Skip to main content

Role of Maternal and Infant Malnutrition on the Development of the Inflammatory Response

  • Chapter
  • First Online:
Dietary Components and Immune Function

Key Points

The thrifty phenotype hypothesis holds that intrauterine malnutrition leads to an adaptive response that alters the fetal metabolic and hormonal milieu designed for intrauterine survival. This fetal programming predisposes individuals to several diseases in adulthood. Fetal nutrition is an important key regulator of fetal growth and thus an obvious candidate as a possible programming influence. Fetal overexposure to maternal glucocorticoids triggers programming events in utero; these effects appear to be relevant to changes in utero because there are strong correlations between birth weight, plasma cortisol concentrations, and the development of hypertension and type 2 diabetes. Malnutrition, an important cause of immunosuppression and undernutrition during critical periods of gestation, neonatal maturation, and weaning, can lead to clinically significant immune deficiency and infections in children. Micronutrients have a relationship to antibody formation and the development of the immune system, and micronutrient deficiencies are related to poor growth, impaired intellect, and increased mortality, and susceptibility to infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Kwashiorkor is a type of severe malnutrition that usually manifests with edema, changes to hair and skin color, anemia, hepatomegaly, lethargy, severe immune deficiency, and early death (136).

References

  1. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME (1989) Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 298:564–567

    Article  PubMed  CAS  Google Scholar 

  2. Kermack WO, McKendrick AG, McKinlay PL (1934) Death-rates in Great Britain and Sweden. Some general regularities and their significance. Lancet I:698–703

    Article  Google Scholar 

  3. Forsdahl A (1977) Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease? Br J Prev Soc Med 31:91–95

    PubMed  CAS  Google Scholar 

  4. Anon (1914) Annual report for 1913 of Chief Medical Officer of the Board of Education, Cd 7330. HMSO, London

    Google Scholar 

  5. Forsdahl A (1973) Points which enlighten the high mortality rate in the county of Finnmark. Can the high mortality rate today be a consequence of bad conditions of life in childhood and adolescence? Tidsskr Nor Lwgeforen 93:661–667

    CAS  Google Scholar 

  6. Forsdahl A, Salmi H, Forsdahl F (1974) Finnish descendants in the municipality of Sor-Varanger-II. An investigation of blood pressure, height, weight, cholesterol, triglycerides and lipoproteins among Finnish descendant men – and the effect of a diet change. Tidsskr Nor Lwgeforen 94:1565–1572

    CAS  Google Scholar 

  7. Barker DJ, Osmond C (1986) Infant mortality, childhood nutrition, and ischemia heart disease in England and Wales. Lancet 1:1077–1081

    Article  PubMed  CAS  Google Scholar 

  8. Barker DJ, Osmond C, Law CM (1989) The intrauterine and early postnatal origins of cardiovascular disease and chronic bronchitis. J Epidemiol Community Health 43:237–240

    Article  PubMed  CAS  Google Scholar 

  9. Barker DJ, Bull AR, Osmond C (1990) Fetal and placental size and risk of hypertension in adult life. BMJ 301:259–262

    Article  PubMed  CAS  Google Scholar 

  10. Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS (1993) Fetal nutrition and cardiovascular disease in adult life. Lancet 341:938–941

    Article  PubMed  CAS  Google Scholar 

  11. Barker DJ (1995) Fetal origins of coronary heart disease. BMJ 311:171–174

    Article  PubMed  CAS  Google Scholar 

  12. Langley SC, Jackson AA (1994) Increased systolic blood pressure in adult rats induced by fetal exposure to maternal low protein diets. Clin Sci 86:217–222

    PubMed  CAS  Google Scholar 

  13. Langley-Evans SC, Phillips GJ, Benediktsson R, Gardner DS, Edwards CR, Jackson AA, Seckl JR (1996) Protein intake in pregnancy, placental glucocorticoid metabolism and the programming of hypertension in the rat. Placenta 17:169–172

    Article  PubMed  CAS  Google Scholar 

  14. Langley-Evans SC, Sherman RC, Welham SJ, Nwagwu MO, Gardner DS, Jackson AA (1999) Intrauterine programming of hypertension: the role of the renin-angiotensin system. Biochem Soc Trans 27:88–93

    PubMed  CAS  Google Scholar 

  15. Seckl JR (2004) Prenatal glucocorticoids and long-term programming. Eur J Endocrinol 151:U49–U62

    Article  PubMed  CAS  Google Scholar 

  16. Jaddoe VW (2008) Fetal nutritional origins of adult diseases: challenges for epidemiological research. Eur J Epidemiol 23:767–771

    Article  PubMed  Google Scholar 

  17. Yajnik CS, Deshmukh US (2008) Maternal nutrition, intrauterine programming and consequential risks in the offspring. Rev Endocr Metab Disord 9:203–211

    Article  PubMed  CAS  Google Scholar 

  18. Neel JV (1962) Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet 14:353–362

    PubMed  CAS  Google Scholar 

  19. Adair LS, Prentice AM (2004) A critical evaluation of the fetal origins hypothesis and its implications for developing countries. J Nutr 134:191–193

    PubMed  CAS  Google Scholar 

  20. Hales CN, Barker DJ (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35:595–601

    Article  PubMed  CAS  Google Scholar 

  21. Phillips DI (1996) Insulin resistance as a programmed response to fetal undernutrition. Diabetologia 39:1119–1122

    Article  PubMed  CAS  Google Scholar 

  22. de Boo HA, Harding JE (2006) The developmental origins of adult disease (Barker) hypothesis. Aust N Z J Obstet Gynaecol 46:4–14

    Article  PubMed  Google Scholar 

  23. Eriksson JG, Forsen T, Tuomilehto J, Osmond C, Barker DJ (2003) Early adiposity rebound in childhood and risk of type 2 diabetes in adult life. Diabetologia 46:190–194

    PubMed  CAS  Google Scholar 

  24. Barker DJP (2007) The origins of the developmental origins theory. J Inter Med 261:412–417

    Article  CAS  Google Scholar 

  25. Barker DJP (2004) Developmental origins of adult health and disease. J Epidemiol Community Health 58:114–115

    Article  PubMed  CAS  Google Scholar 

  26. Gluckman PD, Hanson MA (2004) The developmental origins of the metabolic syndrome. Trends Endocrinol Metab 15:183–187

    Article  PubMed  CAS  Google Scholar 

  27. Gluckman PD, Hanson MA (2004) Developmental origins of disease paradigm: a mechanism and evolutionary perspective. Pediatr Res 56:311–317

    Article  PubMed  Google Scholar 

  28. Lee TM, Spears N, Tuthill CR, Zucker I (1989) Maternal melatonin treatment influences rates of neonatal development of meadow vole pups. Biol Reprod 40:495–502

    Article  PubMed  CAS  Google Scholar 

  29. Armitage JA, Taylor PD, Poston L (2005) Experimental models of developmental programming: consequences of exposure to an energy rich diet during development. J Physiol 565:3–8

    Article  PubMed  CAS  Google Scholar 

  30. McMillen IC, Robinson JS (2005) Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 85:571–633

    Article  PubMed  CAS  Google Scholar 

  31. Harding JE (2001) The nutritional basis of the fetal origins of adult disease. Int J Epidemiol 30:15–23

    Article  PubMed  CAS  Google Scholar 

  32. de Rooij SR, Painter RC, Roseboom TJ, Phillips DI, Osmond C, Barker DJ, Tanck MW, Michels RP, Bossuyt PM, Bleker OP (2006) Glucose tolerance at age 58 and decline of glucose tolerance in comparison with age 50 in people prenatally exposed to the Dutch famine. Diabetologia 49:637–643

    Article  PubMed  CAS  Google Scholar 

  33. Painter RC, de Rooij SR, Bossuyt PM, Simmers TA, Osmond C, Barker DJ, Bleker OP, Roseboom TJ (2006) Early onset of coronary artery disease after prenatal exposure to Dutch famine. Am J Clin Nutr 84:322–327

    PubMed  CAS  Google Scholar 

  34. Woodall SM, Breier BH, Johnston BM, Gluckman PD (1996) A model of intrauterine growth retardation caused by chronic maternal undernutrition in the rat: effects on the somatotrophic axis and postnatal growth. J Endocrinol 150:231–242

    Article  PubMed  CAS  Google Scholar 

  35. Franco MDC, Arruda RM, Fortes ZB, de Oliveira SF, Carvalho MH, Tostes RC, Nigro D (2002) Severe nutritional restriction in pregnant rats aggravates hypertension, altered vascular reactivity, and renal development in spontaneously hypertensive rats offspring. J Cardiovasc Pharmacol 39:369–377

    Article  CAS  Google Scholar 

  36. Ozanne SE, Hales CN (1999) The long-term consequences of intra-uterine protein malnutrition for glucose metabolism. Proc Nutr Soc 58:615–619

    Article  PubMed  CAS  Google Scholar 

  37. Takimoto H, Mito N, Umegaki K, Ishiwaki A, Kusama K, Abe S, Yamawaki M, Fukuoka H, Ohta C, Yoshiike N (2007) Relationship between dietary folate intakes, maternal plasma total homocysteine and B-vitamins during pregnancy and fetal growth in Japan. Eur J Nutr 46:300–306

    Article  PubMed  CAS  Google Scholar 

  38. Huemer M, Vonblon K, Födinger M, Krumpholz R, Hubmann M, Ulmer H, Simma B (2006) Total homocysteine, folate, and cobalamin, and their relation to genetic polymorphisms, lifestyle and body mass index in healthy children and adolescence. Pediatr Res 60:764–769

    Article  PubMed  CAS  Google Scholar 

  39. Martin H, Lindblad B, Norman M (2007) Endothelial function in newborn infants is related to folate levels and birth weight. Pediatrics 119:1152–1158

    Article  PubMed  Google Scholar 

  40. Buckley AJ, Jaquiery AL, Harding JE (2005) Nutritional programming of adult disease. Cell Tissue Res 322:73–79

    Article  PubMed  Google Scholar 

  41. Lesage J, Blondeau B, Grino M, Breant B, Dupouy JP (2001) Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo-pituitary adrenal axis in the newborn rat. Endocrinology 142:1692–1702

    Article  PubMed  CAS  Google Scholar 

  42. Phillips DI, Walker BR, Reynolds RM, Flanagan DE, Wood PJ, Osmond C, Barker DJ, Whorwood CB (2000) Low birth weight predicts elevated plasma cortisol concentrations in adults from 3 populations. Hypertension 35:1301–1306

    Article  PubMed  CAS  Google Scholar 

  43. Levitt NS, Lindsay RS, Holmes MC, Seckl JR (1996) Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevated blood pressure in the adult offspring in the rat. Neuroendocrinology 64:412–418

    Article  PubMed  CAS  Google Scholar 

  44. Nyirenda MJ, Lindsay RS, Kenyon CJ, Burchell A, Seckl JR (1998) Glçucocorticoid exposure in the late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J Clin Invest 101:2174–2181

    Article  PubMed  CAS  Google Scholar 

  45. Moss TJ, Sloboda DM, Gurrin LC, Harding R, Challis JR, Newnham JP (2001) Programming effects in sheep prenatal growth restriction and glucocorticoid exposure. Am J Physiol 281:R960–R970

    CAS  Google Scholar 

  46. Seckl JR (1997) Glucocorticoids, feto-placental 11-beta-hydroxysteroid dehydrogenase type 2, and the early life origins of adult disease. Steroids 62:89–94

    Article  PubMed  CAS  Google Scholar 

  47. Dave-Sharma S, Wilson RC, Harbison MD, Newfield R, Azar MR, Krozowski ZS, Funder JW, Shackleton CH, Bradlow HL, Wei JQ, Hertecant J, Moran A, Neiberger RE, Balfe JW, Fattah A, Daneman D, Akkurt HI, De Santis C, New MI (1998) Examination of genotype and phenotype relationship in 14 patients with apparent mineralocorticoid excess. J Clin Endocrinol Metab 83:2244–2254

    Article  PubMed  CAS  Google Scholar 

  48. Barker DJP, Hales CN, Fall CHD, Osmond C, Phipps K, Clark PMS (1993) Type II (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to fetal growth. Diabetologia 36:62–67

    Article  PubMed  CAS  Google Scholar 

  49. Hattersley AT, Tooke JE (1999) The fetal insulin hypothesis: an alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet 353:1789–1792

    Article  PubMed  CAS  Google Scholar 

  50. Linsday RS, Dabelea D, Roumain J, Hanson RL, Bennett PH, Knowler WC (2000) Type 2 diabetes and low birth weight: the role of paternal inheritance in the association of low birth weight and diabetes. Diabetes 49:445–449

    Article  Google Scholar 

  51. Hypponen E, Smith GD, Power C (2003) Parenteral diabetes and birth weight of offspring: intergenerational cohort study. Br Med J 326:19–20

    Article  Google Scholar 

  52. Waterland RA, Michels KB (2007) Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 27:363–388

    Article  PubMed  CAS  Google Scholar 

  53. Reik W, Dean W, Walter J (2001) Epigenetic programming in mammalian development. Science 293:1089–1093

    Article  PubMed  CAS  Google Scholar 

  54. Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J, Thurston A, Huntley JF, Rees WD, Maloney CA, Lea RG, Craigon J, McEvoy TG, Young LE (2007) DNA methylation, insuline resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci USA 104:19351–19356

    Article  PubMed  CAS  Google Scholar 

  55. Hu JF, Nguyen PH, Pham NV, Vu TH, Hoffman AR (1997) Modulation of IGF-2 genomic imprinting in mice induced by 5-azacytidene, an inhibitor of DNA methylation. Mol Endocrinol 11:1891–1898

    Article  PubMed  CAS  Google Scholar 

  56. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey PH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105:17046–17049

    Article  PubMed  CAS  Google Scholar 

  57. Buckley AJ, Jaquiery AL, Harding JE (2005) Nutritional programming of adult disease. Cell Tissue Res 322:73–79

    Article  PubMed  Google Scholar 

  58. Rolls BA, Gurr MI, van Duijvenvoorde PM, Rolls BJ, Rowe EA (1986) Lactation in lean and obese rats: effect of cafeteria feeding and of dietary obesity on milk composition. Physio Behav 38:185–190

    Article  CAS  Google Scholar 

  59. Doerflinger A, Swithers SE (2004) Effects of diet and handling on initiation of independent ingestion in rats. Dev Psychobiol 45:72–82

    Article  PubMed  Google Scholar 

  60. Swithers SE, Melendez RI, Watkins BA, Davis J (2001) Metabolic and behavioral responses in pre-weanling rats following alteration of maternal diet. Physiol Behav 72:147–157

    Article  PubMed  CAS  Google Scholar 

  61. Khan IY, Dekou V, Douglas G, Jensen R, Hanson MA, Poston L, Taylor PD (2005) A high-fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in adult offspring. Am J Physiol Regul Integr Comp Physiol 288:R127–R133

    Article  PubMed  CAS  Google Scholar 

  62. Khan IY, Dekou V, Hanson MA, Poston L, Taylor PD (2004) Predictive adaptive responses to maternal high-fat diet prevent endothelial dysfunction but not hypertension in adult rats offspring. Hypertension 110:1097–1102

    CAS  Google Scholar 

  63. Levin BE (2006) Metabolic imprinting: critical impact of the perinatal environment on the regulation of energy homeostasis. Philos Trans R Soc Lond B Biol Sci 361:1107–1121

    Article  PubMed  CAS  Google Scholar 

  64. Stewart RJC, Sheppard HG, Preece RF, Waterlow JC (1980) The effect of rehabilitation at different stages of development of rats marginally malnourished for ten to twelve generations. Br J Nutr 43:403–411

    Article  PubMed  CAS  Google Scholar 

  65. Stein AD, Lumey LH (2000) The relationship between maternal and offspring birth weights after maternal prenatal famine exposure: the Dutch Famine Birth Cohort Study. Hum Biol 72:641–654

    PubMed  CAS  Google Scholar 

  66. Martin JF, Johnston CS, Han CT, Benyshek DC (2000) Nutritional origins of insulin resistance: a rat model for diabetes-prone human populations. J Nutr 130:741–744

    PubMed  CAS  Google Scholar 

  67. Ibanez L, Potau N, Enriquez G, de Zegher F (2000) Reduced uterine and ovarian size in adolescent girls born small for gestational age. Pediatr Res 47:575–577

    Article  PubMed  CAS  Google Scholar 

  68. Reik W, Santos F, Dean W (2003) Mammalian epigenomics: reprogramming the genome for development and therapy. Theriogenology 59:21–32

    Article  PubMed  CAS  Google Scholar 

  69. Chandra RK, Newberne PM (1977) Nutrition, immunity and infection mechanisms of interactions. Plenum, New York

    Book  Google Scholar 

  70. Scrimshaw NS (2003) Historical concepts of interactions, synergism and antagonism between nutrition and infection. J Nutr 133:316S–322S

    PubMed  Google Scholar 

  71. Calder PC, Krauss-Etschmann S, de Jong EC, Dupont C, Frick JS, Frokiaer H, Heinrich J, Garn H, Koletzko S, Lack G, Mattelio G, Renz H, Sangild PT, Schrezenmeir J, Stulnig TM, Thymann T, Wold AE, Koletzko B (2006) Early nutrition and immunity – progress and perspectives. Brit J Nutr 96:774–790

    Article  PubMed  CAS  Google Scholar 

  72. Kelly D, Coutts GP (2000) Early nutrition and the development of immune function in the neonate. Proc Nutr Soc 59:177–185

    Article  PubMed  CAS  Google Scholar 

  73. Ballas ZK (2008) Immunomodulators: a brave new world. J Allergy Clin Immunol 121:331–333

    Article  PubMed  Google Scholar 

  74. Gershwin ME, Beach RS, Hurley LS (1984) Nutrition and immunity. Academic, New York

    Google Scholar 

  75. Bendich A, Chandra RK (1990) Micronutrients and immune functions. New York Academy of Science, New York

    Book  Google Scholar 

  76. Chandra RK (1992) Nutrition and immunology. St John’s, ARTS Biomedical, Canada

    Google Scholar 

  77. Savino W (2002) The thymus gland is a target in malnutrition. Eur J Clin Nutr 56:S46–S49

    Article  PubMed  CAS  Google Scholar 

  78. Schaible VE, Kaufmann SH (2007) Malnutrition and infection: complex mechanisms and global impacts. PLoS Med 5:e115

    Article  CAS  Google Scholar 

  79. Nájera O, Gonzalez C, Cortes E, Toledo G, Ortiz R (2007) Effector T lymphocytes in well nourished and malnourished infected children. Clin Exp Immunol 148:501–506

    Article  PubMed  CAS  Google Scholar 

  80. Najera O, Gonzalez C, Toledo G, Lopez L, Ortiz R (2004) Flow cytometry study of lymphocyte subsets in malnourished and well-nourished children with bacterial infections. Clin Diagn Lab Immunol 11:577–580

    PubMed  Google Scholar 

  81. Rodriguez L, Gonzalez C, Flores L, Jimenez-Zamudio L, Graniel J, Ortiz R (2005) Assessment by flow cytometry of cytokine production in malnourished children. Clin Diagn Lab Immunol 12:502–507

    PubMed  CAS  Google Scholar 

  82. McMurray DN, Bartow RA (1992) Immunosuppression and alteration of resistance to pulmonary tuberculosis in guinea pigs by protein undernutrition. J Nutr 122:738–743

    PubMed  CAS  Google Scholar 

  83. Niiya T, Akbar F, Yoshida O, Miyake T, Matsuura B, Murakami H, Abe M, Hiasa Y, Onji M (2007) Impaired dendritic cell function resulting from chronic undernutrition disrupts the antigen-specific immune response in mice. J Nutr 137:671–675

    PubMed  CAS  Google Scholar 

  84. McCarter MD, Naama HA, Shou J, Kwi LX, Evoy DA, Calvano CE, Daly JM (1998) Altered macrophage intracellular signaling induced by protein calorie malnutrition. Cell Immunol 183:131–136

    Article  PubMed  CAS  Google Scholar 

  85. Redmond HP, Shou J, Kelly CJ, Schreiber S, Miller E, Leon P, Daly JM (1991) Immunosuppressive mechanisms in protein-calorie malnutrition. Surgery 110:311–317

    PubMed  CAS  Google Scholar 

  86. Anstead GM, Chandrasekar B, Zhang Q, Melby PC (2003) Multinutrient malnutrition dysregulates the resident macrophage proinflammatory cytokine network, nuclear factor-κB activation, and nitric oxide production. J Leuk Biol 74:982–991

    Article  CAS  Google Scholar 

  87. Walport MJ (2001) Complement. First of two parts. N Engl J Med 344:1058–1066

    Article  PubMed  CAS  Google Scholar 

  88. Chandra RK, Newberne PM (1977) In nutrition, immunity and infection. Mechanisms of interactions. Plenum, New York

    Book  Google Scholar 

  89. Chandra RK (2002) Nutrition and the immune system from birth to old age. Eur J Clin Nutr 56:S73–S76

    Article  PubMed  CAS  Google Scholar 

  90. Katona P, Katona-Apte J (2008) The interaction between nutrition and infection. Clin Infec Dis 46:1582–1588

    Article  Google Scholar 

  91. Stephensen CB (2001) Vitamin A, infection, and immune function. Annu Rev Nutr 21:167–192

    Article  PubMed  CAS  Google Scholar 

  92. Erickson KL, Medina EA, Hubbard NE (2000) Micronutrients and innate immunity. J Inf Disease 182:S5–S10

    Article  CAS  Google Scholar 

  93. Li W, Maeda N, Beck MA (2006) Vitamin C deficiency increases the lung pathology of influenza virus-infected Gulo/mice. J Nutr 136:2611–2616

    PubMed  CAS  Google Scholar 

  94. Walker VP, Modlin RL (2009) The vitamin D connection to pediatric infections and immune function. Pediatr Res 65(5 Pt 2):106R–113R

    Article  PubMed  Google Scholar 

  95. Cantorna MT, Zhu Y, Froicu M, Wittke A (2004) Vitamin D status, 1, 25-dihydroxyvitamin D3, and the immune system. Am J Clin Nutr 80:1717S–1720S

    PubMed  CAS  Google Scholar 

  96. Shankar AH, Prasad AS (1998) Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr 68:447S–463S

    PubMed  CAS  Google Scholar 

  97. Calder PC, Kew S (2002) The immune system: a target for functional foods? Br J Nutr 88:S165–S176

    Article  PubMed  CAS  Google Scholar 

  98. Chandra RK (1991) 1990 McCollum Award lecture. Nutrition and immunity: lessons from the past and new insights into the future. Am J Clin Nutr 53:1087–1101

    PubMed  CAS  Google Scholar 

  99. Percival SS (1998) Copper and immunity. Am J Clin Nutr 67:1064S–1068S

    PubMed  CAS  Google Scholar 

  100. Bonham M, O’Connor JM, Hannigan BM, Strain JJ (2002) The immune system as a physiological indicator of marginal copper status? Br J Nutr 87:393–403

    Article  PubMed  CAS  Google Scholar 

  101. Sussman M (1974) Iron and infection. In: Jacobs A, Worwood AM (eds) Iron in biochemistry and medicine. Academic Press, New York, pp 649–679

    Google Scholar 

  102. Oppenheimer SJ (2001) Iron and its relation to immunity and infectious disease. J Nutr 131:616S–635S

    PubMed  CAS  Google Scholar 

  103. Maggini S, Wintergerst ES, Beveridge S, Hornig DH (2007) Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr 98:S29–S35

    Article  PubMed  CAS  Google Scholar 

  104. Kiremidjian-Schumacher L, Roy M, Wishe HI, Cohen MW, Stotzky G (1994) Supplementation with selenium and human immune cell functions. II. Effect on cytotoxic lymphocytes and natural killer cells. Biol Trace Elem Res 41:115–127

    Article  PubMed  CAS  Google Scholar 

  105. Gladyshev VN, Stadtman TC, Hatfield DL, Jeang KT (1999) Levels of major selenoproteins in T cells decrease during HIV infection and low molecular mass selenium compounds increase. Proc Natl Acad Sci USA 96:835–839

    Article  PubMed  CAS  Google Scholar 

  106. Baum MK, Miguez-Burbano MJ, Campa A, Shor-Posner G (2000) Selenium and interleukins in persons infected with human immunodeficiency virus type 1. J Infect Dis 182:S69–S73

    Article  PubMed  CAS  Google Scholar 

  107. Moreland JG, Bailey G (2006) Neutrophil transendothelial migration in vitro to Streptococcus pneumoniae is pneumolysis dependent. Am J Physiol Lung Cell Moll Physiol 290:L833–L840

    Article  CAS  Google Scholar 

  108. Patarroyo M (1991) Leukocyte adhesion in host defense and tissue injury. Clin Immunol Immunopathol 60:333–348

    Article  PubMed  CAS  Google Scholar 

  109. Golias C, Tsoutsi E, Matziridis A, Makridis P, Batistatou A, Charalabopoulos K (2007) Leukocyte and endothelial cell adhesion molecules in inflammation focusing on inflammatory heart disease. In vivo 21:757–769

    PubMed  CAS  Google Scholar 

  110. Kulapongs P, Edelman R, Suskind R, Olson R (1977) Defective local leukocyte mobilization in children with kwashiorkor. Am J Clin Nutr 30:367–370

    PubMed  CAS  Google Scholar 

  111. Schopfer K, Douglas SD (1975) Neutrophil functions in children with kwashiorkor. J Lab Clin Med 88:450–461

    Google Scholar 

  112. Bhan MK, Bhandari N, Bahl R (2003) Management of the severely malnourished child: perspective from developing countries. BMJ 326:146–151

    Article  PubMed  Google Scholar 

  113. McCarter MD, Naama HA, Shou J, Kwi LX, Evoy DA, Calvano SE, Daly JM (1998) Altered macrophage intracellular signaling induced by protein-calorie malnutrition. Cell Immunol 183:131–136

    Article  PubMed  CAS  Google Scholar 

  114. Ing R, Su Z, Scott ME, Koski KG (2000) Suppressed T helper 2 immunity and prolonged survival of a nematode parasite in protein-malnourished mice. Proc Natl Acad Sci USA 97:7078–7083

    Article  PubMed  CAS  Google Scholar 

  115. Reinert P (1993) Infections in malnourished infants and children. Dev Sante 103:4–6

    PubMed  Google Scholar 

  116. Chandra RK (1980) Fetal nutrition. In: Immunology of nutritional disorders. Year Book Medical Publishers, Chicago, pp 60–68

    Google Scholar 

  117. Bhuyan UN, Ramalingaswami V (1973) Immune response of the protein-deficient guinea pig to BCG vaccination. Am J Pathol 72:489–502

    PubMed  CAS  Google Scholar 

  118. Reynold JV, Redmond HP, Ueno N, Steigman C, Ziegler MM, Daly JM, Johnston RB Jr (1992) Impairment of macrophage activation and granuloma formation by protein deprivation in mice. Cell Immunol 139:493–504

    Article  Google Scholar 

  119. Leme-Brasil MR, Collares EF, Veríssimo de Mello SB, Garcia-Leme J (1980) Acute inflammatory responses in rat with protein-calorie malnutrition. Agents Actions 10:445–450

    Article  PubMed  CAS  Google Scholar 

  120. Tchervenkov JI, Latter DA (1988) The influence of long-term protein deprivation on in vitro phagocytic cell delivery to inflammatory lesions. Surgery 103:463–469

    PubMed  CAS  Google Scholar 

  121. Peters-Golden M, Canetti C, Mancuso P, Coffrey MJ (2004) Leukotrienes: underappreciated mediators of innate immune responses. J Immunol 173:589–594

    Google Scholar 

  122. McDade TW, Beck MA, Kuzawa C, Adair LS (2001) Prenatal undernutrition, postnatal environments, and antibody response to vaccination in adolescence. Am J Clin Nutr 74:543–548

    PubMed  CAS  Google Scholar 

  123. Prestes-Carneiro LE, Laraya RD, Silva PR, Moliterno RA, Felipe I, Mathias PC (2006) Long-term effect of early protein malnutrition on growth curve, hematological parameters and macrophage function of rats. J Nutr Sci Vitaminol 52:414–420

    Article  PubMed  CAS  Google Scholar 

  124. Barja-Fidalgo C, Souza EP, Silva SV, Rodrigues L, Anjos-Valotta EA, Sannomyia P, DeFreitas MS, Moura AS (2003) Impairment of inflammatory response in adult rats submitted to maternal undernutrition during early lactation: role of insulin and glucocorticoid. Inflamm Res 52:470–476

    Article  PubMed  CAS  Google Scholar 

  125. Zadik Z (2003) Maternal nutrition, fetal weight, body composition and disease in later life. J Endocrinol Invest 26:941–955

    PubMed  CAS  Google Scholar 

  126. Godfrey KM, Barker DJ (2000) Fetal nutrition and adult disease. Am J Clin Nutr 71:1344S–1352S

    PubMed  CAS  Google Scholar 

  127. Landgraf MA, Martinez LL, Rastelli VMF, Franco MCP, Soto-Suazo M, Tostes RCA, Carvalho MHC, Nigro D, Fortes ZB (2005) Intrauterine undernutrition in rats interferes with leukocyte migration, decreasing adhesion molecule expression in leukocytes and endothelial cells. J Nutr 135:1480–1485

    PubMed  CAS  Google Scholar 

  128. Landgraf MA, Tostes RCA, Borelli P, Zorn TMT, Nigro D, Carvalho MHC, Fortes ZB (2007) Mechanisms involved in the reduced leukocyte migration in intrauterine undernourishment. Nutrition 23:145–156

    Article  PubMed  CAS  Google Scholar 

  129. Langley-Evans SC, Phillips GJ, Jackson AA (1997) Fetal exposure to low protein maternal diet alters the susceptibility of young adult rats to sulfur dioxide-induced lung injury. J Nutr 27:202–209

    Google Scholar 

  130. Edwards CA, Osman LM, Godden DJ, Campbell DM, Douglas JG (2003) Relationship between birth weight and adult lung function: controlling for factors. Thorax 58:1061–1065

    Article  PubMed  CAS  Google Scholar 

  131. Villamor E, Iliadou A, Cnattingius S (2009) Is the association between low birth weight and asthma independent of genetic and shared environmental factors? Am J Epidemiol 169(11):1337–1343. doi: DOI 10.1093/aje/kwp054

    Article  PubMed  Google Scholar 

  132. Hangstron B, Nyberg P, Nilsson PM (1998) Asthma in adult life – is there an association with birth weight? Scan J Prim Health Care 16:117–120

    Article  Google Scholar 

  133. Svanes C, Omenaas E, Heuch JM, Irgens LM, Gulsvik A (1998) Birth characteristics and asthma symptoms in young adults: results from a population-based cohort study in Norway. Eur Respir J 12:1366–1370

    Article  PubMed  CAS  Google Scholar 

  134. Kitchen WH, Olinsky A, Doyle LW, Ford GW, Murton LJ, Slonim L, Callanan C (1992) Respiratory health and lung function in 8-yearold children of very low birth weight: a cohort study. Pediatrics 89:1151–1158

    PubMed  CAS  Google Scholar 

  135. Landgraf MA, Landgraf RG, Jancar S, Fortes ZB (2007) Influence of age on the development of immunological lung response in intrauterine undernourishment. Nutrition 24:262–269

    Article  CAS  Google Scholar 

  136. Muller O, Krawinkel M (2005) Malnutrition and health in developing countries. CMAJ 173:279–286

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Rafael Larocca for expert assistance with the illustration. The authors acknowledge Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Pesquisa e Tecnologia/Programa de apoio a Núcleos de Excelência (CNPq/PRONEX) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maristella A. Landgraf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Landgraf, M.A., Landgraf, R.G., Fortes, Z.B. (2010). Role of Maternal and Infant Malnutrition on the Development of the Inflammatory Response. In: Watson, R., Zibadi, S., Preedy, V. (eds) Dietary Components and Immune Function. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-061-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-061-8_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-060-1

  • Online ISBN: 978-1-60761-061-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics