Skip to main content

Proteomics in the Vitreous of Diabetic Retinopathy Patients

  • Chapter
  • First Online:
Visual Dysfunction in Diabetes

Part of the book series: Ophthalmology Research ((OPHRES))

  • 1013 Accesses

Abstract

Vision loss cause by diabetic retinopathy is primarily associated with advanced stages of this disease, including proliferative diabetic retinopathy (PDR) and diabetic macular edema (DME). While abnormalities in microvascular functions and structure appear central to the progression of diabetic retinopathy, the specific factors that modulate the transition to the advanced sight-threatening stages of this disease are not fully understood. Moreover, since animal models do not reproduce many of the specific pathologies associated with PDR and DME, further characterization of ocular biochemical changes from patients with diabetic retinopathy is needed to identify factors that could be associated with the advance stages of this disease and vision loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376(9735):124–36.

    Article  PubMed  Google Scholar 

  2. Le Goff MM, Bishop PN. Adult vitreous structure and postnatal changes. Eye (Lond). 2008;22(10):1214–22.

    Article  Google Scholar 

  3. Ponsioen TL, van Luyn MJ, van der Worp RJ, van Meurs JC, Hooymans JM, Los LI. Collagen distribution in the human vitreoretinal interface. Invest Ophthalmol Vis Sci. 2008;49(9):4089–95.

    Article  PubMed  Google Scholar 

  4. Shui YB, Holekamp NM, Kramer BC, Crowley JR, Wilkins MA, Chu F, et al. The gel state of the vitreous and ascorbate-dependent oxygen consumption: relationship to the etiology of nuclear cataracts. Arch Ophthalmol. 2009;127(4):475–82.

    Article  PubMed  Google Scholar 

  5. Mitry D, Fleck BW, Wright AF, Campbell H, Charteris DG. Pathogenesis of rhegmatogenous retinal detachment: predisposing anatomy and cell biology. Retina. 2010;30(10):1561–72.

    Article  PubMed  Google Scholar 

  6. Dernouchamps JP, Vaerman JP, Michiels J, Heremans JF. Transferrins in rabbit ocular fluids. Ophthalmologica. 1975;170(1):72–83.

    Article  PubMed  CAS  Google Scholar 

  7. Van Bockxmeer FM, Martin CE, Constable IJ. Iron-binding proteins in vitreous humour. Biochim Biophys Acta. 1983;758(1):17–23.

    Article  PubMed  Google Scholar 

  8. Burke JM, Smith JM. Retinal proliferation in response to vitreous hemoglobin or iron. Invest Ophthalmol Vis Sci. 1981;20(5):582–92.

    PubMed  CAS  Google Scholar 

  9. Forrester JV, Prentice CR, Williamson J, Forbes CD. Fibrinolytic activity of the vitreous body. Invest Ophthalmol. 1974;13(11):875–9.

    PubMed  CAS  Google Scholar 

  10. Shimada K. The complement components and their inactivators in the intraocular fluids of the guinea pig. Invest Ophthalmol. 1970;9(4):307–15.

    PubMed  CAS  Google Scholar 

  11. Raymond L, Jacobson B. Isolation and identification of stimulatory and inhibitory cell growth factors in bovine vitreous. Exp Eye Res. 1982;34(2):267–86.

    Article  PubMed  CAS  Google Scholar 

  12. Jacobson B, Dorfman T, Basu PK, Hasany SM. Inhibition of vascular endothelial cell growth and trypsin activity by vitreous. Exp Eye Res. 1985;41(5):581–95.

    Article  PubMed  CAS  Google Scholar 

  13. Taylor CM, Weiss JB. Partial purification of a 5.7K glycoprotein from bovine vitreous which inhibits both angiogenesis and collagenase activity. Biochem Biophys Res Commun. 1985;133(3):911–6.

    Article  PubMed  CAS  Google Scholar 

  14. Preis I, Langer R, Brem H, Folkman J. Inhibition of neovascularization by an extract derived from vitreous. Am J Ophthalmol. 1977;84(3):323–8.

    PubMed  CAS  Google Scholar 

  15. Glaser BM, D’Amore PA, Michels RG. The effect of human intraocular fluid on vascular endothelial cell migration. Ophthalmology. 1981;88(9):986–91.

    PubMed  CAS  Google Scholar 

  16. Glaser BM, D’Amore PA, Michels RG, Brunson SK, Fenselau AH, Rice T, et al. The demonstration of angiogenic activity from ocular tissues. Preliminary report. Ophthalmology. 1980;87(5):440–6.

    PubMed  CAS  Google Scholar 

  17. Glaser BM, D’Amore PA, Lutty GA, Fenselau AH, Michels RG, Patz A. Chemical mediators of intraocular neovascularization. Trans Ophthalmol Soc U K. 1980;100(3):369–73.

    PubMed  CAS  Google Scholar 

  18. Miller JW, Adamis AP, Shima DT, D’Amore PA, Moulton RS, O’Reilly MS, et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol. 1994;145(3):574–84.

    PubMed  CAS  Google Scholar 

  19. Adamis AP, Miller JW, Bernal MT, D’Amico DJ, Folkman J, Yeo TK, et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol. 1994;118(4):445–50.

    PubMed  CAS  Google Scholar 

  20. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331(22):1480–7.

    Article  PubMed  CAS  Google Scholar 

  21. Aiello LP, Bursell SE, Clermont A, Duh E, Ishii H, Takagi C, et al. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes. 1997;46(9):1473–80.

    Article  PubMed  CAS  Google Scholar 

  22. Funatsu H, Yamashita H, Sakata K, Noma H, Mimura T, Suzuki M, et al. Vitreous levels of vascular endothelial growth factor and intercellular adhesion molecule 1 are related to diabetic macular edema. Ophthalmology. 2005;112(5):806–16.

    Article  PubMed  Google Scholar 

  23. Diabetic Retinopathy Clinical Research Network, Elman MJ, Aiello LP, Beck RW, Bressler NM, Bressler SB, et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2010;117(6):1064–77.

    Article  PubMed  Google Scholar 

  24. Nguyen QD, Shah SM, Khwaja AA, Channa R, Hatef E, Do DV, et al. Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study. Ophthalmology. 2010;117(11):2146–51.

    Article  PubMed  Google Scholar 

  25. Funatsu H, Noma H, Mimura T, Eguchi S, Hori S. Association of vitreous inflammatory ­factors with diabetic macular edema. Ophthalmology. 2009;116(1):73–9.

    Article  PubMed  Google Scholar 

  26. Yoshimura T, Sonoda KH, Sugahara M, Mochizuki Y, Enaida H, Oshima Y, et al. Comprehensive analysis of inflammatory immune mediators in vitreoretinal diseases. PLoS One. 2009;4(12):e8158.

    Article  PubMed  Google Scholar 

  27. Praidou A, Klangas I, Papakonstantinou E, Androudi S, Georgiadis N, Karakiulakis G, et al. Vitreous and serum levels of platelet-derived growth factor and their correlation in patients with proliferative diabetic retinopathy. Curr Eye Res. 2009;34(2):152–61.

    Article  PubMed  CAS  Google Scholar 

  28. Simo R, Hernandez C, Segura RM, Garcia-Arumi J, Sararols L, Burgos R, et al. Free insulin-like growth factor 1 in the vitreous fluid of diabetic patients with proliferative diabetic retinopathy: a case-control study. Clin Sci (Lond). 2003;104(3):223–30.

    Article  CAS  Google Scholar 

  29. Yamane K, Minamoto A, Yamashita H, Takamura H, Miyamoto-Myoken Y, Yoshizato K, et al. Proteome analysis of human vitreous proteins. Mol Cell Proteomics. 2003;2(11):1177–87.

    Article  PubMed  CAS  Google Scholar 

  30. Garcia-Ramirez M, Canals F, Hernandez C, Colome N, Ferrer C, Carrasco E, et al. Proteomic analysis of human vitreous fluid by fluorescence-based difference gel electrophoresis (DIGE): a new strategy for identifying potential candidates in the pathogenesis of proliferative diabetic retinopathy. Diabetologia. 2007;50(6):1294–303.

    Article  PubMed  CAS  Google Scholar 

  31. Shitama T, Hayashi H, Noge S, Uchio E, Oshima K, Haniu H, et al. Proteome profiling of vitreoretinal diseases by cluster analysis. Proteomics Clin Appl. 2008;2(9):1265–80.

    Article  PubMed  CAS  Google Scholar 

  32. Simo R, Vidal MT, Garcia-Arumi J, Carrasco E, Garcia-Ramirez M, Segura RM, et al. Intravitreous hepatocyte growth factor in patients with proliferative diabetic retinopathy: a case-control study. Diabetes Res Clin Pract. 2006;71(1):36–44.

    Article  PubMed  CAS  Google Scholar 

  33. Krogsaa B, Lund-Andersen H, Mehlsen J, Sestoft L, Larsen J. The blood-retinal barrier ­permeability in diabetic patients. Acta Ophthalmol (Copenh). 1981;59(5):689–94.

    CAS  Google Scholar 

  34. Plehwe WE, Sleightholm MA, Kohner EM. Does vitreous fluorophotometry reflect severity of early diabetic retinopathy? Br J Ophthalmol. 1989;73(4):255–60.

    Article  PubMed  CAS  Google Scholar 

  35. Kim T, Kim SJ, Kim K, Kang UB, Lee C, Park KS, et al. Profiling of vitreous proteomes from proliferative diabetic retinopathy and nondiabetic patients. Proteomics. 2007;7(22):4203–15.

    Article  PubMed  CAS  Google Scholar 

  36. Gao BB, Clermont A, Rook S, Fonda SJ, Srinivasan VJ, Wojtkowski M, et al. Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation. Nat Med. 2007;13(2):181–8.

    Article  PubMed  CAS  Google Scholar 

  37. Gao BB, Chen X, Timothy N, Aiello LP, Feener EP. Characterization of the vitreous proteome in diabetes without diabetic retinopathy and diabetes with proliferative diabetic retinopathy. J Proteome Res. 2008;7(6):2516–25.

    Article  PubMed  CAS  Google Scholar 

  38. Nakanishi T, Koyama R, Ikeda T, Shimizu A. Catalogue of soluble proteins in the human vitreous humor: comparison between diabetic retinopathy and macular hole. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;776(1):89–100.

    Article  PubMed  CAS  Google Scholar 

  39. Koyama R, Nakanishi T, Ikeda T, Shimizu A. Catalogue of soluble proteins in human vitreous humor by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrospray ionization mass spectrometry including seven angiogenesis-regulating factors. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;792(1):5–21.

    Article  PubMed  CAS  Google Scholar 

  40. Ouchi M, West K, Crabb JW, Kinoshita S, Kamei M. Proteomic analysis of vitreous from diabetic macular edema. Exp Eye Res. 2005;81(2):176–82.

    Article  PubMed  CAS  Google Scholar 

  41. Kim SJ, Kim S, Park J, Lee HK, Park KS, Yu HG, et al. Differential expression of vitreous proteins in proliferative diabetic retinopathy. Curr Eye Res. 2006;31(3):231–40.

    Article  PubMed  CAS  Google Scholar 

  42. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422(6928):198–207.

    Article  PubMed  CAS  Google Scholar 

  43. Gao BB, Phipps JA, Bursell D, Clermont AC, Feener EP. Angiotensin AT1 receptor antagonism ameliorates murine retinal proteome changes induced by diabetes. J Proteome Res. 2009;8(12):5541–9.

    Article  PubMed  CAS  Google Scholar 

  44. Kim K, Kim SJ, Yu HG, Yu J, Park KS, Jang IJ, et al. Verification of biomarkers for diabetic retinopathy by multiple reaction monitoring. J Proteome Res. 2010;9(2):689–99.

    Article  PubMed  CAS  Google Scholar 

  45. Gao BB, Stuart L, Feener EP. Label-free quantitative analysis of one-dimensional PAGE LC/MS/MS proteome: application on angiotensin II-stimulated smooth muscle cells secretome. Mol Cell Proteomics. 2008;7(12):2399–409.

    Article  PubMed  CAS  Google Scholar 

  46. Mann M, Kelleher NL. Precision proteomics: the case for high resolution and high mass accuracy. Proc Natl Acad Sci USA. 2008;105(47):18132–8.

    Article  PubMed  CAS  Google Scholar 

  47. Mueller LN, Brusniak MY, Mani DR, Aebersold R. An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J Proteome Res. 2008;7(1):51–61.

    Article  PubMed  CAS  Google Scholar 

  48. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem. 2007;389(4):1017–31.

    Article  PubMed  CAS  Google Scholar 

  49. Kumar C, Mann M. Bioinformatics analysis of mass spectrometry-based proteomics data sets. FEBS Lett. 2009;583(11):1703–12.

    Article  PubMed  CAS  Google Scholar 

  50. Garcia-Ramirez M, Hernandez C, Villarroel M, Canals F, Alonso MA, Fortuny R, et al. Interphotoreceptor retinoid-binding protein (IRBP) is downregulated at early stages of diabetic retinopathy. Diabetologia. 2009;52(12):2633–41.

    Article  PubMed  CAS  Google Scholar 

  51. Simo R, Higuera M, Garcia-Ramirez M, Canals F, Garcia-Arumi J, Hernandez C. Elevation of apolipoprotein A-I and apolipoprotein H levels in the vitreous fluid and overexpression in the retina of diabetic patients. Arch Ophthalmol. 2008;126(8):1076–81.

    Article  PubMed  CAS  Google Scholar 

  52. Bhutto IA, Kim SY, McLeod DS, Merges C, Fukai N, Olsen BR, et al. Localization of collagen XVIII and the endostatin portion of collagen XVIII in aged human control eyes and eyes with age-related macular degeneration. Invest Ophthalmol Vis Sci. 2004;45(5):1544–52.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the US National Institutes of Health (grants EY019029, DK 36836) and the Juvenile Diabetes Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward P. Feener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Feener, E.P. (2012). Proteomics in the Vitreous of Diabetic Retinopathy Patients. In: Tombran-Tink, J., Barnstable, C., Gardner, T. (eds) Visual Dysfunction in Diabetes. Ophthalmology Research. Springer, New York, NY. https://doi.org/10.1007/978-1-60761-150-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-150-9_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60761-149-3

  • Online ISBN: 978-1-60761-150-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics