Skip to main content

Left Ventricular Hypertrophy and Treatment with Renin Angiotensin System Inhibition

  • Chapter
  • First Online:
Book cover Renin Angiotensin System and Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Hypertensive left ventricular hypertrophy can be considered as the macroscopic result of the exaggerated growth response of the cardiomyocyte to the mechanical stress imposed on the left ventricle by the progressively increasing arterial pressure. Besides cardiomyocyte hypertrophy exaggerated cardiomyocyte apoptosis and alterations in the extracellular matrix and the microcirculation also develop, which lead to the structural remodeling of the myocardium. These changes may help to explain why left ventricular hypertrophy represents not only an adaptation to increased pressure load but also an independent risk factor and a marker of risk of cardiovascular complications in hypertensive patients. Experimental evidence support the notion that angiotensin II contributes in a significant way to the development of hypertrophy and remodeling of the hypertensive left ventricle. In accordance with this, data from a large number of clinical studies have shown that long-term antihypertensive treatment with drugs inhibiting the renin agiotensin system, namely angiotensin-converting enzyme inhibitors and angiotensin type 1 receptor antagonists, is associated with regression of left ventricular hypertrophy, and this is associated with improvement in outcome and with the decrease of the risk of cardiovascular morbidity and mortality, even independently from changes of other risk factors, including blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frohlich, E.D., Apstein, C., Chobanian, A.V., Devereux, R.B., Dustan, H.P., Dzau, V., Fuad-Tarazi, F., Horan, M.J., Marcus, M., and Massie, B. (1992) The heart in hypertension. N Engl J Med 327, 998–1008.

    Article  CAS  PubMed  Google Scholar 

  2. Díez J. (2007) Hypertensive heart disease. In: Comprehensive Hypertension, G.Y.H. Lip, J.E. Hall (eds.), Mosby Elsevier,Philadelphia, 621–631.

    Google Scholar 

  3. Levy, D., Garrison, R.J., Savage, D.D., Kannel, W.B., and Castelli, W.P. (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322, 1561–1566.

    Article  CAS  PubMed  Google Scholar 

  4. Levy, D., Anderson, K.M., Savage, D.D., Kannel, W.B., Chistiansen, J.C., and Castelli, W.P. (1988) Echocardiographically detected left ventricular hypertrophy: prevalence and risk factors. The Framingham Heart Study. Ann Intern Med 108, 7–13.

    CAS  PubMed  Google Scholar 

  5. Schillaci, G., Verdecchia, P., Porcellati, C., Cuccurullo, O., Cusco, C., and Perticone, F. (2000) Continuous relation between left ventricular mass and cardiovascular risk in essential hypertensionHypertension 35, 580–586.

    CAS  PubMed  Google Scholar 

  6. Yurenev, A.P., Dyakonova, H.G., Novikov, I.D., Vitols, A., Pahl, L., Haynemann, G., Wallrabe, D., Tsifkova, R., Romanovska, L., and Niderle, P. (1992) Management of essential hypertension in patients with different degrees of left ventricular hypertrophy. Multicenter trial. Am J Hypertens 5(6 Pt 2), 182S–189S.

    CAS  PubMed  Google Scholar 

  7. Devereux, R., Wachtell, K., Gerdts, E., Boman, K., Nieminen, M.S., Papademetriou, V., Rokkedal, J., Harris, K., Aurup, P., and Dahl B. (2004) Prognostic significance of left ventricular mass change during treatment of hypertension. JAMA 292, 2350–2356.

    Article  CAS  PubMed  Google Scholar 

  8. Selvetella, G., and Lembo, G. (2005) Mechanisms of cardiac hypertrophy. Heart Fail Clin 1, 263–273.

    Article  PubMed  Google Scholar 

  9. Swynghedauw, B. (1999) Molecular mechanisms of myocardial remodelling. Physiol Rev 79, 215–262.

    CAS  PubMed  Google Scholar 

  10. Chien, K.R., Grace, A.A., and Hunter, J.J. (1999) Molecular and cellular biology of cardiac hypertrophy and failure. In: Molecular Basis of Cardiovascular Disease, K.R. Chien (ed.), W.B. Saunders, Philadelphia, 211–250.

    Google Scholar 

  11. Meijs, M.F.L., de Windt, L.J., de Jonge, N., Cramer, M.J.M., Bots, M.L., Mali, W.P.Th.M., and Doevendans, P.A. (2007) Left ventricular hypertrophy: a shift in paradigma. Curr Med Chem 14, 157–71.

    Article  CAS  PubMed  Google Scholar 

  12. Samuel, J-L., and Swynghedauw, B. (2008) Is cardiac hypertrophy a required compensatory mechanism in pressure-overloaded heart? J Hypertens 26, 857–858.

    Article  CAS  PubMed  Google Scholar 

  13. Sadoshima, J., and Izumo, S. (1997) The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 59, 551–571.

    Article  CAS  PubMed  Google Scholar 

  14. Nishida, K., and Otsu, K. (2008) Cell death in heart failure. Circ J 72, A17–21.

    Article  PubMed  Google Scholar 

  15. Díez, J., González, A., and López, B. (2005) Mechanisms of disease: pathologic structural remodeling is more than adaptive hypertrophy in hypertensive heart disease. Nat Clin Pract Cardiovasc Med 2, 209–216.

    Google Scholar 

  16. Feihl, F., Liaudet, L., Waeber, B., and Levy, B.I. (2006) Hypertension: a disease of the microcirculation? Hypertension 48, 1012–1017.

    Article  CAS  PubMed  Google Scholar 

  17. González, A., Fortuño M.A., Querejeta, R., Ravassa, S., López, B., López, N., and Díez, J. (2003) Cardiomyocyte apoptosis in hypertensive cardiomyopathy. Cardiovasc Res 59, 549–562.

    Article  PubMed  Google Scholar 

  18. González, A., López, B., and Díez, J. (2004) Fibrosis in hypertensive heart disease: role of the renin-angiotensin-aldosterone system. Med Clin North Am 88, 83–97.

    Article  PubMed  Google Scholar 

  19. Schiffrin, E.L., and Touyz, R.M. (2004) From bench to bedside: role of renin-angiotensin-aldosterone system in remodelling of resistance arteries in hypertension. Am J Physiol Heart Circ Physiol 287, H435–446.

    Article  CAS  PubMed  Google Scholar 

  20. Reudelhuber, T.L., Bernstein, K.E., and Delafontaine, P. (2007) Is angiotensin II a direct mediator of left ventricular hypertrophy? Time for another look. Hypertension 49, 1196–1201.

    Article  CAS  PubMed  Google Scholar 

  21. Ahn, J., Varagic, J., Slama, M., Susic, D., and Frohlich, E.D. (2004) Cardiac structural and functional responses to salt loading in SHR. Am J Physiol Heart Circ Physiol 287, H767–H772.

    Article  CAS  PubMed  Google Scholar 

  22. Varagic, J, Frohlich, E.D., Díez, J., Susic, D., Ahn, J., González, A., and López, B. (2006) Myocardial fibrosis, impaired coronary hemodynamics, and biventricular dysfunction in salt-loaded SHR. Am J Physiol Heart Circ Physiol 290, H1503–H1509.

    Google Scholar 

  23. Varagic, J., Frohlich, E.D., Susic, D., Ahn, J., Matavelli, L., López, B., Díez, J. (2008) AT1 receptor antagonism attenuates target organ effects of salt excess in SHRs without affecting pressure. Am J Physiol Heart Circ Physiol 294, H853–H858.

    Article  CAS  PubMed  Google Scholar 

  24. Schmieder, R.E., Langenfeld, M.R., Friedrich, A., Schobel, H., Gatzka, C.D., and Weihprecht, H. (1996) Angiotensin II related to sodium excretion modulates left ventricular structure in human essential hypertension. Circulation 94, 1304–1309.

    CAS  PubMed  Google Scholar 

  25. Schlaich, M.P., Schobel, H., Langenfeld, M.R., Hilgers, K., and Schmieder, R. (1988) Inadequate suppression of angiotensin II modulates left ventricular structure in humans. Clin Nephrol 49, 153–159.

    Google Scholar 

  26. Kang, M., Chung, Y., and Walker, J.W. (2007) G-protein coupled receptor signaling in myocardium: not for the faint of heart. Physiology 22, 174–184.

    Article  CAS  PubMed  Google Scholar 

  27. Sirker, A., Zhang, M., Murdoch, C., and Shah, A.M. (2007) Involvement of NADPH oxidases in cardiac remodelling and heart failure. Am J Nephrol 27, 649–660.

    Article  CAS  PubMed  Google Scholar 

  28. LeWinter, M.M., and VanBuren, P. (2005) Sarcomeric proteins in hypertrophied and failing myocardium: an overview. Heart Fail Rev 10, 173–174.

    Article  CAS  PubMed  Google Scholar 

  29. Zou, Y., Akazawa, H., Qin, Y., Sano, M., Takano, H., Minamino, T., Makita, N., Iwanaga, K., Zhu, W., Kudoh, S., To, H., Tamura, K., Kihara, M., Nagai, T., Fukamizu, A., Umemura, S., Iiri, T., Fujita, T., and Komuro, I. (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6, 499–506.

    Article  CAS  PubMed  Google Scholar 

  30. Leri, A., Claudio, P.P., Li, Q., Wang, X., Reiss, K., Wang, S., Malhotra, A., Kajstura, J., and Anversa, P. (1998) Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin Invest 101, 1326–1342.

    Article  CAS  PubMed  Google Scholar 

  31. Sugino, H., Ozono, R., Kurisu, S., Matsuura, H., Ishida, M., Oshima, T., Kambe, M., Teranishi, Y., Masaki, H., and Matsubara, H. (2001) Apoptosis is not increased in myocardium overexpressing type 2 angiotensin II receptor in transgenic mice. Hypertension 37, 1394–1398.

    CAS  PubMed  Google Scholar 

  32. Ikeda, S., Hamada, M., Qu, P., Hiasa, G., Hashida, H., Shigematsu, Y., and Hiwada, K. (2002) Relationship between cardiomyocyte cell death and cardiac function during hypertensive cardiac remodelling in Dahl rats. Clin Sci 102, 329–335.

    Article  PubMed  Google Scholar 

  33. González, A., López, B., Querejeta, R., and Díez, J. (2002) Regulation of myocardial fibrillar collagen by angiotensina II. A role in hypertensive heart disease? J Mol Cell Cardiol 34, 1585–1593.

    Article  PubMed  Google Scholar 

  34. Bouzegrhane, F., and Thibault, G. (2002) Is angiotensin II a proliferative factor of cardiac fibroblasts? Cardiovasc Res 53, 304–312.

    Article  CAS  PubMed  Google Scholar 

  35. Dostal, D.E. (2001) Regulation of cardiac collagen. Angiotensin and cross-talk with local growth factors. Hypertension 37, 841–844.

    CAS  PubMed  Google Scholar 

  36. Stacy, L.B., Yu, Q., Horak, K., and Larson, D.F. (2007) Effect of angiotensina II on primary cardiac fibroblast matrix metalloproteinase activities. Perfusion 22, 51–55.

    Article  PubMed  Google Scholar 

  37. Chua, C.C., Hamdy, R.C., and Chua, B.H. (1996) Angiotensin II induces TIMP-1 production in rat heart endothelial cells. Biochim Biophys Acta 1311, 175–180.

    Article  PubMed  Google Scholar 

  38. Higuchi, S., Ohtsu, H., Suzuki, H., Frank, G.D., and Eguchi, S. (2007) Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci 112, 417–428.

    Article  CAS  PubMed  Google Scholar 

  39. Touyz, R.M. (2000) Oxidative stress and vascular damage in hypertension. Curr Hypertens Res 2, 98–105.

    Article  CAS  Google Scholar 

  40. Robertson, A.L., and Khairallah, P.A. (1971) Angiotensin II: rapid localization in nuclei of smooth and cardiac muscle. Science 172, 1138–1139.

    Article  CAS  PubMed  Google Scholar 

  41. Re, R.N., and Cook, J.L. (2007) Mechanisms of disease: intracrine physiology in the cardiovascular system. Nat Clin Pract Cardiovasc Med 4, 549–557.

    Article  CAS  PubMed  Google Scholar 

  42. Baker, B,M, Chernin, M.I., Schreiber, T., Sanghi, S., Haiderzaidi, S., Booz, G.W., Dostal, D.E., and Kumar, R. (2004) Evidence of a novel intracrine mechanism in angiotensin II-induced cardiac hypertrophy. Regul Pept 120, 5–13.

    Article  CAS  PubMed  Google Scholar 

  43. Mosterd, A., D'Agostino, R.B., Silbershatz, H., Sytkowski, P.A., Kannel, W.B., Grobbee, D.E., and Levy, D. (1999) Trends in the prevalence of hypertension, antihypertensive therapy, and left ventricular hypertrophy from 1950 to 1989. N Eng J Med 340, 1221–1227.

    Article  CAS  Google Scholar 

  44. Klingbeil, A.U., Schneider, M., Martus, P., Messerli, F.H., and Schmieder, R.E. (2003) A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. Am J Med 115, 41–46.

    Article  PubMed  Google Scholar 

  45. Mathew, J., Sleight, P., Lonn, E., Johnstone, D., Pogue, J., Yi, Q., Bosch, J., Sussex, B., Probstfield, J., and Yusuf, S. (2001) Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation 104, 1615–1621.

    Article  CAS  PubMed  Google Scholar 

  46. Devereux, R.B., Dahlöf B., Gerdts, E., Boman, K., Nieminen, M.S., Papademetriou, V., Rokkedal, J., Harris, K.E., Edelman, J.M., and Wachtell, K. (2004) Regression of hypertensive left ventricular hypertrophy by losartan compared with atenolol: the Losartan Intervention for Endpoint Reduction in Hypertension (LIFE) trial. Circulation 110, 1456–1462.

    Article  CAS  PubMed  Google Scholar 

  47. Wright, J.W., Mizutani, S., and Harding, J.W. (2008) Pathways involved in the transition from hypertension to hypertrophy to heart failure. Treatment strategies. Heart Fail Rev 13, 367–375.

    Article  CAS  PubMed  Google Scholar 

  48. Prisant, L.M. (2008) Management of hypertension in patients with cardiac disease: use of renin-angiotensin blocking agents. Am J Med 121(8 Suppl), S8–S15.

    Article  PubMed  Google Scholar 

  49. Fortuño M.A., González A, Ravassa, S., López, B., and Díez, J. (2003) Clinical implications of apoptosis in hypertensive heart disease. Am J Heart Circ Physiol 284, H495–H506.

    Google Scholar 

  50. González, A., López, B., Ravassa, S., Querejeta, R., Larman, M., Díez, J., and Fortuño, M.A. (2002) Stimulation of cardiac apoptosis in essential hypertension: potential role of angiotensin II. Hypertension 39, 75–80.

    Article  PubMed  Google Scholar 

  51. Brilla, C.G., Funck, R.C., and Rupp, H. (2000) Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation 102, 1388–1393.

    CAS  PubMed  Google Scholar 

  52. López, B., Querejeta, R., Varo, N., González, A., Larman, M., Martínez-Ubago, J.L., and Díez J. (2001) Usefulness of serum carboxy-terminal propeptide of procollagen type I in assessment of the cardioreparative ability of antihypertensive treatment in hypertensive patients. Circulation 104, 286–291.

    PubMed  Google Scholar 

  53. Díez, J., Querejeta, R., López, B., González, A., Larman, M., and Martíz-Ubago, J.L. (2002) Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation 105, 2512–2517.

    Article  PubMed  Google Scholar 

  54. Varo, N., Etayo, J.C., Zalba, G., Beaumont, J., Iraburu, M.J., Montiel, C., Gil, M.J., Monreal, I., and Díez, J. (1999) Losartan inhibits the post-transcriptional synthesis of collagen type I and reverses left ventricular fibrosis in spontaneously hypertensive rats. J Hypertens 17, 107–114.

    Article  CAS  PubMed  Google Scholar 

  55. Varo, N., Iraburu, M.J., Varela, M., López, B., Etayo, J.C., and Díez, J. (2000) Chronic AT1 blockade stimulates extracellular collagen type I degradation and reverses myocardial fibrosis in spontaneously hypertensive rats. Hypertension 35, 1197–1202.

    CAS  PubMed  Google Scholar 

  56. Brilla, C.G., Janicki, J.S., and Weber, K.T. (1991) Cardioreparative effects of lisinopril in rats with genetic hypertension and left ventricular hypertrophy. Circulation 83, 1771–1779.

    CAS  PubMed  Google Scholar 

  57. McKelvie, R.S., Yusuf, S., Pericak, D., Avezum, A., Burns, R.J., Probstfield, J., Tsuyuki, R.T., White, M., Rouleau, J., Latini, R., Maggioni, A., Young, J., and Pogue, J. (1999) Comparison of candesartan, enalapril, and their combination in congestive heart failure: randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators. Circulation 100, 1056–1064.

    CAS  PubMed  Google Scholar 

  58. Struthers, A. (2004) The clinical implications of aldosterone escape in congestive heart failure. Eur J Heart Fail 6, 539–545.

    Article  CAS  PubMed  Google Scholar 

  59. Díez, J. (2008) Effects of aldosterone on the heart. Beyond systemic hemodynamics? Hypertension 52, 462–464.

    Article  PubMed  Google Scholar 

  60. Muiesan, M.L., Salvetti, M., Paini, A., Agabiti-Rosei, C., Monteduro, C., Galbassini, G., Belotti, E., Aggiusti, C., Rizzoni, D., Castellano, M., and Agabiti-Rosei, E. (2008) Inappropriate left ventricular mass in patients with primary aldosteronism. Hypertension 52, 529–534.

    Article  CAS  PubMed  Google Scholar 

  61. Pitt, B., Reichek, N., Willenbrock, R., Zannad, F., Phillips, R,A., Roniker, B., Kleiman, J., Krause, S., Burns, D., and Williams, G.H. (2003) Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study. Circulation 108, 1831–1838.

    Article  CAS  PubMed  Google Scholar 

  62. Nussberger, J., Wuerzner, G., Jensen, C., and Brunner, H. R. (2002) Angiotensin II suppression in humans by the orally active renin inhibitor aliskiren (SPP100): comparison with enalapril. Hypertension 39, E1–E8.

    Article  CAS  PubMed  Google Scholar 

  63. Nussberger, J., Fleck, E., Bahrmann, H., Delius, W., Schultheiss, H.P., and Brunner, H.R. (1994) Dose-related effects of ACE inhibition in man: quinapril in patients with moderate congestive heart failure. The Study Group on Neurohormonal Regulation in Congestive Heart Failure: Lausanne, Switzerland; Berlin, Dusseldorf, Munich, Germany. Eur Heart J 15 (Suppl. D), 113–122.

    PubMed  Google Scholar 

  64. Oparil, S., Yarows, S.A., Patel, S., Fang, H., Zhang, J., and Satlin, A. (2007) Efficacy and safety of combined use of aliskiren and valsartan in patients with hypertension: a randomised, double-blind trial. Lancet 370, 221–229.

    Article  CAS  PubMed  Google Scholar 

  65. Di Pasquale, P., Bucca, V., Scalzo, S., Cannizzaro, S., Giubilato, A., and Paterna, S. (1999) Does the addition of losartan improve the beneficial effects of ACE inhibitors in patients with anterior myocardial infarction? A pilot study. Heart 81, 606–611.

    CAS  PubMed  Google Scholar 

  66. Villamil, A., Chrysant, S.G., Calhoun, D., Schober, B., Hsu, H., Matrisciano-Dimichino, L., and Zhang, J. (2007) Renin inhibition with aliskiren provides additive antihypertensive efficacy when used in combination with hydrochlorothiazide. J Hypertens 25, 217–226.

    Article  CAS  PubMed  Google Scholar 

  67. Ruilope, L.M., and Schmieder, R.E. (2008) Left ventricular hypertrophy and clinical outcomes in hypertensive patients. Am J Hypertens 21, 500–508.

    Article  PubMed  Google Scholar 

  68. Gradman, A.H., Pinto, R., and Kad, R. (2008) Current concepts: renin inhibition in the treatment of hypertension. Curr Opin Pharmacol 8, 120–126.

    Article  CAS  PubMed  Google Scholar 

  69. Müeller, D.N., Derer, W., and Dechend, R. (2008) Aliskiren-mode of action and preclinical data. J Mol Med 86, 659–662.

    Article  Google Scholar 

  70. Solomon, S.D., Appelbaum, E., Manning, W.J., Verma, A., Berglund, T., Lukashevich, V., Cherif Papst, C., Smith, B.A., Dahlöf, B., and Aliskiren in Left Ventricular Hypertrophy (ALLAY) Trial Investigators. (2009) Effect of the direct renin inhibitor aliskiren, the angiotensin receptor blocker losartan, or both on left ventricular mass in patients with hypertension and left ventricular hypertrophy. Circulation 119, 530–537.

    Article  CAS  PubMed  Google Scholar 

  71. O’Brien, E., Barton, J., Nussberger, J., Mulcahy, D., Jensen, C., Dicker, P., and Stanton, A. (2007) Aliskiren reduces blood pressure and suppresses plasma renin activity in combination with a thiazide diuretic, an angiotensin-converting enzyme inhibitor, or an angiotensin receptor blocker. Hypertension 49, 276–284.

    Article  PubMed  Google Scholar 

  72. Shafiq, M.M., Menon, D.V., and Victor, R.G. (2008) Oral direct renin inhibition: premise, promise, and potential limitations of a new antihypertensive drug. Am J Med 121, 265–271.

    Article  CAS  PubMed  Google Scholar 

  73. Nguyen, G., Delarue, F., Burckle, C., Bouzhir, L., Giller, T., and Sraer, J.D. (2002) Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to rennin.J Clin Invest 109, 1417–1427.

    CAS  PubMed  Google Scholar 

  74. Ichihara, A., Kaneshiro, Y., Takemitsu, T., Sakoda, M., Suzuki, F., Nakagawa, T., Nishiyama, A., Inagami, T., and Hayashi, M. (2006) Nonproteolytic activation of prorenin contributes to development of cardiac fibrosis in genetic hypertension. Hypertension 47, 894–900.

    Article  CAS  PubMed  Google Scholar 

  75. Susic, D., Zhou, X., Frohlich, E.D., Lippton, H., and Knight, M. (2008) Cardiovascular effects of prorenin blockade in genetically spontaneously hypertensive rats on normal and high-salt diet. Am J Physiol Heart Circ Physiol 295, H1117–H1121.

    Article  CAS  PubMed  Google Scholar 

  76. Schefe, J.H., Neumann, C., Goebel, M., Danser, J., Kirsch, S., Gust, R., Kintscher, U., Unger, T., and Funke-Kaiser, H. (2008) Prorenin engages the (pro)renin receptor like renin and both ligand activities are unopposed by aliskiren. J Hypertens 26, 1787–1795.

    Article  CAS  PubMed  Google Scholar 

  77. De Mello, WC. (1995) Influence of intracellular renin on heart cell communication. Hypertension 25, 1172–1177.

    CAS  PubMed  Google Scholar 

  78. Kuznetsova, T., Staessen, J.A., Wang, J.G., Gasowski, J., Nikitin, Y., Ryabikov. A., and Fagard, R. (2000) Antihypertensive treatment modulates the association between the D/I ACE gene polymorphism and left ventricular hypertrophy: a meta-analysis. J Hum Hypertens 14, 447–454.

    Article  CAS  PubMed  Google Scholar 

  79. Díez, J., Laviades, C., Orbe, J., Zalba, G., López, B., González, A., Mayor, G., Páramo, J.A., and Beloqui, O. (2003) The A1166C polymorphism of the AT1 receptor gene is associated with collagen type I synthesis and myocardial stiffness in hypertensives. J Hypertens 21, 2085–2092.

    Article  PubMed  Google Scholar 

  80. Querejeta, R., Varo, N., López, B., Larman, M., Artiñano, E., Etayo, J.C., Martínez-Ubago, J.L., Gutierrez-Stampa, M., Emparanza, J.I., Gil, M.J., Monreal, I., Pardo Mindán, J., and Díez, J. (2000) Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation 101, 1729–1735.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Díez MD,PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Frohlich, E.D., Díez, J. (2009). Left Ventricular Hypertrophy and Treatment with Renin Angiotensin System Inhibition. In: DeMello, W., Frohlich, E. (eds) Renin Angiotensin System and Cardiovascular Disease. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-60761-186-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-186-8_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-185-1

  • Online ISBN: 978-1-60761-186-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics