Skip to main content

Neural Synchrony and Neural Plasticity in Tinnitus

  • Chapter
Textbook of Tinnitus

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HL:

Hearing level

CF:

Center frequency

RI:

Residual inhibition

ASSR:

Auditory steady-state response

AM:

Amplitude modulation

EEG:

Electroencephalogram

MEG:

Magnetoencephalography

References

  1. Robertson D, DRF Irvine (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J. Comp. Neurol. 282:456–461.

    Article  PubMed  CAS  Google Scholar 

  2. Rajan R, DRF Irvine (1998) Neuronal responses across cortical field A1 in plasticity induced by peripheral auditory organ damage. Audiol. Neuro Otol. 3:123–144.

    Article  CAS  Google Scholar 

  3. Noreña AJ, M Tomita, JJ Eggermont (2003) Neural changes in cat auditory cortex after a transient pure-tone trauma. J. Neurophysiol. 90:2387–2401.

    Article  PubMed  Google Scholar 

  4. Rauschecker JP (1999) Auditory cortical plasticity: a comparison with other sensory systems. Trends Neurosci. 22:74–80.

    Article  PubMed  CAS  Google Scholar 

  5. Eggermont JJ, LE Roberts (2004) The neuroscience of tinnitus. Trends Neurosci. 27:676–682.

    Article  PubMed  CAS  Google Scholar 

  6. Fritz J, M Elhilali, S Shamma (2005) Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex. Hear. Res. 206:159–176.

    Article  PubMed  Google Scholar 

  7. Weinberger NM (2007) Auditory associative memory and representational plasticity in the primary auditory cortex. Hear. Res. 229:54–68.

    Article  PubMed  Google Scholar 

  8. Weisz N, T Hartmann, K Dohrmann et al (2006) High-frequency tinnitus without hearing loss does not mean absence of deafferentation. Hear. Res. 222:108–114.

    Article  PubMed  Google Scholar 

  9. Roberts LE, G Moffat, M Baumann et al (2008) Residual inhibition functions overlap tinnitus spectra and the region of auditory threshold shift. J. Assoc. Res. Otolaryngol. 9:417–435.

    Article  PubMed  Google Scholar 

  10. House JW, DE Brackman (1981) Tinnitus: surgical treatment. Ciba Found. Symp. 85:204–216.

    PubMed  CAS  Google Scholar 

  11. Rajan R (2001) Plasticity of excitation and inhibition in the receptive field of primary auditory cortical neurons after limited receptor organ damage. Cereb. Cortex. 11:171–182.

    Article  PubMed  CAS  Google Scholar 

  12. Turrigiano GG, SB Nelson (2004) Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5:97–107.

    Article  PubMed  CAS  Google Scholar 

  13. Noreña AJ, JJ Eggermont (2003) Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear. Res. 183:137–153.

    Article  PubMed  Google Scholar 

  14. Eggermont JJ (2007) Correlated neural activity as the driving force for functional changes in auditory cortex. Hear. Res. 229:69–80.

    Article  PubMed  Google Scholar 

  15. Llinás R, FJ Urbano, E Leznik et al (2005) Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci. 28:325–333.

    Article  PubMed  Google Scholar 

  16. Roberts LE, G Moffat, DJ Bosnyak (2006) Residual inhibition functions in relation to tinnitus spectra and auditory threshold shift. Acta Otolaryngol. Suppl. 556:27–33.

    Article  PubMed  Google Scholar 

  17. Noreña A, C Micheyl, S Chéry-Croze, L Collet (2002) Psychoacoustic characterization of the tinnitus spectrum: implications for the underlying mechanisms of tinnitus. Audiol. Neurootol. 7:358–369.

    Article  PubMed  Google Scholar 

  18. Kay F (2008) Towards improving the assessment of tinnitus pitch. Section of Audiology, Faculty of Medical and Health Sciences, University of Auckland.

    Google Scholar 

  19. Bosnyak DJ, PE Gander, LE Roberts (2008) The 40-Hz auditory steady-state response in tinnitus tracks age-related deficits in intracortical inhibition but does not follow the tinnitus percept. Annual Meeting of the Society for Neuroscience 2008. Washington: Society of Neuroscience 2008 Planner 850.13.

    Google Scholar 

  20. Roberts LE, DJ Bosnyak (2010) Neural synchrony and neural plasticity in tinnitus. In: Searchfield GD, Goodey R Editors. Proceedings of Tinnitus Discovery: Asia-Pacific Tinnitus Symposium. N Z Med J. 123:39–50.

    Google Scholar 

  21. Dean I, NS Harper, D McAlpine (2005) Neural population coding of sound level adapts to stimulus statistics. Nat. Neurosci. 8:1684–1689.

    Article  PubMed  CAS  Google Scholar 

  22. Wienbruch C, I Paul, N Weisz et al (2006) Frequency organization of the 40-Hz auditory steady-state response in normal hearing and in tinnitus. Neuroimage. 33:180–194.

    Article  PubMed  Google Scholar 

  23. Weisz N, S Muller, W Schlee et al (2007) The neural code of auditory phantom perception. J. Neurosci. 27:1479–1484.

    Article  PubMed  CAS  Google Scholar 

  24. Finlayson PG, JA Kaltenbach (2009) Alterations in the spontaneous discharge patterns of single units in the dorsal cochlear nucleus following intense sound exposure. Hear. Res. doi:10.1016.

    Google Scholar 

  25. Zeng C, N Nannapaneni, J Zhou et al (2009) Cochlear damage causes changes in the distribution of vesicular glutamate transporters associated with auditory and nonauditory inputs to the cochlear nucleus. J. Neurosci. 29:4210–4217.

    Article  PubMed  CAS  Google Scholar 

  26. Cacace AT (2003) Expanding the biological basis of tinnitus: crossmodal origins and the role of neuroplasticity. Hear. Res. 175:112–132.

    Article  PubMed  Google Scholar 

  27. Shore SE, S Koehler, M Oldakowski, LF Hughes, S Syed (2008) Dorsal cochlear nucleus responses to somatosensory stimulation are enhanced after noise-induced hearing loss. Eur. J. Neurosci. 27:155–168.

    Article  PubMed  CAS  Google Scholar 

  28. Lockwood AH, MA Wack, RF Burkard et al (2001) The functional anatomy of gaze-evoked tinnitus and sustained lateral gaze. Neurology. 56:472–480.

    Article  PubMed  CAS  Google Scholar 

  29. Mühlau M, JP Rauschecker, E Oestreicher et al (2006) Structural brain changes in tinnitus. Cereb. Cortex. 16:1283–1288.

    Article  PubMed  Google Scholar 

  30. Lanting CP, E de Kleine, P van Dijk (2009) Neural activity underlying tinnitus generation: Results from PET and fMRI. Hear. Res. 255:1–13.

    Article  PubMed  CAS  Google Scholar 

  31. Schlee W, T Hartmann, B Langguth et al (2009) Abnormal resting-state cortical coupling in chronic tinnitus. BMC Neurosci. doi:10.1186/1471-2202-10-11.

    Google Scholar 

  32. Jastreboff PJ (1995) Tinnitus as a phantom perception: Theories and clinical applications. In: Vernon J, Moeller AR, editors. Mechanisms of Tinnitus Boston, MA: Allyn and Bacon, pp 73–94.

    Google Scholar 

  33. Terry AMP, DM Jones, BR Davis, R Slater (1983) Parametric studies of tinnitus masking and residual inhibition. Br. J. Audiol. 17:245–256.

    Article  PubMed  CAS  Google Scholar 

  34. Markram H, J Lübke, M Frotscher et al (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science. 275:213–215.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang LI, S Bao, MM Merzenich (2001) Persistent and specific influences of early acoustic environments on primary auditory cortex. Nat. Neurosci. 4:1123–1130.

    Article  PubMed  CAS  Google Scholar 

  36. de Villers-Sidani E, KL Simpson, YF Lu et al (2008) Manipulating critical period closure across different sectors of the primary auditory cortex. Nat. Neurosci. 11:957–965.

    Article  PubMed  Google Scholar 

  37. Stanton SG, RV Harrison (1996) Abnormal cochleotopic organization in the auditory cortex of cats reared in a frequency augmented environment. Aud. Neurosci. 2:97–107.

    Google Scholar 

  38. Pienkowski M, JJ Eggermont (2009) Long-term, partially-reversible reorganization of frequency tuning in mature cat primary auditory cortex can be induced by passive exposure to moderate-level sounds. Hear. Res. doi:10.1026/j.hearres 2009.07.011.

    Google Scholar 

  39. Weinberger NM (2007) Associative representational plasticity in the auditory cortex: a synthesis of two disciplines. Learn. Mem. 14:1–16.

    Article  PubMed  Google Scholar 

  40. Blake DT, F Strata, AK Churchland, MM Merzenich (2002) Neural correlates of instrumental learning in primary auditory cortex. Proc. Natl. Acad. Sci. USA. 99:10114–10119.

    Article  PubMed  CAS  Google Scholar 

  41. Kilgard MP, MM Merzenich (2002) Order-sensitive plasticity in adult primary auditory cortex. Proc. Natl. Acad. Sci. USA. 99:3205–3209.

    Article  PubMed  CAS  Google Scholar 

  42. Brown M, DR Irvine, VN Park (2004) Perceptual learning on an auditory frequency discrimination task by cats: association with changes in primary auditory cortex. Cereb. Cortex. 14:952–965.

    Article  PubMed  Google Scholar 

  43. Kilgard MP, PK Pandya, J Vazquez, A Gehi, CE Schreiner, MM Merzenich (2001) Sensory input directs spatial and temporal plasticity in primary auditory cortex. J. Neurophysiol. 86:326–338.

    PubMed  CAS  Google Scholar 

  44. Recanzone GH, CE Schreiner, MM Merzenich (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13:87–103.

    PubMed  CAS  Google Scholar 

  45. Kuhl PK (2004) Early language acquisition: cracking the speech code. Nat. Rev. 5:831–843.

    Article  CAS  Google Scholar 

  46. Alain C, JS Snyder, Y He et al (2007) Changes in auditory cortex parallel rapid perceptual learning. Cereb. Cortex. 17:1074–1084.

    Article  PubMed  Google Scholar 

  47. Sheehan KA, GM McArthur, DV Bishop (2005) Is discrimination training necessary to cause changes in the P2 auditory event-related brain potential to speech sounds? Brain Res. Cogn. Brain Res. 25:547–553.

    Article  PubMed  Google Scholar 

  48. Gander PE, DJ Bosnyak, LE Roberts (2010) Acoustic experience but not attention modifies neural population phase expressed in human primary auditory cortex. Hear. Res. do1:10.1016 (on-line ahead of print).

    Google Scholar 

  49. Bosnyak DJ, RA Eaton, LE Roberts (2004) Distributed auditory cortical representations are modified by training at pitch discrimination with 40-Hz amplitude modulated tones. Cereb. Cortex. 14:1088–l099.

    Article  PubMed  Google Scholar 

  50. Okamoto H, H Stracke, O Thiede, C Pantev (2009) Listening to tailor-made notched music reduces tinnitus loudness and tinnitus-related auditory cortex activity. Proc. Natl. Acad. Sci. USA doi:10.1073/pnas.0911268107.

    Google Scholar 

  51. Alain C, JS Snyder, Y He, KS Reinke (2007) Changes in auditory cortex parallel rapid perceptual learning. Cereb. Cortex. 17:1074–1084.

    Article  PubMed  Google Scholar 

  52. Tremblay K, N Kraus, T McGee, C Ponton, B Otis (2001) Central auditory plasticity: changes in the N1-P2 complex after speech-sound training. Ear. Hear. 22:79–90.

    Article  PubMed  CAS  Google Scholar 

  53. Fujioka T, B Ross, R Kakigi, C Pantev, LJ Trainor (2006) One year of musical training affects development of auditory cortical-evoked fields in young children. Brain. 129:2593–608.

    Article  PubMed  Google Scholar 

  54. Menning H, LE Roberts, C Pantev (2000) Plastic changes in the auditory cortex induced by intensive frequency discrimination training. Neuroreport. 11:817–822.

    Article  PubMed  CAS  Google Scholar 

  55. Shahin A, DJ Bosnyak, LJ Trainor, LE Roberts (2003) Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians. J. Neurosci. 23:5545–5552.

    PubMed  CAS  Google Scholar 

  56. Shahin A, LE Roberts, LJ Trainor (2004) Enhancement of auditory cortical development by musical experience in children. Neuroreport. 15:1917–1921.

    Article  PubMed  Google Scholar 

  57. Kuriki S, S Kanda, Y Hirata (2006) Effects of musical experience on different components of MEG responses elicited by sequential piano-tones and chords. J. Neurosci. 26:4046–4053.

    Article  PubMed  CAS  Google Scholar 

  58. Shahin AJ, LE Roberts, C Pantev, M Aziz, TW Picton (2007) Enhanced anterior-temporal processing for complex tones in musicians. Clin. Neurophysiol. 118:209–220.

    Article  PubMed  Google Scholar 

  59. Shahin AJ, LE Roberts, W Chau, LJ Trainor, LM Miller (2008) Music training leads to the development of timbre-specific gamma band activity. Neuroimage. 41:113–122.

    Article  PubMed  Google Scholar 

  60. Ross B, K Tremblay (2009) Stimulus experience modifies auditory neuromagnetic responses in young and older listeners. Hear. Res. 248:48–59.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research of the author reported herein was supported by grants from the Canadian Institutes for Health Research, the Natural Sciences and Engineering Research Council of Canada, the American Tinnitus Association, and the Tinnitus Research Initiative. I thank my colleague Daniel Bosnyak for his role and Phillip Gander, Victoria Mosher, Graeme Moffat, and David Thompson for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry E. Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roberts, L.E. (2011). Neural Synchrony and Neural Plasticity in Tinnitus. In: Møller, A.R., Langguth, B., De Ridder, D., Kleinjung, T. (eds) Textbook of Tinnitus. Springer, New York, NY. https://doi.org/10.1007/978-1-60761-145-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-145-5_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60761-144-8

  • Online ISBN: 978-1-60761-145-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics