Skip to main content

Imaging of Neuroendocrine Tumors

  • Chapter
  • First Online:
  • 1293 Accesses

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

Neuroendocrine tumors (NETs) arise from amine precursor uptake and decarboxylation (APUD) cells throughout the nervous and endocrine systems, which produce and secrete regulatory hormones. NETs commonly originate in: (1) argentaffin cells of the gut, resulting in carcinoid tumors, (2) endocrine cells in the pancreas, (3) calcitonin-producing thyroid cells, resulting in medullary thyroid carcinoma (MTC), and (4) parathyroid, adrenal, and pituitary glands. Although NETs are relatively rare and more indolent than other malignancies, occasionally they can be aggressive. Early diagnosis and accurate identification of primary tumors and metastases are necessary to appropriately treat patients before they develop complications from an aggressive disease. Imaging plays an important role in locating primary tumors, staging, and preoperative planning for resection of primary tumor and metastatic disease, and patient monitoring (follow-up). This chapter will focus on imaging modalities commonly used to diagnose and stage NETs with origins primarily in the abdomen, including gastrointestinal (GI) carcinoids, pancreatic islet-cell tumors, pheochromocytomas, and paragangliomas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. National Comprehensive Cancer Network. Clinical Practice Guidelines in Oncology: Neuroendocrine Tumors V.2.2009.

    Google Scholar 

  2. Horton KM, Kamel I, Hofmann L, Fishman EK. Carcinoid tumors of the small bowel: a multitechnique imaging approach. AJR Am J Roentgenol. 2004;182:559–67.

    PubMed  Google Scholar 

  3. Williams ED, Sandler M. The classification of carcinoid tum ours. Lancet. 1963;1(7275):238–9.

    Article  PubMed  CAS  Google Scholar 

  4. Oberg K, Astrup L, Eriksson B, et al. Guidelines for the management of gastroenteropancreatic neuroendocrine tumours (including bronchopulmonary and thymic neoplasms). Part II-specific NE tumour types. Acta Oncol. 2004;43:626–36.

    Article  PubMed  Google Scholar 

  5. Borch K, Ahren B, Ahlman H, Falkmer S, Granerus G, Grimelius L. Gastric carcinoids: biologic behavior and prognosis after differentiated treatment in relation to type. Ann Surg. 2005;242:64–73.

    Article  PubMed  Google Scholar 

  6. Delle Fave G, Capurso G, Annibale B, Panzuto F. Gastric neuroendocrine tumors. Neuroendocrinology 2004;80 Suppl 1:16–19.

    Google Scholar 

  7. Gore RM, Berlin JW, Mehta UK, Newmark GM, Yaghmai V. GI carcinoid tumours: appearance of the primary and detecting metastases. Best Pract Res Clin Endocrinol Metab. 2005;19:245–63.

    Article  PubMed  Google Scholar 

  8. Gourtsoyiannis N, Grammatikakis J, Prassopoulos P. Role of conventional radiology in the diagnosis and staging of gastrointestinal tract neoplasms. Semin Surg Oncol. 2001;20:91–108.

    Article  PubMed  CAS  Google Scholar 

  9. Levy AD, Sobin LH. From the archives of the AFIP: Gastrointestinal carcinoids: imaging features with clinicopathologic comparison. Radiographics. 2007;27:237–57.

    Article  PubMed  Google Scholar 

  10. Kulke MH, Mayer RJ. Carcinoid tumors. N Engl J Med. 1999;340:858–68.

    Article  PubMed  CAS  Google Scholar 

  11. Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer. 2003;97:934–59.

    Article  PubMed  Google Scholar 

  12. Moertel CG, Sauer WG, Dockerty MB, Baggenstoss AH. Life history of the carcinoid tumor of the small intestine. Cancer. 1961;14:901–12.

    Article  PubMed  CAS  Google Scholar 

  13. Sippel RS, Chen H. Carcinoid tumors. Surg Oncol Clin N Am. 2006;15:463–78.

    Article  PubMed  Google Scholar 

  14. Tamm EP, Kim EE, Ng CS. Imaging of neuroendocrine tumors. Hematol Oncol Clin North Am. 2007;21:409–32.

    Article  PubMed  Google Scholar 

  15. Chang S, Choi D, Lee SJ, et al. Neuroendocrine neoplasms of the gastrointestinal tract: classification, pathologic basis, and imaging features. Radiographics. 2007;27:1667–79.

    Article  PubMed  Google Scholar 

  16. Pantongrag-Brown L, Buetow PC, Carr NJ, Lichtenstein JE, Buck JL. Calcification and fibrosis in mesenteric carcinoid tumor: CT findings and pathologic correlation. AJR Am J Roentgenol. 1995;164:387–91.

    PubMed  CAS  Google Scholar 

  17. Bader TR, Semelka RC, Chiu VC, Armao DM, Woosley JT. MRI of carcinoid tumors: spectrum of appearances in the gastrointestinal tract and liver. J Magn Reson Imaging. 2001;14:261–9.

    Article  PubMed  CAS  Google Scholar 

  18. Kim KW, Ha HK. MRI for small bowel diseases. Semin Ultrasound CT MR. 2003;24:387–402.

    Article  PubMed  CAS  Google Scholar 

  19. Modlin IM, Lye KD, Kidd M. A 50-year analysis of 562 gastric carcinoids: small tumor or larger problem? Am J Gastroenterol. 2004;99:23–32.

    Article  PubMed  Google Scholar 

  20. Kvols L. Carcinoids of the appendix. Neuroendocrinology. 2004;80 Suppl 1:33–4.

    Article  PubMed  CAS  Google Scholar 

  21. Pickhardt PJ, Levy AD, Rohrmann Jr CA, Kende AI. Primary neoplasms of the appendix: radiologic spectrum of disease with pathologic correlation. Radiographics. 2003;23:645–62.

    Article  PubMed  Google Scholar 

  22. Yao JC, Hassan M, Phan A, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26:3063–72.

    Article  PubMed  Google Scholar 

  23. Rouse HC, Godoy MC, Lee WK, Phang PT, Brown CJ, Brown JA. Imaging findings of unusual anorectal and perirectal pathology: a multi-modality approach. Clin Radiol. 2008;63:1350–60.

    Article  PubMed  CAS  Google Scholar 

  24. Yoshida M, Tsukamoto Y, Niwa Y, et al. Endoscopic assessment of invasion of colorectal tumors with a new high-frequency ultrasound probe. Gastrointest Endosc. 1995;41:587–92.

    Article  PubMed  CAS  Google Scholar 

  25. Robiolio PA, Rigolin VH, Wilson JS, et al. Carcinoid heart disease. Correlation of high serotonin levels with valvular abnormalities detected by cardiac catheterization and echocardiography. Circulation. 1995;92:790–5.

    PubMed  CAS  Google Scholar 

  26. Modlin IM, Kidd M, Latich I, Zikusoka MN, Shapiro MD. Current status of gastrointestinal carcinoids. Gastroenterology. 2005;128:1717–51.

    Article  PubMed  Google Scholar 

  27. Yao JC, Eisner MP, Leary C, et al. Population-based study of islet cell carcinoma. Ann Surg Oncol. 2007;14:3492–500.

    Article  PubMed  Google Scholar 

  28. Rha SE, Jung SE, Lee KH, Ku YM, Byun JY, Lee JM. CT and MR imaging findings of endocrine tumor of the pancreas according to WHO classification. Eur J Radiol. 2007;62:371–7.

    Article  PubMed  Google Scholar 

  29. Noone TC, Hosey J, Firat Z, Semelka RC. Imaging and localization of islet-cell tumours of the pancreas on CT and MRI. Best Pract Res Clin Endocrinol Metab. 2005;19:195–211.

    Article  PubMed  Google Scholar 

  30. Norton JA, Alexander HR, Fraker DL, Venzon DJ, Gibril F, Jensen RT. Possible primary lymph node gastrinoma: occurrence, natural history, and predictive factors: a prospective study. Ann Surg. 2003;237:650–7. discussion 657–659.

    PubMed  Google Scholar 

  31. Fidler JL, Fletcher JG, Reading CC, et al. Preoperative detection of pancreatic insulinomas on multiphasic helical CT. AJR Am J Roentgenol. 2003;181:775–80.

    PubMed  CAS  Google Scholar 

  32. Sheth S, Hruban RK, Fishman EK. Helical CT of islet cell tumors of the pancreas: typical and atypical manifestations. AJR Am J Roentgenol. 2002;179:725–30.

    PubMed  Google Scholar 

  33. Van Hoe L, Gryspeerdt S, Marchal G, Baert AL, Mertens L. Helical CT for the preoperative localization of islet cell tumors of the pancreas: value of arterial and parenchymal phase images. AJR Am J Roentgenol. 1995;165:1437–9.

    PubMed  Google Scholar 

  34. Buetow PC, Parrino TV, Buck JL, et al. Islet cell tumors of the pancreas: pathologic-imaging correlation among size, necrosis and cysts, calcification, malignant behavior, and functional status. AJR Am J Roentgenol. 1995;165:1175–9.

    PubMed  CAS  Google Scholar 

  35. Ahrendt SA, Komorowski RA, Demeure MJ, Wilson SD, Pitt HA. Cystic pancreatic neuroendocrine tumors: is preoperative diagnosis possible? J Gastrointest Surg. 2002;6:66–74.

    Article  PubMed  Google Scholar 

  36. Eelkema EA, Stephens DH, Ward EM, Sheedy 2nd PF. CT features of nonfunctioning islet cell carcinoma. AJR Am J Roentgenol. 1984;143:943–8.

    PubMed  CAS  Google Scholar 

  37. Stafford-Johnson DB, Francis IR, Eckhauser FE, Knol JA, Chang AE. Dual-phase helical CT of nonfunctioning islet cell tumors. J Comput Assist Tomogr. 1998;22:335–9.

    Article  PubMed  CAS  Google Scholar 

  38. Kraus BB, Ros PR. Insulinoma: diagnosis with fat-suppressed MR imaging. AJR Am J Roentgenol. 1994;162:69–70.

    PubMed  CAS  Google Scholar 

  39. Havekes B, van der Klaauw AA, Weiss MM, et al. Pheochromocytomas and extra-adrenal paragangliomas detected by screening in patients with SDHD-associated head-and-neck paragangliomas. Endocr Relat Cancer. 2009;16:527–36.

    Article  PubMed  CAS  Google Scholar 

  40. Sahdev A, Sohaib A, Monson JP, Grossman AB, Chew SL, Reznek RH. CT and MR imaging of unusual locations of extra-adrenal paragangliomas (pheochromocytomas). Eur Radiol. 2005;15:85–92.

    Article  PubMed  Google Scholar 

  41. Takano A, Oriuchi N, Tsushima Y, et al. Detection of metastatic lesions from malignant pheochromocytoma and paraganglioma with diffusion-weighted magnetic resonance imaging: comparison with 18 F-FDG positron emission tomography and 123I-MIBG scintigraphy. Ann Nucl Med. 2008;22:395–401.

    Article  PubMed  Google Scholar 

  42. Elsayes KM, Narra VR, Leyendecker JR, Francis IR, Lewis Jr JS, Brown JJ. MRI of adrenal and extraadrenal pheochromocytoma. AJR Am J Roentgenol. 2005;184:860–7.

    PubMed  Google Scholar 

  43. Blake MA, Kalra MK, Maher MM, et al. Pheochromocytoma: an imaging chameleon. Radiographics. 2004;24 Suppl 1:S87–99.

    Article  PubMed  Google Scholar 

  44. Varghese JC, Hahn PF, Papanicolaou N, Mayo-Smith WW, Gaa JA, Lee MJ. MR differentiation of phaeochromocytoma from other adrenal lesions based on qualitative analysis of T2 relaxation times. Clin Radiol. 1997;52:603–6.

    Article  PubMed  CAS  Google Scholar 

  45. Welch TJ, Sheedy 2nd PF, van Heerden JA, Sheps SG, Hattery RR, Stephens DH. Pheochromocytoma: value of computed tomography. Radiology. 1983;148:501–3.

    PubMed  CAS  Google Scholar 

  46. Mukherjee JJ, Peppercorn PD, Reznek RH, et al. Pheochromocytoma: effect of nonionic contrast medium in CT on circulating catecholamine levels. Radiology. 1997;202:227–31.

    PubMed  Google Scholar 

  47. Lee KY, Oh YW, Noh HJ, et al. Extraadrenal paragangliomas of the body: imaging features. AJR Am J Roentgenol. 2006;187:492–504.

    Article  PubMed  Google Scholar 

  48. Hayes WS, Davidson AJ, Grimley PM, Hartman DS. Extraadrenal retroperitoneal paraganglioma: clinical, pathologic, and CT findings. AJR Am J Roentgenol. 1990;155:1247–50.

    PubMed  CAS  Google Scholar 

  49. van Gils AP, Falke TH, van Erkel AR, et al. MR imaging and MIBG scintigraphy of pheochromocytomas and extraadrenal functioning paragangliomas. Radiographics. 1991;11:37–57.

    PubMed  Google Scholar 

  50. Kvols LK. Somatostatin-receptor imaging of human malignancies: a new era in the localization, staging, and treatment of tumors. Gastroenterology. 1993;105:1909–11.

    PubMed  CAS  Google Scholar 

  51. Gibril F, Reynolds JC, Doppman JL, et al. Somatostatin receptor scintigraphy: its sensitivity compared with that of other imaging methods in detecting primary and metastatic gastrinomas. A prospective study. Ann Intern Med. 1996;125:26–34.

    PubMed  CAS  Google Scholar 

  52. Lamberts SW, Bakker WH, Reubi JC, Krenning EP. Somatostatin-receptor imaging in the localization of endocrine tumors. N Engl J Med. 1990;323:1246–9.

    Article  PubMed  CAS  Google Scholar 

  53. Intenzo CM, Jabbour S, Lin HC, et al. Scintigraphic imaging of body neuroendocrine tumors. Radiographics. 2007;27:1355–69.

    Article  PubMed  Google Scholar 

  54. de Herder WW, Hofland LJ, van der Lely AJ, Lamberts SW. Somatostatin receptors in gastroentero-pancreatic neuroendocrine tumours. Endocr Relat Cancer. 2003;10:451–8.

    Article  PubMed  Google Scholar 

  55. Oberg K, Kvols L, Caplin M, et al. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. Ann Oncol. 2004;15:966–73.

    Article  PubMed  CAS  Google Scholar 

  56. Kwekkeboom DJ, Krenning EP. Somatostatin receptor imaging. Semin Nucl Med. 2002;32:84–91.

    Article  PubMed  Google Scholar 

  57. Ramage JK, Davies AH, Ardill J, et al. Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours. Gut. 2005;54 Suppl 4:1–16.

    Google Scholar 

  58. Ezziddin S, Logvinski T, Yong-Hing C, et al. Factors predicting tracer uptake in somatostatin receptor and MIBG scintigraphy of metastatic gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2006;47:223–33.

    PubMed  CAS  Google Scholar 

  59. Pasquali C, Rubello D, Sperti C, et al. Neuroendocrine tumor imaging: can 18 F-fluorodeoxyglucose positron emission tomography detect tumors with poor prognosis and aggressive behavior? World J Surg. 1998;22:588–92.

    Article  PubMed  CAS  Google Scholar 

  60. Rambaldi PF, Cuccurullo V, Briganti V, Mansi L. The present and future role of (111)In pentetreotide in the PET era. Q J Nucl Med Mol Imaging. 2005;49:225–35.

    PubMed  CAS  Google Scholar 

  61. van der Harst E, de Herder WW, Bruining HA, et al. [(123)I]metaiodobenzylguanidine and [(111)In]octreotide uptake in begnign and malignant pheochromocytomas. J Clin Endocrinol Metab. 2001;86:685–93.

    Article  PubMed  Google Scholar 

  62. Hoegerle S, Altehoefer C, Ghanem N, et al. Whole-body 18 F dopa PET for detection of gastrointestinal carcinoid tumors. Radiology. 2001;220:373–80.

    PubMed  CAS  Google Scholar 

  63. Bohuslavizki KH. Somatostatin receptor imaging: current status and future perspectives. J Nucl Med. 2001;42:1057–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chusilp Charnsangavej .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boonsirikamchai, P., Asran, M.K.A., Charnsangavej, C. (2011). Imaging of Neuroendocrine Tumors. In: Yao, J., Hoff, P., Hoff, A. (eds) Neuroendocrine Tumors. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-60327-997-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-997-0_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-996-3

  • Online ISBN: 978-1-60327-997-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics