Skip to main content

Technologies in the Molecular Diagnostics Laboratory

  • Chapter
  • First Online:
Molecular Diagnostics in Dermatology and Dermatopathology

Part of the book series: Current Clinical Pathology ((CCPATH))

  • 1324 Accesses

Abstract

Molecular techniques are being increasingly employed in the field of dermatology, significantly enhancing the management of cutaneous disorders. These applications have become important diagnostic tools, not only in the setting of genodermatoses, but also in a wide range of cutaneous malignancies and infectious diseases. In addition, molecular testing has been used to select treatment, assess therapeutic response, and predict prognosis. This chapter provides an overview of the principles and applications of the molecular technologies most frequently used for the diagnosis and study of cutaneous diseases (Table 3.1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith-Zagone M, Pulliam J, Farkas D. Molecular pathology methods. In: Leonard D, editor. Molecular pathology in clinical practice. New York: Springer; 2007. p. 15–40.

    Chapter  Google Scholar 

  2. Amiss T, Presnell SC. Nucleic acids blotting techniques. In: Coleman WB, Tsongalis GJ, editors. Molecular diagnostics for the clinical laboratorian. 2nd ed. Totowa: Humana Press; 2006. p. 31–55.

    Google Scholar 

  3. Evans MR, Bertera AL, Harris DW. The Southern blot. An update. Mol Biotechnol. 1994;1:1–12.

    Article  PubMed  CAS  Google Scholar 

  4. Andres C, Belloni B, Puchta U, et al. Prevalence of MCPyV in Merkel cell carcinoma and non-MCC tumors. J Cutan Pathol. 2010;37:28–34.

    Article  PubMed  Google Scholar 

  5. Mies C, Houldsworth J, Chaganti RS. Extraction of DNA from paraffin blocks for Southern blot analysis. Am J Surg Pathol. 1991;15:169–74.

    Article  PubMed  CAS  Google Scholar 

  6. Payne DA, Vander Straten M, Carrasco D, et al. Molecular diagnosis of skin-associated infectious agents. Arch Dermatol. 2001;137:1497–502.

    PubMed  CAS  Google Scholar 

  7. Mullis K, Faloona F, Scharf S, et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction 1986. Biotechnology. 1992;24:17–27.

    PubMed  CAS  Google Scholar 

  8. Strachan T, Read AP. Amplifying DNA: PCR and cell based DNA cloning. In: Human molecular genetics. 3rd ed. New York: Taylor & Francis; 2003. p. 122–54.

    Google Scholar 

  9. Unger ER, Pincus MR. Introduction to molecular pathology. In: McPherson RA, Pincus MR, editors. Henry’s clinical diagnosis and management by laboratory methods. 21st ed. Philadelphia: Saunders Elsevier; 2007. p. 1226–7.

    Google Scholar 

  10. Evans MF. The polymerase chain reaction and pathology practice. Diag Histopathol. 2009;15:344–56.

    Article  Google Scholar 

  11. Braun-Falco M, Schempp W, Weyers W. Molecular diagnosis in dermatopathology: what makes sense, and what doesn’t. Exp Dermatol. 2009;18:12–23.

    Article  PubMed  CAS  Google Scholar 

  12. Sra KK, Babb-Tarbox M, Aboutalebi S, et al. Molecular diagnosis of cutaneous diseases. Arch Dermatol. 2005;141:225–41.

    Article  PubMed  CAS  Google Scholar 

  13. Gibson UE, Heid CA, Williams PM. A novel method for real time quantitative RT-PCR. Genome Res. 1996;6:995–1001.

    Article  PubMed  CAS  Google Scholar 

  14. Netto GJ, Saad RD. Diagnostic molecular pathology: an increasingly indispensable tool for the practicing pathologist. Arch Pathol Lab Med. 2006;130:1339–48.

    PubMed  CAS  Google Scholar 

  15. Sra KK, Torres G, Rady P, et al. Molecular diagnosis of infectious diseases in dermatology. J Am Acad Dermatol. 2005;53:749–65.

    Article  PubMed  Google Scholar 

  16. Nickerson DA, Ankener W, Delahunty C, et al. Genotyping by ligation assays. Curr Protoc Hum Genet. 2001; Chapter 2:Unit 2.6.

    Google Scholar 

  17. Killeen AA. Methods in molecular pathology. In: Principles of molecular pathology. Totowa: Humana Press; 2003. p. 89–139.

    Google Scholar 

  18. Payne DA, Sower L. Alternative methods for amplified nucleic acid testing. In: Coleman WB, Tsongalis GJ, editors. Molecular diagnostics for the clinical laboratorian. 2nd ed. Totowa: Humana Press; 2006. p. 75–84.

    Google Scholar 

  19. Deiman B, van Aarle P, Sillekens P. Characteristics and applications of nucleic acid sequence-based amplification (NASBA). Mol Biotechnol. 2002;20:163–79.

    Article  PubMed  CAS  Google Scholar 

  20. Guatelli JC, Whitfield KM, Kwoh DY, et al. Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci USA. 1990;87:1874–8.

    Article  PubMed  CAS  Google Scholar 

  21. Loens K, Ursi d, Goossens H, Ieven M. Nucleic acid sequence-based amplification. In: Walker J, Rapley R, editors. Medical biomethods handbook. Totowa: Humana Press; 2005. p. 273–91.

    Chapter  Google Scholar 

  22. Spargo CA, Fraiser MS, Van Cleve M, et al. Detection of M. tuberculosis DNA using thermophilic strand displacement amplification. Mol Cell Probes. 1996;10:247–56.

    Article  PubMed  CAS  Google Scholar 

  23. Walker GT, Little MC, Nadeau JG, et al. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc Natl Acad Sci USA. 1992;89:392–6.

    Article  PubMed  CAS  Google Scholar 

  24. Walker GT. Empirical aspects of strand displacement amplification. PCR Meth Appl. 1993;3:1–6.

    CAS  Google Scholar 

  25. Walker GT, Nadeau JG, Linn CP, et al. Strand displacement amplification (SDA) and transient-state fluorescence polarization detection of Mycobacterium tuberculosis DNA. Clin Chem. 1996;42:9–13.

    PubMed  CAS  Google Scholar 

  26. Nycz CM, Dean CH, Haaland PD, et al. Quantitative reverse transcription strand displacement amplification: quantitation of nucleic acids using an isothermal amplification technique. Anal Biochem. 1998;259:226–34.

    Article  PubMed  CAS  Google Scholar 

  27. Goldmeyer J, Kong H, Tang W. Development of a novel one-tube isothermal reverse transcription thermophilic helicase-dependent amplification platform for rapid RNA detection. J Mol Diagn. 2007;5:639–44.

    Article  CAS  Google Scholar 

  28. An L, Tang W, Ranalli TA, et al. Characterization of a thermostable UvrD helicase and its participation in helicase-dependent amplification. J Biol Chem. 2005;32:28952–8.

    Article  CAS  Google Scholar 

  29. Gill P, Ghaemi A. Nucleic acid isothermal amplification technologies: a review. Nucleosides Nucleotides Nucleic Acids. 2008;27:224–43.

    Article  PubMed  CAS  Google Scholar 

  30. Vincent M, Xu Y, Kong H. Helicase-dependent isothermal DNA amplification. EMBO Rep. 2004;5:795–800.

    Article  PubMed  CAS  Google Scholar 

  31. Chow WH, McCloskey C, Tong Y, et al. Application of isothermal helicase-dependent amplification with a disposable detection device in a simple sensitive stool test for toxigenic Clostridium difficile. J Mol Diagn. 2008;10:452–8.

    Article  PubMed  CAS  Google Scholar 

  32. Kozlowski P, Jasinska AJ, Kwiatkowski DJ. New applications and developments in the use of multiplex ligation-dependent probe amplification. Electrophoresis. 2008;29:4627–36.

    Article  PubMed  CAS  Google Scholar 

  33. Shen Y, Wu BL. Designing a simple multiplex ligation-dependent probe amplification (MLPA) assay for rapid detection of copy number variants in the genome. J Genet Genomics. 2009;36:257–65.

    Article  PubMed  CAS  Google Scholar 

  34. Zhi J, Hatchwell E. Human MLPA Probe Design (H-MAPD): a probe design tool for both electrophoresis-based and bead-coupled human multiplex ligation-dependent probe amplification assays. BMC Genomics. 2008;10:407.

    Article  CAS  Google Scholar 

  35. Takata M, Lin J, Takayanagi S, et al. Genetic and epigenetic alterations in the differential diagnosis of malignant melanoma and spitzoid lesion. Br J Dermatol. 2007;156:1287–94.

    Article  PubMed  CAS  Google Scholar 

  36. Takata M, Suzuki T, Ansai S, et al. Genome profiling of melanocytic tumors using multiplex ligation-dependent probe amplification (MLPA): its usefulness as an adjunctive diagnostic tool for melanocytic tumors. J Dermatol Sci. 2005;40:51–7.

    Article  PubMed  CAS  Google Scholar 

  37. Senff NJ, Zoutman WH, Vermeer MH, et al. Fine-mapping chromosomal loss at 9p21: correlation with prognosis in primary cutaneous diffuse large B-cell lymphoma, leg type. J Invest Dermatol. 2009;129:1149–55.

    Article  PubMed  CAS  Google Scholar 

  38. Stenau M, Piper MA, Unger ER. Molecular diagnostics: basic principles and techniques. In: McPherson RA, Pincus MR, editors. Henry’s clinical diagnosis and management by laboratory methods. 21st ed. Philadelphia: Saunders Elsevier; 2007. p. 1228–49.

    Google Scholar 

  39. Highsmith Jr WE. Electrophoretic methods for mutation detection and DNA sequencing. In: Coleman WB, Tsongalis GJ, editors. Molecular diagnostics for the clinical laboratorian. 2nd ed. Totowa: Humana Press; 2006. p. 85–109.

    Google Scholar 

  40. Knight P. Capillary electrophoresis. Biotechnology. 1988;6:1226–7.

    Article  CAS  Google Scholar 

  41. Tagliaro F, Turrina S, Smith FP. Capillary electrophoresis: principles and applications in illicit drug analysis. Forensic Sci Int. 1996;77:211–29.

    Article  PubMed  CAS  Google Scholar 

  42. Smith A, Nelson RJ. Capillary electrophoresis of DNA. Curr Protoc Mol Biol. 2004; Chapter 2:Unit 2.8.

    Google Scholar 

  43. Landers JP. Clinical capillary electrophoresis. Clin Chem. 1995;41:495–509.

    PubMed  CAS  Google Scholar 

  44. Guttman A, Ettre LS. The evolution of capillary gel electrophoresis: from proteins to DNA sequencing. LCGC N Am. 2004;22:896–904.

    CAS  Google Scholar 

  45. Kleparník K, Bocek P. DNA diagnostics by capillary electrophoresis. Chem Rev. 2007;107:5279–317.

    Article  PubMed  CAS  Google Scholar 

  46. Saiki RK, Scharf S, Faloona F, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;20:1350–4.

    Article  Google Scholar 

  47. Green E. Restriction fragment length polymorphisms. In: Walker J, Rapley R, editors. Medical biomethods handbook. Totowa: Humana Press; 1998. p. 271–9.

    Chapter  Google Scholar 

  48. Butler JM, Reeder DJ. Detection of DNA polymorphisms using PCR-RFLP and capillary electrophoresis. Meth Mol Biol. 2001;163:49–56.

    CAS  Google Scholar 

  49. Hayashi K. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Meth Appl. 1991;1:34–8.

    CAS  Google Scholar 

  50. Sood AK, Buller RE. SSCP and sequence analysis of p53 mutations in ovarian Tumors. In: Bartlett J, editor. Methods in molecular medicine: ovarian cancer: methods and protocols. Totowa: Humana Press; 2000. p. 323–8.

    Google Scholar 

  51. Sunnucks P, Wilson AC, Beheregaray LB, et al. SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Mol Ecol. 2000;9:1699–710.

    Article  PubMed  CAS  Google Scholar 

  52. Orita M, Iwahana H, Kanazawa H, et al. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA. 1989;86:2766–70.

    Article  PubMed  CAS  Google Scholar 

  53. Han M, Robinson MA. PCR-SSCP analysis of polymorphism: a simple and sensitive method for detecting differences between short segments of DNA. Meth Mol Biol. 2003;226:327–34.

    Article  CAS  Google Scholar 

  54. Wallace AJ. SSCP/heteroduplex analysis. Meth Mol Biol. 2002;187:151–63.

    CAS  Google Scholar 

  55. Bhattacharyya A, Lilley DM. The contrasting structures of mismatched DNA sequences containing looped-out bases (bulges) and multiple mismatches (bubbles). Nucleic Acids Res. 1989;17:6821–40.

    Article  PubMed  CAS  Google Scholar 

  56. Straten PT, Becker JC, Zeuthen J, et al. T-cell receptor clonotype mapping using denaturing gradient gel ­electrophoresis: analysis of clonal T-cell responses in melanoma. Meth Mol Med. 2001;61:339–51.

    Google Scholar 

  57. Fischer SG, Lerman LS. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci USA. 1983;80:1579–83.

    Article  PubMed  CAS  Google Scholar 

  58. Rosenbaum V, Riesner D. Temperature-gradient gel electrophoresis. Thermodynamic analysis of nucleic acids and proteins in purified form and in cellular extracts. Biophys Chem. 1987;9:235–46.

    Article  Google Scholar 

  59. Knapp LA. Single nucleotide polymorphism screening with denaturing gradient gel electrophoresis. Meth Mol Biol. 2009;578:137–51.

    Article  CAS  Google Scholar 

  60. Bartlett JM. Fluorescence in situ hybridization: technical overview. Meth Mol Med. 2004;97:77–87.

    CAS  Google Scholar 

  61. Yang X. In situ hybridization. Meth Mol Med. 2000;47:45–69.

    Google Scholar 

  62. Trask BJ. Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends Genet. 1991;7:149–54.

    PubMed  CAS  Google Scholar 

  63. Wolff DJ, Schwartz S. Fluorescence in situ hybridization. In: Gersen SL, Keagle MB, editors. The principles of clinical cytogenetics. 2nd ed. Totowa: Humana Press; 2004. p. 455–90.

    Google Scholar 

  64. Blokx WA, van Dijk MC, Ruiter DJ. Molecular cytogenetics of cutaneous melanocytic lesions – diagnostic, prognostic and therapeutic aspects. Histopathology. 2010;56:121–32.

    Article  PubMed  Google Scholar 

  65. Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors. Dermatofibrosarcoma protuberans and giant cell fibroblastoma. Cancer Genet Cytogenet. 2003;140:1–12.

    Article  PubMed  CAS  Google Scholar 

  66. Gerami P, Jewell SS, Morrison LE, et al. Fluorescence in situ hybridization (FISH) as an ancillary diagnostic tool in the diagnosis of melanoma. Am J Surg Pathol. 2009;33:1146–56.

    Article  PubMed  Google Scholar 

  67. Gerami P, Wass A, Mafee M, et al. Fluorescence in situ hybridization for distinguishing nevoid melanomas from mitotically active nevi. Am J Surg Pathol. 2009;33:1783–8.

    Article  PubMed  Google Scholar 

  68. Gerami P, Guitart J, Martini M, et al. Cyclin D1 homogeneous staining regions by fluorescent in situ hybridization: a possible indicator of aggressive behavior in melanomas. Arch Dermatol. 2008;144:1235–6.

    Article  PubMed  Google Scholar 

  69. Tanner M, Gancberg D, Di Leo A, et al. Chromogenic in situ hybridization: a practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples. Am J Pathol. 2000;157:1467–72.

    Article  PubMed  CAS  Google Scholar 

  70. Shipley J. Putting the colours into chromogenic in situ hybridization (CISH). J Pathol. 2006;210:1–2.

    Article  PubMed  CAS  Google Scholar 

  71. Pedersen M, Rasmussen BB. The correlation between dual-color chromogenic in situ hybridization and fluorescence in situ hybridization in assessing HER2 gene amplification in breast cancer. Diagn Mol Pathol. 2009;18:96–102.

    Article  PubMed  CAS  Google Scholar 

  72. Isola J, Tanner M. Chromogenic in situ hybridization in tumor pathology. Meth Mol Med. 2004;97:133–44.

    CAS  Google Scholar 

  73. Hammock L, Cohen C, Carlson G, et al. Chromogenic in situ hybridization analysis of melastatin mRNA expression in melanomas from American Joint Committee on Cancer stage I and II patients with recurrent melanoma. J Cutan Pathol. 2006;33:599–607.

    Article  PubMed  CAS  Google Scholar 

  74. Wang YF. Signal amplification techniques: bDNA, hybrid capture. In: Tang YW, Stratton CW, editors. Advanced techniques in diagnostic microbiology. New York: Springer; 2006. p. 228–42.

    Chapter  Google Scholar 

  75. Knoepp SM, Kuebler DL, Wilbur DC. Resolution of equivocal results with the Hybrid Capture II high-risk HPV DNA test: acytologic/histologic review of 191 cases. Diagn Mol Pathol. 2007;16:125–9.

    Article  PubMed  CAS  Google Scholar 

  76. Butterworth LA, Prior SL, Buda PJ, et al. Comparison of four methods for quantitative measurement of hepatitis B viral DNA. J Hepatol. 1996;24:686–91.

    Article  PubMed  CAS  Google Scholar 

  77. Obiso R, Lorincz A. Digene Corporation. Pharmacogenomics. 2004;5:129–32.

    Article  PubMed  Google Scholar 

  78. Holmquist GP, Comings DE. Histones and G banding of chromosomes. Science. 1976;193:599–602.

    Article  PubMed  CAS  Google Scholar 

  79. Karenko L, Sarna S, Kähkönen M, et al. Chromosomal abnormalities in relation to clinical disease in patients with cutaneous T-cell lymphoma: a 5-year follow-up study. Br J Dermatol. 2003;148:55–64.

    Article  PubMed  CAS  Google Scholar 

  80. Karenko L, Hyytinen E, Sarna S, et al. Chromosomal abnormalities in cutaneous T-cell lymphoma and in its premalignant conditions as detected by G-banding and interphase cytogenetic methods. J Invest Dermatol. 1997;108:22–9.

    Article  PubMed  CAS  Google Scholar 

  81. Nowell PC, Finan JB, Vonderheid EC. Clonal characteristics of cutaneous T cell lymphomas: cytogenetic evidence from blood, lymph nodes, and skin. J Invest Dermatol. 1982;78:69–75.

    Article  PubMed  CAS  Google Scholar 

  82. Chevret E, Prochazkova M, Beylot-Barry M, et al. A suggested protocol for obtaining high-quality skin metaphases from primary cutaneous T-cell lymphoma. Cancer Genet Cytogenet. 2006;167:89–91.

    Article  PubMed  CAS  Google Scholar 

  83. Schrock E, du Manoir S, Veldman T, et al. Multicolor spectral karyotyping of human chromosomes. Science. 1996;273:494–7.

    Article  PubMed  CAS  Google Scholar 

  84. Jalal SM, Law ME. Utility of multicolor fluorescent in situ hybridization in clinical cytogenetics. Genet Med. 1999;1:181–6.

    Article  PubMed  CAS  Google Scholar 

  85. Macville M, Veldman T, Padilla-Nash H, et al. Spectral karyotyping, a 24-colour FISH technique for the identification of chromosomal rearrangements. Histochem Cell Biol. 1997;108:299–305.

    Article  PubMed  CAS  Google Scholar 

  86. Padilla-Nash HM, Wu K, Just H, et al. Spectral karyotyping demonstrates genetically unstable skin-homing T lymphocytes in cutaneous T-cell lymphoma. Exp Dermatol. 2007;16:98–103.

    Article  PubMed  Google Scholar 

  87. Batista DA, Vonderheid EC, Hawkins A, et al. Multicolor fluorescence in situ hybridization (SKY) in mycosis fungoides and Sézary syndrome: search for recurrent chromosome abnormalities. Genes Chromosom Cancer. 2006;45:383–91.

    Article  PubMed  CAS  Google Scholar 

  88. Ragin CC, Reshmi SC, Gollin SM. Mapping and analysis of HPV16 integration sites in a head and neck cancer cell line. Int J Cancer. 2004;110:701–9.

    Article  PubMed  CAS  Google Scholar 

  89. Weng WH, Wejde J, Ahlén J, et al. Characterization of large chromosome markers in a malignant fibrous histiocytoma by spectral karyotyping, comparative genomic hybridization (CGH), and array CGH. Cancer Genet Cytogenet. 2004;150:27–32.

    Article  PubMed  CAS  Google Scholar 

  90. Nakamura T, Sunami E, Nguyen T, et al. Analysis of loss of heterozygosity in circulating DNA. Meth Mol Biol. 2009;520:221–9.

    Article  CAS  Google Scholar 

  91. Knudson Jr AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA. 1971;68:820–3.

    Article  PubMed  Google Scholar 

  92. Zhu X, Dunn JM, Goddard AD, Squire JA, et al. Mechanisms of loss of heterozygosity in retinoblastoma. Cytogenet Cell Genet. 1992;59:248–52.

    Article  PubMed  CAS  Google Scholar 

  93. Zheng HT, Peng ZH, Li S, et al. Loss of heterozygosity analyzed by single nucleotide polymorphism array in cancer. World J Gastroenterol. 2005;11:6740–4.

    PubMed  CAS  Google Scholar 

  94. Farrand K, Jovanovic L, Delahunt B, et al. Loss of heterozygosity studies revisited: prior quantification of the amplifiable DNA content of archival samples improves efficiency and reliability. J Mol Diagn. 2002;4:150–8.

    Article  PubMed  CAS  Google Scholar 

  95. Ibbotson RE, Corcoran MM. Detection of chromosomal deletions by microsatellite analysis. Meth Mol Med. 2002;68:59–65.

    CAS  Google Scholar 

  96. Happle R. Loss of heterozygosity in human skin. J Am Acad Dermatol. 1999;41(2 Pt 1):143–64.

    Article  PubMed  CAS  Google Scholar 

  97. Strachan T, Read AP. Organization of the human genome. In: Human molecular genetics. 3rd ed. New York: Taylor & Francis; 2003. p. 240–74.

    Google Scholar 

  98. Thornland EC, Thibodeau SN. Hereditary nonpolyposis colorectal cancer. In: Leonard D, editor. Molecular pathology in clinical practice. New York: Springer; 2007. p. 223–32.

    Chapter  Google Scholar 

  99. Peltomäki P. Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum Mol Genet. 2001;10:735–40.

    Article  PubMed  Google Scholar 

  100. Kruse R, Rütten A, Hosseiny-Malayeri HR, et al. “Second hit” in sebaceous tumors from Muir-Torre patients with germline mutations in MSH2: allele loss is not the preferred mode of inactivation. J Invest Dermatol. 2001;116:463–5.

    Article  PubMed  CAS  Google Scholar 

  101. Ponti G, Ponz de Leon M. Muir-Torre syndrome. Lancet Oncol. 2005;6:980–7.

    Article  PubMed  Google Scholar 

  102. Gologan A, Sepulveda AR. Microsatellite instability and DNA mismatch repair deficiency testing in hereditary and sporadic gastrointestinal cancers. Clin Lab Med. 2005;25:179–96.

    Article  PubMed  Google Scholar 

  103. Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58:5248–57.

    PubMed  CAS  Google Scholar 

  104. Mangold E, Pagenstecher C, Leister M, et al. A genotype-phenotype correlation in HNPCC: strong predominance of msh2 mutations in 41 patients with Muir-Torre syndrome. J Med Genet. 2004;41:567–72.

    Article  PubMed  CAS  Google Scholar 

  105. Mathiak M, Rutten A, Mangold E, et al. Loss of DNA mismatch repair proteins in skin tumors from patients with Muir-Torre syndrome and MSH2 or MLH1 germline mutations: establishment of immunohistochemical analysis as a screening test. Am J Surg Pathol. 2002;26:338–43.

    Article  PubMed  Google Scholar 

  106. Mangold E, Rahner N, Friedrichs N, et al. MSH6 mutation in Muir-Torre syndrome: could this be a rare finding? Br J Dermatol. 2007;156:158–62.

    Article  PubMed  CAS  Google Scholar 

  107. Ponti G, Losi L, Pedroni M, et al. Value of MLH1 and MSH2 mutations in the appearance of Muir-Torre syndrome phenotype in HNPCC patients presenting sebaceous gland tumors or keratoacanthomas. J Invest Dermatol. 2006;126:2302–7.

    Article  PubMed  CAS  Google Scholar 

  108. Schwartz RA, Torre DP. The Muir-Torre syndrome: a 25-year retrospect. J Am Acad Dermatol. 1995;33:90–104.

    Article  PubMed  CAS  Google Scholar 

  109. Ponti G, Losi L, Di Gregorio C, et al. Identification of Muir-Torre syndrome among patients with sebaceous tumors and keratoacanthomas: role of clinical features, microsatellite instability, and immunohistochemistry. Cancer. 2005;103:1018–25.

    Article  PubMed  Google Scholar 

  110. Abbas O, Mahalingam M. Cutaneous sebaceous neoplasms as markers of Muir-Torre syndrome: a diagnostic algorithm. J Cutan Pathol. 2009;36:613–9.

    Article  PubMed  Google Scholar 

  111. Bauer J, Bastian BC. Distinguishing melanocytic nevi from melanoma by DNA copy number changes: comparative genomic hybridization as a research and diagnostic tool. Dermatol Ther. 2006;19:40–9.

    Article  PubMed  Google Scholar 

  112. Morrison C. Fluorescent in situ hybridization and array comparative genomic hybridization: complementary techniques for genomic evaluation. Arch Pathol Lab Med. 2006;130:967–74.

    PubMed  CAS  Google Scholar 

  113. DeVries S, Gray JW, Pinkel D, et al. Comparative genomic hybridization. Curr Protoc Hum Genet. 2001; Chapter 4:Unit 4.6.

    Google Scholar 

  114. Kallioniemi A, Kallioniemi OP, Sudar D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258:818–21.

    Article  PubMed  CAS  Google Scholar 

  115. Beheshti B, Park PC, Braude I, et al. Microarray CGH. Meth Mol Biol. 2002;204:191–207.

    CAS  Google Scholar 

  116. Pollack JR, Perou CM, Alizadeh AA, et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet. 1999;23:41–6.

    Article  PubMed  CAS  Google Scholar 

  117. Redon R, Carter NP. Comparative genomic hybridization: microarray design and data interpretation. Meth Mol Biol. 2009;529:37–49.

    Article  CAS  Google Scholar 

  118. Harvell JD, Kohler S, Zhu S, et al. High-resolution array-based comparative genomic hybridization for distinguishing paraffin-embedded Spitz nevi and melanomas. Diagn Mol Pathol. 2004;13:22–5.

    Article  PubMed  Google Scholar 

  119. Miozzo M, Castorina P, Riva P, et al. Chromosomal instability in fibroblasts and mesenchymal tumors from 2 sibs with Rothmund-Thomson syndrome. Int J Cancer. 1998;77:504–10.

    Article  PubMed  CAS  Google Scholar 

  120. Van Esch H, Hollanders K, Badisco L, et al. Deletion of VCX-A due to NAHR plays a major role in the occurrence of mental retardation in patients with X-linked ichthyosis. Hum Mol Genet. 2005;14:1795–803.

    Article  PubMed  CAS  Google Scholar 

  121. Hahtola S, Burghart E, Jeskanen L, et al. Clinicopathological characterization and genomic aberrations in subcutaneous panniculitis-like T-cell lymphoma. J Invest Dermatol. 2008;128:2304–9.

    Article  PubMed  CAS  Google Scholar 

  122. van Doorn R, van Kester MS, Dijkman R, et al. Oncogenomic analysis of mycosis fungoides reveals major differences with Sezary syndrome. Blood. 2009;113:127–36.

    Article  PubMed  CAS  Google Scholar 

  123. Dijkman R, van Doorn R, Szuhai K, et al. Gene-expression profiling and array-based CGH classify CD4+CD56+ hematodermic neoplasm and cutaneous myelomonocytic leukemia as distinct disease entities. Blood. 2007;109:1720–7.

    Article  PubMed  CAS  Google Scholar 

  124. Sellheyer K, Belbin TJ. DNA microarrays: from structural genomics to functional genomics. The applications of gene chips in dermatology and dermatopathology. J Am Acad Dermatol. 2004;51:681–92.

    Article  PubMed  Google Scholar 

  125. Friend SH, Stoughton RB. The magic of microarrays. Sci Am. 2002;286:44–49, 53.

    Article  PubMed  Google Scholar 

  126. Cheung VG, Morley M, Aguilar F, et al. Making and reading microarrays. Nat Genet. 1999;21(1 Suppl):15–9.

    Article  PubMed  CAS  Google Scholar 

  127. Wessagowit V, South AP. Dermatological applications of DNA array technology. Clin Exp Dermatol. 2002;27:485–92.

    Article  PubMed  CAS  Google Scholar 

  128. DeRisi J, Penland L, Brown PO, et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet. 1996;14:457–60.

    Article  PubMed  CAS  Google Scholar 

  129. Kunz M, Ibrahim SM, Koczan D, et al. DNA microarray technology and its applications in dermatology. Exp Dermatol. 2004;13:593–606.

    Article  PubMed  CAS  Google Scholar 

  130. Clark EA, Golub TR, Lander ES, et al. Genomic analysis of metastasis reveals an essential role for RhoC. Nature. 2000;406:532–5.

    Article  PubMed  CAS  Google Scholar 

  131. Welss T, Papoutsaki M, Michel G, et al. Molecular basis of basal cell carcinoma: analysis of differential gene expression by differential display PCR and expression array. Int J Cancer. 2003;104:66–72.

    Article  PubMed  CAS  Google Scholar 

  132. Nindl I, Dang C, Forschner T, et al. Identification of differentially expressed genes in cutaneous squamous cell carcinoma by microarray expression profiling. Mol Cancer. 2006;5:30.

    Article  PubMed  CAS  Google Scholar 

  133. Li S, Ross DT, Kadin ME, et al. Comparative genome-scale analysis of gene expression profiles in T cell lymphoma cells during malignant progression using a complementary DNA microarray. Am J Pathol. 2001;158:1231–7.

    Article  PubMed  CAS  Google Scholar 

  134. Nomura I, Goleva E, Howell MD, et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol. 2003;171:3262–9.

    PubMed  CAS  Google Scholar 

  135. Nomura I, Gao B, Boguniewicz M, et al. Distinct patterns of gene expression in the skin lesions of atopic dermatitis and psoriasis: a gene microarray analysis. J Allergy Clin Immunol. 2003;112:1195–202.

    Article  PubMed  CAS  Google Scholar 

  136. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74:5463–7.

    Article  PubMed  CAS  Google Scholar 

  137. Slatko BE, Albright LM, Tabor S, et al. DNA sequencing by the dideoxy method. Curr Protoc Mol Biol. 2001; Chapter 7:Unit 7.4A.

    Google Scholar 

  138. Atkinson MR, Deutscher MP, Kornberg A, et al. Enzymatic synthesis of deoxyribonucleic acid. XXXIV. Termination of chain growth by a 2’,3’-dideoxyribonucleotide. Biochemistry. 1969;8:4897–904.

    Article  PubMed  CAS  Google Scholar 

  139. Shendure JA, Porreca GJ, Church GM. Overview of DNA sequencing strategies. Curr Protoc Mol Biol. 2008; Chapter 7: Unit 7.1.

    Google Scholar 

  140. Ansorge WJ. Next-generation DNA sequencing techniques. N Biotechnol. 2009;25:195–203.

    Google Scholar 

  141. Espina V, Wulfkuhle JD, Calvert VS, et al. Laser-capture microdissection. Nat Protoc. 2006;1:586–603.

    Article  PubMed  CAS  Google Scholar 

  142. Emmert-Buck MR, Bonner RF, Smith PD, et al. Laser capture microdissection. Science. 1996;274:998–1001.

    Article  PubMed  CAS  Google Scholar 

  143. Rekhter MD, Chen J. Molecular analysis of complex tissues is facilitated by laser capture microdissection: critical role of upstream tissue processing. Cell Biochem Biophys. 2001;35:103–13.

    Article  PubMed  CAS  Google Scholar 

  144. Yazdi AS, Puchta U, Flaig MJ, et al. Laser-capture microdissection: applications in routine molecular dermatopathology. J Cutan Pathol. 2004;31:465–70.

    Article  PubMed  Google Scholar 

  145. Agar NS, Halliday GM, Barnetson RS, et al. A novel technique for the examination of skin biopsies by laser capture microdissection. J Cutan Pathol. 2003;30:265–70.

    Article  PubMed  CAS  Google Scholar 

  146. Gallardo F, Pujol RM, Bellosillo B, et al. Primary cutaneous B-cell lymphoma (marginal zone) with prominent T-cell component and aberrant dual (T and B) genotype; diagnostic usefulness of laser-capture microdissection. Br J Dermatol. 2006;154:162–6.

    Article  PubMed  CAS  Google Scholar 

  147. Ke MS, Kamath NV, Nihal M, et al. Folliculotropic mycosis fungoides with central nervous system involvement: demonstration of tumor clonality in intrafollicular T cells using laser capture microdissection. J Am Acad Dermatol. 2003;48:238–43.

    Article  PubMed  Google Scholar 

  148. Agar NS, Halliday GM, Barnetson RS, et al. The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis. Proc Natl Acad Sci USA. 2004;101:4954–9.

    Article  PubMed  CAS  Google Scholar 

  149. Bahrami S, Cheng L, Wang M, et al. Clonal relationships between epidermotropic metastatic melanomas and their primary lesions: a loss of heterozygosity and X-chromosome inactivation-based analysis. Mod Pathol. 2007;20:821–7.

    Article  PubMed  CAS  Google Scholar 

  150. Maitra A, Gazdar AF, Moore TO, et al. Loss of heterozygosity analysis of cutaneous melanoma and benign melanocytic nevi: laser capture microdissection demonstrates clonal genetic changes in acquired nevocellular nevi. Hum Pathol. 2002;33:191–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zendee Elaba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Elaba, Z., Murphy, M.J., Mnayer, L. (2011). Technologies in the Molecular Diagnostics Laboratory. In: Murphy, M. (eds) Molecular Diagnostics in Dermatology and Dermatopathology. Current Clinical Pathology. Humana Press. https://doi.org/10.1007/978-1-60761-171-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-171-4_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-170-7

  • Online ISBN: 978-1-60761-171-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics