall;7:313–8.

    Article  PubMed  CAS  Google Scholar 

  144. Pasco JA, Henry MJ, Nicholson GC, Brennan SL, Kotowicz MA. Behavioural and physical characteristics associated with vitamin D status in women. Bone. 2009 Jun;44:1085–91.

    Article  PubMed  CAS  Google Scholar 

  145. Lappe J, Cullen D, Haynatzki G, Recker R, Ahlf R, Thompson K. Calcium and vitamin d supplementation decreases incidence of stress fractures in female navy recruits. J Bone Miner Res. 2008 May;23:741–9.

    Article  PubMed  CAS  Google Scholar 

  146. Nguyen ND, Ahlborg HG, Center JR, Eisman JA, Nguyen TV. Residual lifetime risk of fractures in women and men. J Bone Miner Res. 2007 Jun;22:781–8.

    Article  PubMed  Google Scholar 

  147. Khosla S, Amin S, Orwoll E. Osteoporosis in men. Endocr Rev. 2008 Jun;29:441–64.

    Article  PubMed  CAS  Google Scholar 

  148. Warming L, Hassager C, Christiansen C. Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int. 2002;13:105–12.

    Article  PubMed  CAS  Google Scholar 

  149. Nordstrom P, Neovius M, Nordstrom A. Early and rapid bone mineral density loss of the proximal femur in men. J Clin Endocrinol Metab. 2007 May;92:1902–8.

    Article  PubMed  CAS  Google Scholar 

  150. Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, et al. A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res. 2008 Feb;23:205–14.

    Article  PubMed  Google Scholar 

  151. Szulc P, Munoz F, Marchand F, Chapuy MC, Delmas PD. Role of vitamin D and parathyroid hormone in the regulation of bone turnover and bone mass in men: the MINOS study. Calcif Tissue Int. 2003 Dec;73:520–30.

    Article  PubMed  CAS  Google Scholar 

  152. Borgstrom F, Kanis JA. Health economics of osteoporosis. Best Pract Res Clin Endocrinol Metab. 2008 Oct;22:885–900.

    Article  PubMed  Google Scholar 

  153. Fleurence RL, Iglesias CP, Torgerson DJ. Economic evaluations of interventions for the prevention and treatment of osteoporosis: a structured review of the literature. Osteoporos Int. 2006 Jan;17:29–40.

    Article  PubMed  Google Scholar 

  154. Zethraeus N, Borgstrom F, Strom O, Kanis JA, Jonsson B. Cost-effectiveness of the treatment and prevention of osteoporosis–a review of the literature and a reference model. Osteoporos Int. 2007 Jan;18:9–23.

    Article  PubMed  CAS  Google Scholar 

  155. Jones G, Cooley HM. Symptomatic fracture incidence in those under 50 years of age in southern Tasmania. J Paediatr Child Health. 2002 Jun;38:278–83.

    Article  PubMed  CAS  Google Scholar 

  156. Zethraeus N, Ben Sedrine W, Caulin F, Corcaud S, Gathon HJ, Haim M, et al. Models for assessing the cost-effectiveness of the treatment and prevention of osteoporosis. Osteoporos Int. 2002 Nov;13:841–57.

    Article  PubMed  CAS  Google Scholar 

  157. Flynn J, Foley S, Jones G. Can BMD assessed by DXA at age 8 predict fracture risk in boys and girls during puberty?: an eight-year prospective study. J Bone Miner Res. 2007 Sep;22:1463–7.

    Article  PubMed  Google Scholar 

  158. Pye SR, Tobias J, Silman AJ, Reeve J, óNeill TW. Childhood fractures do not predict future fractures: results from the European Prospective Osteoporosis Study. J Bone Miner Res. 2009 Jul;24:1314–8.

    Article  PubMed  Google Scholar 

  159. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, et al. Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet. 1993 Jan;9(341):72–5.

    Article  Google Scholar 

  160. Cohen J. Statistical power analysis for the behavorial sciences. Hillside, NJ: Lawrence Erlbaum; 1988.

    Google Scholar 

  161. Freudenheim JL, Johnson NE, Smith EL. Relationships between usual nutrient intake and bone-mineral content of women 35–65 years of age: longitudinal and cross-sectional analysis. Am J Clin Nutr. 1986 Dec;44:863–76.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Winzenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Winzenberg, T., Jones, G. (2011). Cost-Effectiveness of Nutritional Interventions for Bone Health in Children and Young Adults – What is Known and Where are the Gaps?. In: Gerald, J., Watson, R., Preedy, V. (eds) Nutrients, Dietary Supplements, and Nutriceuticals. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-60761-308-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-308-4_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-307-7

  • Online ISBN: 978-1-60761-308-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics