Skip to main content

Protease Mediators of Anaphylaxis

  • Chapter
  • First Online:
Book cover Anaphylaxis and Hypersensitivity Reactions
  • 1860 Accesses

Abstract

This chapter reviews the history of studies of mast cell and basophil protease biology and attempts to synthesize current concepts bearing upon their likely contributions to anaphylaxis, focusing on enzymes in the histamine-rich intracellular granules in humans and rodents. As a class, peptidases and proteases are the major proteins of mast cell secretory granules, but seem to be less abundant in basophil granules. The peptidases are secreted with histamine during anaphylactic degranulation. Typically, they are cationic proteins that are packaged in the granule with polyanionic heparin and chondroitin sulfate proteoglycans, and are released in association with them. The peptidases, which differ widely in mechanistic class and substrate specificity, include serine endopeptidases (e.g., chymases, cathepsin G, and tryptases), metallo-exopeptidases (e.g., carboxypeptidase A3), and thiol peptidases (e.g., dipeptidylpeptidase I/cathepsin C). There are potentially important differences between human and rodent mast cell and basophil peptidases in variety and functions. Some of these peptidases have anti-inflammatory as well as inflammatory potential, with roles in host defense. When originating from the secretory granule, most are active at the time of release, but their fates and potential for causing harm outside of the cell differ widely, with some enzymes remaining associated with the cell membrane, or being free but promptly inactivated, and others remaining active and capable of cleaving targets remote from the site of degranulation – indeed, acting systemically. Because of their abundance, several of the chymases and tryptases are biomarkers of anaphylaxis. Beyond their demonstrated utility in this regard, some of the peptidases may contribute to the pathology of anaphylaxis and are under investigation as targets for therapeutic inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lagunoff D, Benditt EP. Proteolytic enzymes of mast cells. Ann NY Acad Sci. 1963;103:185–198.

    Article  PubMed  CAS  Google Scholar 

  2. Lagunoff D. Mast cell proteases: a historical perspective. In: Caughey GH, ed. Mast Cell Proteases in Immunology and Biology. New York: Marcel Dekker; 1995:1–8.

    Google Scholar 

  3. Miller HRP, Woodbury RG, Huntley JF, Newlands G. Systemic release of mucosal mast-cell protease in primed rats challenged with Nippostrongylus brasiliensis. Immunology. 1983;49:471–479.

    PubMed  CAS  Google Scholar 

  4. Caughey GH, Schaumberg TH, Zerweck EH, et al. The human mast cell chymase gene (CMA1): mapping to the cathepsin G/granzyme gene cluster and lineage-restricted expression. Genomics. 1993;15:614–620.

    Article  PubMed  CAS  Google Scholar 

  5. Caughey GH, Beauchamp J, Schlatter D, et al. Guinea pig chymase is leucine-specific: a novel example of functional plasticity in the chymase/granzyme family of serine peptidases. J Biol Chem. 2008;283:13943–13951.

    Article  PubMed  CAS  Google Scholar 

  6. Wouters MA, Liu K, Riek P, Husain A. A despecialization step underlying evolution of a family of serine proteases. Mol Cell. 2003;12:343–354.

    Article  PubMed  CAS  Google Scholar 

  7. Gallwitz M, Reimer JM, Hellman L. Expansion of the mast cell chymase locus over the past 200 million years of mammalian evolution. Immunogenetics. 2006;58:655–669.

    Article  PubMed  Google Scholar 

  8. Irani AA, Schechter NM, Craig SS, et al. Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci USA. 1986;83:4464–4468.

    Article  PubMed  CAS  Google Scholar 

  9. Irani AM, Bradford TR, Kepley CL, et al. Detection of MCT and MCTC types of human mast cells by immunohistochemistry using new monoclonal anti-tryptase and anti-chymase antibodies. J Histochem Cytochem. 1989;37:1509–1515.

    Article  PubMed  CAS  Google Scholar 

  10. Weidner N, Austen KF. Heterogeneity of mast cells at multiple body sites-fluorescent determination of avidin binding and immunofluorescent determination of chymase, tryptase, and carboxypeptidase content. Path Res Pract. 1993;189:156–162.

    Article  PubMed  CAS  Google Scholar 

  11. Buckley MG, McEuen AR, Walls AF. The detection of mast cell subpopulations in formalin-fixed human tissues using a new monoclonal antibody specific for chymase. J Pathol. 1999;189:138–143.

    Article  PubMed  CAS  Google Scholar 

  12. Schechter NM, Choi JK, Slavin DA, et al. Identification of a chymotrypsin-like proteinase in human mast cells. J Immunol. 1986;137:962–970.

    PubMed  CAS  Google Scholar 

  13. Schwartz LB, Irani A-MA, Roller K, et al. Quantitation of histamine, tryptase, and chymase in dispersed human T and TC mast cells. J Immunol. 1987;138:2611–2615.

    PubMed  CAS  Google Scholar 

  14. Schechter NM, Irani AM, Sprows JL, et al. Identification of a cathepsin G-like proteinase in the MCTC type of human mast cell. J Immunol. 1990;145:2652–2661.

    PubMed  CAS  Google Scholar 

  15. Benyon RC, Enciso JA, Befus AD. Analysis of human skin mast cell proteins by two-dimensional gel electrophoresis: identification of tryptase as a sialylated glycoprotein. J Immunol. 1993;151:2699–2706.

    PubMed  CAS  Google Scholar 

  16. Caughey GH. A pulmonary perspective on GASPIDs: granule-associated serine peptidases of immune defense. Curr Resp Med Rev. 2006;2:263–277.

    Article  CAS  Google Scholar 

  17. Raymond WW, Su S, Makarova A, et al. α (alpha) 2-Macroglobulin capture allows detection of mast cell chymase in serum and creates a reservoir of angiotensin II-generating activity. J Immunol. 2009;182:5770–5777.

    Article  PubMed  CAS  Google Scholar 

  18. Woodbury RG, Katunuma N, Kobayashi K, et al. Covalent structure of a group-specific protease from rat small intestine. Biochemistry. 1978;17:811–819.

    Article  PubMed  CAS  Google Scholar 

  19. Sanada Y, Yasogawa N, Katunuma N. Crystallization and amino acid composition of a serine protease from rat skeletal muscle. Biochem Biophys Res Commun. 1978;82:108–113.

    Article  PubMed  CAS  Google Scholar 

  20. Pastan I, Almqvist S. Purification and properties of a mast cell protease. J Biol Chem. 1966;241:5090.

    PubMed  CAS  Google Scholar 

  21. Lagunoff D, Pritzl P. Characterization of rat mast cell granule proteins. Arch Biochem Biophys. 1976;173:554–563.

    Article  PubMed  CAS  Google Scholar 

  22. Yurt R, Austen KF. Preparative purification of the rat mast cell chymase: characterization and interaction with granule components. J Exp Med. 1977;146:1405–1419.

    Article  PubMed  CAS  Google Scholar 

  23. Seppa HE. Rat skin main neutral protease: immunohistochemical localization. J Invest Dermatol. 1978;71:311–315.

    Article  PubMed  CAS  Google Scholar 

  24. Woodbury RG, Everitt M, Sanada Y, et al. A major serine protease in rat skeletal muscle: evidence for its mast cell origin. Proc Natl Acad Sci USA. 1978;75:5311–5313.

    Article  PubMed  CAS  Google Scholar 

  25. Woodbury RG, Gruzenski GM, Lagunoff D. Immunofluorescent localization of a serine protease in rat small intestine. Proc Natl Acad Sci USA. 1978;75:2785–2789.

    Article  PubMed  CAS  Google Scholar 

  26. Woodbury RG, Neurath H. Purification of an atypical mast cell protease and its levels in developing rats. Biochemistry. 1978;17:4298–4304.

    Article  PubMed  CAS  Google Scholar 

  27. Seppa H, Vaananen K, Korhonen K. Effect of mast cell chymase of rat skin on intercellular matrix: a histochemical study. Acta Histochem (Jena). 1979;64:64–70.

    Article  CAS  Google Scholar 

  28. Rubinstein I, Nadel JA, Graf PD, Caughey GH. Mast cell chymase potentiates histamine-induced wheal formation in the skin of ragweed-allergic dogs. J Clin Invest. 1990;86:555–559.

    Article  PubMed  CAS  Google Scholar 

  29. Gomori G. Chloroacyl esters as histochemical substrates. J Histochem Cytochem. 1953;1:469–470.

    Article  PubMed  CAS  Google Scholar 

  30. Glenner GG, Cohen LA. Histochemical demonstration of a species-specific trypsin-like enzyme in mast cells. Nature. 1960;185:846–847.

    Article  PubMed  CAS  Google Scholar 

  31. Caughey GH, Lazarus SC, Viro NF, et al. Tryptase and chymase: comparison of extraction and release in two dog mastocytoma lines. Immunology. 1988;63:339–344.

    PubMed  CAS  Google Scholar 

  32. Wolters PJ, Pham CT, Muilenburg DJ, et al. Dipeptidyl peptidase I is essential for activation of mast cell chymases, but not tryptases, in mice. J Biol Chem. 2001;276:18551–18556.

    Article  PubMed  CAS  Google Scholar 

  33. Akin C, Soto D, Brittain E, et al. Tryptase haplotype in mastocytosis: relationship to disease variant and diagnostic utility of total tryptase levels. Clin Immunol. 2007;123:268–271.

    Article  PubMed  CAS  Google Scholar 

  34. Schwartz LB, Min HK, Ren S, et al. Tryptase precursors are preferentially and spontaneously released, whereas mature tryptase is retained by HMC-1 cells, Mono-mac-6 cells, and human skin-derived mast cells. J Immunol. 2003;170:5667–5673.

    PubMed  CAS  Google Scholar 

  35. Pemberton AD, Brown JK, Wright SH, et al. The proteome of mouse mucosal mast cell homologues: the role of transforming growth factor beta1. Proteomics. 2006;6:623–631.

    Article  PubMed  CAS  Google Scholar 

  36. Caughey GH, Raymond WW, Wolters PJ. Angiotensin II generation by mast cell α (alpha)- and β (beta)-chymases. Biochim Biophys Acta. 2000;1480:245–257.

    Article  PubMed  CAS  Google Scholar 

  37. Scudamore CL, Thornton EM, McMillan L, et al. Release of the mucosal mast cell granule chymase, rat mast cell protease-II, during anaphylaxis is associated with the rapid development of paracellular permeability to macromolecules in rat jejunum. J Exp Med. 1995;182:1871–1881.

    Article  PubMed  CAS  Google Scholar 

  38. MacQueen G, Marshall J, Perdue M, Siegel S, Bienenstock J. Pavlovian conditioning of rat mucosal mast cells to secrete rat mast cell protease ii. Science. 1989;243:83–85.

    Article  PubMed  CAS  Google Scholar 

  39. Le Trong H, Neurath H, Woodbury RG. Substrate specificity of the chymotrypsin-like protease in secretory granules isolated from rat mast cells. Proc Natl Acad Sci USA. 1987;84:364–367.

    Article  PubMed  Google Scholar 

  40. Pemberton AD, Wright SH, Knight PA, Miller HR. Anaphylactic release of mucosal mast cell granule proteases: role of serpins in the differential clearance of mouse mast cell proteases-1 and -2. J Immunol. 2006;176:899–904.

    PubMed  CAS  Google Scholar 

  41. Raymond WW, Waugh Ruggles S, Craik CS, Caughey GH. Albumin is a substrate of human chymase: prediction by combinatorial peptide screening and development of a selective inhibitor based on the albumin cleavage site. J Biol Chem. 2003;278:34517–34524.

    Article  PubMed  CAS  Google Scholar 

  42. Belkowski SM, Boot JD, Mascelli MA, et al. Cleaved secretory leucocyte protease inhibitor as a biomarker of chymase activity in allergic airway disease. Clin Exp Allergy. 2009;39:1179–1186.

    Article  PubMed  CAS  Google Scholar 

  43. Satomura K, Shimizu S, Nagato T, et al. Establishment of an assay method for human mast cell chymase. Hepatol Res. 2002;24:361–367.

    Article  PubMed  CAS  Google Scholar 

  44. Nishio H, Takai S, Miyazaki M, et al. Usefulness of serum mast cell-specific chymase levels for postmortem diagnosis of anaphylaxis. Int J Legal Med. 2005;119:331–334.

    Article  PubMed  Google Scholar 

  45. Sun J, Zhang J, Lindholt JS, et al. Critical role of mast cell chymase in mouse abdominal aortic aneurysm formation. Circulation. 2009;120:973–982.

    Article  PubMed  CAS  Google Scholar 

  46. Xia H-Z, Kepley CL, Sakai K, et al. Quantitation of tryptase, chymase, Fcε (epsilon) RIα (alpha), and Fcε (epsilon) RIγ (gamma) mRNAs in human mast cells and basophils by competitive reverse transcription-polymerase chain reaction. J Immunol. 1995;154:5472–5480.

    PubMed  CAS  Google Scholar 

  47. Foster B, Schwartz LB, Devouassoux G, et al. Characterization of mast-cell tryptase-expressing peripheral blood cells as basophils. J Allergy Clin Immunol. 2002;109:287–293.

    Article  PubMed  CAS  Google Scholar 

  48. Li L, Li Y, Reddel SW, et al. Identification of basophilic cells that express mast cell granule proteases in the peripheral blood of asthma, allergy, and drug-reactive patients. J Immunol. 1998;161:5079–5086.

    PubMed  CAS  Google Scholar 

  49. Poorafshar M, Helmby H, Troye-Blomberg M, Hellman L. MMCP-8, the first lineage-specific differentiation marker for mouse basophils. Elevated numbers of potent Il-4-producing and MMCP-8- positive cells in spleens of malaria-infected mice. Eur J Immunol. 2000;30:2660–2668.

    Article  PubMed  CAS  Google Scholar 

  50. Lunderius C, Hellman L. Characterization of the gene encoding mouse mast cell protease 8 (mMCP-8), and a comparative analysis of hematopoietic serine protease genes. Immunogenetics. 2001;53:225–232.

    Article  PubMed  CAS  Google Scholar 

  51. Gallwitz M, Enoksson M, Hellman L. Expression profile of novel members of the rat mast cell protease (RMCP)-2 and (RMCP)-8 families, and functional analyses of mouse mast cell protease (MMCPO)-8. Immunogenetics. 2007;59:391–405.

    Article  PubMed  CAS  Google Scholar 

  52. Powers JC, Tanaka T, Harper JW, et al. Mammalian chymotrypsin-like enzymes. Comparative reactivities of rat mast cell proteases, human and dog skin chymases, and human cathepsin G with peptide 4-nitroanilide substrates and with peptide chloromethyl ketone and sulfonyl fluoride inhibitors. Biochemistry. 1985;24:2048–2058.

    Article  PubMed  CAS  Google Scholar 

  53. Sommerhoff CP, Nadel JA, Basbaum CB, Caughey GH. Neutrophil elastase and cathepsin G stimulate secretion from cultured bovine airway gland serous cells. J Clin Invest. 1990;85:682–689.

    Article  PubMed  CAS  Google Scholar 

  54. Travis J, Bowen J, Baugh R. Human alpha-1-antichymotrypsin: interaction with chymotrypsin-like proteinases. Biochemistry. 1978;17:5651–5656.

    Article  PubMed  CAS  Google Scholar 

  55. Schechter NM, Sprows JL, Schoenberger OL, et al. Reaction of human skin chymotrypsin-like proteinase chymase with plasma proteinase inhibitors. J Biol Chem. 1989;264:21308–21315.

    PubMed  CAS  Google Scholar 

  56. Raptis SZ, Shapiro SD, Simmons PM, et al. Serine protease cathepsin G regulates adhesion-dependent neutrophil effector functions by modulating integrin clustering. Immunity. 2005;22:679–691.

    Article  PubMed  CAS  Google Scholar 

  57. Tkalcevic J, Novelli M, Phylactides M, et al. Impaired immunity and enhanced resistance to endotoxin in the absence of neutrophil elastase and cathepsin G. Immunity. 2000;12:201–210.

    Article  PubMed  CAS  Google Scholar 

  58. Lagunoff D, Rickard A, Marquardt C. Rat mast cell tryptase. Arch Biochem Biophys. 1991;291:52–58.

    Article  PubMed  CAS  Google Scholar 

  59. Kido H, Fukusen N, Katunuma N. Chymotrypsin- and trypsin-type serine proteases in rat mast cells: properties and functions. Arch Biochem Biophys. 1985;239:436–443.

    Article  PubMed  CAS  Google Scholar 

  60. Braganza VJ, Simmons WH. Tryptase from rat skin: purification and properties. Biochemistry. 1991;30:4997–5007.

    Article  PubMed  CAS  Google Scholar 

  61. Wong GW, Tang Y, Feyfant E, et al. Identification of a new member of the tryptase family of mouse and human mast cell proteases which possesses a novel COOH-terminal hydrophobic extension. J Biol Chem. 1999;274:30784–30793.

    Article  PubMed  CAS  Google Scholar 

  62. Huang C, Friend DS, Qiu WT, et al. Induction of a selective and persistent extravasation of neutrophils into the peritoneal cavity by tryptase mouse mast cell protease 6. J Immunol. 1998;160:1910–1919.

    PubMed  CAS  Google Scholar 

  63. Hunt JE, Stevens RL, Austen KF, et al. Natural disruption of the mouse mast cell protease 7 gene in the C57BL/6 mouse. J Biol Chem. 1996;271:2851–2855.

    Article  PubMed  CAS  Google Scholar 

  64. Ghildyal N, Friend DS, Freelund R, et al. Lack of expression of the tryptase mouse mast cell protease 7 in mast cells of the C57BL/6J mouse. J Immunol. 1994;153:2624–2630.

    PubMed  CAS  Google Scholar 

  65. Huang CF, Wong GW, Ghildyal N, et al. The tryptase, mouse mast cell protease 7, exhibits anticoagulant activity in vivo and in vitro due to its ability to degrade fibrinogen in the presence of the diverse array of protease inhibitors in plasma. J Biol Chem. 1997;272:31885–31893.

    Article  PubMed  CAS  Google Scholar 

  66. Ghildyal N, Friend DS, Stevens RL, et al. Fate of two mast cell tryptases in V3 mastocytosis and normal BALB/c mice undergoing passive systemic anaphylaxis: prolonged retention of exocytosed mMCP-6 in connective tissues, and rapid accumulation of enzymatically active mMCP-7 in the blood. J Exp Med. 1996;184:1061–1073.

    Article  PubMed  CAS  Google Scholar 

  67. Huang C, Morales G, Vagi A, et al. Formation of enzymatically active, homotypic, and heterotypic tetramers of mouse mast cell tryptases. Dependence on a conserved Trp-rich domain on the surface. J Biol Chem. 2000;275:351–358.

    Article  PubMed  CAS  Google Scholar 

  68. Thakurdas SM, Melicoff E, Sansores-Garcia L, et al. The mast cell-restricted tryptase mMCP-6 has a critical immunoprotective role in bacterial infections. J Biol Chem. 2007;282:20809–20815.

    Article  PubMed  CAS  Google Scholar 

  69. McNeil HP, Shin K, Campbell IK, et al. The mouse mast cell-restricted tetramer-forming tryptases mouse mast cell protease 6 and mouse mast cell protease 7 are critical mediators in inflammatory arthritis. Arthritis Rheum. 2008;58:2338–2346.

    Article  PubMed  Google Scholar 

  70. Shin K, Watts GF, Oettgen HC, et al. Mouse mast cell tryptase mMCP-6 is a critical link between adaptive and innate immunity in the chronic phase of Trichinella spiralis infection. J Immunol. 2008;180:4885–4891.

    PubMed  CAS  Google Scholar 

  71. Shin K, Nigrovic PA, Crish J, et al. Mast cells contribute to autoimmune inflammatory arthritis via their tryptase/heparin complexes. J Immunol. 2009;182:647–656.

    PubMed  CAS  Google Scholar 

  72. Wong GW, Yasuda S, Morokawa N, et al. Mouse chromosome 17a3.3 contains 13 genes that encode functional tryptic-like serine proteases with distinct tissue and cell expression patterns. J Biol Chem. 2004;279:2438–2452.

    Article  PubMed  CAS  Google Scholar 

  73. Ugajin T, Kojima T, Mukai K, et al. Basophils preferentially express mouse mast cell protease 11 among the mast cell tryptase family in contrast to mast cells. J Leukoc Biol. 2009;86:1417–1425.

    Article  PubMed  CAS  Google Scholar 

  74. Yezzi MJ, Hsieh IE, Caughey GH. Mast cell and neutrophil expression of dog mast cell proteinase-3, a novel tryptase-related serine proteinase. J Immunol. 1994;152:3064–3072.

    PubMed  CAS  Google Scholar 

  75. Vanderslice P, Craik CS, Nadel JA, Caughey GH. Molecular cloning of dog mast cell tryptase and a related protease: structural evidence of a unique mode of serine protease activation. Biochemistry. 1989;28:4148–4155.

    Article  PubMed  CAS  Google Scholar 

  76. Raymond WW, Sommerhoff CP, Caughey GH. Mastin is a gelatinolytic mast cell peptidase resembling a mini-proteasome. Arch Biochem Biophys. 2005;435:311–322.

    Article  PubMed  CAS  Google Scholar 

  77. Caughey GH. Genetic insights into mast cell chymase and tryptase function. Clin Exp All Rev. 2004;4:96–101.

    Article  CAS  Google Scholar 

  78. Tam EK, Caughey GH. Degradation of airway neuropeptides by human lung tryptase. Am J Respir Cell Mol Biol. 1990;3:27–32.

    PubMed  CAS  Google Scholar 

  79. Sekizawa K, Caughey GH, Lazarus SC, et al. Mast cell tryptase causes airway smooth muscle hyperresponsiveness in dogs. J Clin Invest. 1989;83:175–179.

    Article  PubMed  CAS  Google Scholar 

  80. Johnson PRA, Ammit AJ, Carlin SM, et al. Mast cell tryptase potentiates histamine-induced contraction in human sensitized bronchus. Eur Resp J. 1997;10:38–43.

    Article  CAS  Google Scholar 

  81. Stack MS, Johnson DA. Human mast cell tryptase activates single-chain urinary-type plasminogen activator (pro-urokinase). J Biol Chem. 1994;269:9416–9419.

    PubMed  CAS  Google Scholar 

  82. Ren S, Lawson AE, Carr M, et al. Human tryptase fibrinogenolysis is optimal at acidic pH and generates anticoagulant fragments in the presence of the anti-tryptase monoclonal antibody B12. J Immunol. 1997;159:3540–3548.

    PubMed  CAS  Google Scholar 

  83. Molinari JF, Moore WR, Clark J, et al. Role of tryptase in immediate cutaneous responses in allergic sheep. J Appl Physiol. 1995;79:1966–1970.

    PubMed  CAS  Google Scholar 

  84. Molinari JF, Scuri M, Moore WR, et al. Inhaled tryptase causes bronchoconstriction in sheep via histamine release. Am J Respir Crit Care Med. 1996;154:649–653.

    PubMed  CAS  Google Scholar 

  85. Schwartz LB, Yunginger JW, Miller J, et al. Time course of appearance and disappearance of human mast cell tryptase in the circulation after anaphylaxis. J Clin Invest. 1989;83:1551–1555.

    Article  PubMed  CAS  Google Scholar 

  86. Schwartz LB, Lewis RA, Austen KF. Tryptase from human pulmonary mast cells. Purification and characterization. J Biol Chem. 1981;256:11939–11943.

    PubMed  CAS  Google Scholar 

  87. Schwartz LB, Lewis RA, Seldin D, Austen KF. Acid hydrolases and tryptase from secretory granules of dispersed human lung mast cells. J Immunol. 1981;126:1290–1294.

    PubMed  CAS  Google Scholar 

  88. Smith TJ, Hougland MW, Johnson DA. Human lung tryptase. Purification and characterization. J Biol Chem. 1984;259:11046–11051.

    PubMed  CAS  Google Scholar 

  89. Jackson NE, Wang HW, Bryant KJ, et al. Alternate mRNA splicing in multiple human tryptase genes is predicted to regulate tetramer formation. J Biol Chem. 2008;283:34178–34187.

    Article  PubMed  CAS  Google Scholar 

  90. Peng Q, McEuen AR, Benyon RC, Walls AF. The heterogeneity of mast cell tryptase from human lung and skin. Eur J Biochem. 2003;270:270v283.

    Google Scholar 

  91. Vanderslice P, Ballinger SM, Tam EK, et al. Human mast cell tryptase: multiple cDNAs and genes reveal a multigene serine protease family. Proc Natl Acad Sci USA. 1990;87:3811–3815.

    Article  PubMed  CAS  Google Scholar 

  92. Miller JS, Westin EH, Schwartz LB. Cloning and characterization of complementary DNA for human tryptase. J Clin Invest. 1989;84:1188–1195.

    Article  PubMed  CAS  Google Scholar 

  93. Huang C, Li L, Krilis SA, et al. Human tryptases α (alpha) and β (beta)/II are functionally distinct due, in part, to a single amino acid difference in one of the surface loops that forms the substrate-binding cleft. J Biol Chem. 1999;274:19670–19676.

    Article  PubMed  CAS  Google Scholar 

  94. Selwood T, Wang ZM, McCaslin DR, Schechter NM. Diverse stability and catalytic properties of human tryptase a (alpha) and b (beta) isoforms are mediated by residue differences at the S1 pocket. Biochemistry. 2002;41:3329–3340.

    Article  PubMed  CAS  Google Scholar 

  95. Marquardt U, Zettl F, Huber R, et al. The crystal structure of human α (alpha)1-tryptase reveals a blocked substrate-binding region. J Mol Biol. 2002;321:491–502.

    Article  PubMed  CAS  Google Scholar 

  96. Trivedi NN, Tong Q, Raman K, et al. Mast cell α (alpha) and β (beta) tryptases changed rapidly during primate speciation and evolved from γ (gamma)-like transmembrane peptidases in ancestral vertebrates. J Immunol. 2007;179:6072–6079.

    PubMed  CAS  Google Scholar 

  97. Pallaoro M, Fejzo MS, Shayesteh L, et al. Characterization of genes encoding known and novel human mast cell tryptases on chromosome 16p13.3. J Biol Chem. 1999;274:3355–3362.

    Article  PubMed  CAS  Google Scholar 

  98. Caughey GH, Raymond WW, Blount JL, et al. Characterization of human γ (gamma)-tryptases, novel members of the chromosome 16p mast cell tryptase and prostasin gene families. J Immunol. 2000;164:6566–6575.

    PubMed  CAS  Google Scholar 

  99. Soto D, Malmsten C, Blount JL, et al. Genetic deficiency of human mast cell α (alpha)-tryptase. Clin Exp Allergy. 2002;32:1000–1006.

    Article  PubMed  CAS  Google Scholar 

  100. Trivedi NN, Tamraz B, Chu C, et al. Human subjects are protected from mast cell tryptase deficiency despite frequent inheritance of loss-of-function mutations. J Allergy Clin Immunol. 2009;124:1099–1105.

    Article  PubMed  CAS  Google Scholar 

  101. Wong GW, Foster PS, Yasuda S, et al. Biochemical and functional characterization of human transmembrane tryptase (TMT)/tryptase g (gamma). TMT is an exocytosed mast cell protease that induces airway hyperresponsiveness in vivo via an interleukin-13/interleukin-4 receptor alpha/signal transducer and activator of transcription (STAT) 6-dependent pathway. J Biol Chem. 2002;277:41906–41915.

    Article  PubMed  CAS  Google Scholar 

  102. Yuan J, Beltman J, Gjerstad E, et al. Expression and characterization of recombinant γ (gamma)-tryptase. Protein Expr Purif. 2006;49:47–54.

    Article  PubMed  CAS  Google Scholar 

  103. Verghese GM, Gutknecht MF, Caughey GH. Prostasin regulates epithelial monolayer function: cell-specific Glpd1-mediated secretion and functional role for the GPI anchor. Am J Physiol Cell Physiol. 2006;291:1258–1270.

    Article  CAS  Google Scholar 

  104. Trivedi NN, Raymond WW, Caughey GH. Chimerism, point mutation, and truncation dramatically transformed mast cell δ (delta)-tryptases during primate evolution. J Allergy Clin Immunol. 2008;121:1262–1268.

    Article  PubMed  CAS  Google Scholar 

  105. Wang HW, McNeil HP, Husain A, et al. δ (delta) Tryptase is expressed in multiple human tissues, and a recombinant form has proteolytic activity. J Immunol. 2002;169:5145–5152.

    PubMed  Google Scholar 

  106. Caughey GH. Tryptase genetics and anaphylaxis. J Allergy Clin Immunol. 2006;117:1411–1414.

    Article  PubMed  CAS  Google Scholar 

  107. Min HK, Moxley G, Neale MC, Schwartz LB. Effect of sex and haplotype on plasma tryptase levels in healthy adults. J Allergy Clin Immunol. 2004;114:48–51.

    Article  PubMed  CAS  Google Scholar 

  108. Jogie-Brahim S, Min HK, Fukuoka Y, et al. Expression of α (alpha)-tryptase and β (beta)-tryptase by human basophils. J Allergy Clin Immunol. 2004;113:1086–1092.

    Article  PubMed  CAS  Google Scholar 

  109. Goldstein SM, Kaempfer CE, Proud D, et al. Detection and partial characterization of a human mast cell carboxypeptidase. J Immunol. 1987;139:2724–2729.

    PubMed  CAS  Google Scholar 

  110. Reynolds DS, Gurley DS, Austen KF. Cloning and characterization of the novel gene for mast cell carboxypeptidase A. J Clin Invest. 1992;89:273–282.

    Article  PubMed  CAS  Google Scholar 

  111. Irani AM, Goldstein SM, Wintroub BU, et al. Human mast cell carboxypeptidase: selective localization to MCTC cells. J Immunol. 1991;147:247–253.

    PubMed  CAS  Google Scholar 

  112. Lundequist A, Tchougounova E, Abrink M, Pejler G. Cooperation between mast cell carboxypeptidase A and the chymase mouse mast cell protease 4 in the formation and degradation of angiotensin II. J Biol Chem. 2004;279:32339–32344.

    Article  PubMed  CAS  Google Scholar 

  113. Kokkonen JO, Vartiainen M, Kovanen PT. Low density lipoprotein degradation by secretory granules of rat mast cells. Sequential degradation of apolipoprotein B by granule chymase and carboxypeptidase A. J Biol Chem. 1986;261:16067–16072.

    PubMed  CAS  Google Scholar 

  114. Springman EB, Dikov MM, Serafin WE. Mast cell procarboxypeptidase A. Molecular modeling and biochemical characterization of its processing within secretory granules. J Biol Chem. 1995;270:1300–1307.

    Article  PubMed  CAS  Google Scholar 

  115. Henningsson F, Wolters P, Chapman HA, et al. Mast cell cathepsins C and S control levels of carboxypeptidase A and the chymase, mouse mast cell protease 5. Biol Chem. 2003;384:1527–1531.

    Article  PubMed  CAS  Google Scholar 

  116. Henningsson F, Yamamoto K, Saftig P, et al. A role for cathepsin E in the processing of mast-cell carboxypeptidase A. J Cell Sci. 2005;118:2035–2042.

    Article  PubMed  CAS  Google Scholar 

  117. Schneider LA, Schlenner SM, Feyerabend TB, et al. Molecular mechanism of mast cell mediated innate defense against endothelin and snake venom sarafotoxin. J Exp Med. 2007;204:2629–2639.

    Article  PubMed  CAS  Google Scholar 

  118. Maurer M, Wedemeyer J, Metz M, et al. Mast cells promote homeostasis by limiting endothelin-1-induced toxicity. Nature. 2004;432:512–516.

    Article  PubMed  CAS  Google Scholar 

  119. Turk D, Janjic V, Stern I, et al. Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases. EMBO J. 2001;20:6570–6582.

    Article  PubMed  CAS  Google Scholar 

  120. Wolters PJ, Laig-Webster M, Caughey GH. Dipeptidyl peptidase I cleaves matrix-associated proteins and is expressed mainly by mast cells in normal dog airways. Am J Respir Cell Mol Biol. 2000;22:183–190.

    PubMed  CAS  Google Scholar 

  121. Wolters PJ, Raymond WW, Blount JL, Caughey GH. Regulated expression, processing, and secretion of dog mast cell dipeptidyl peptidase I. J Biol Chem. 1998;273:15514–15520.

    Article  PubMed  CAS  Google Scholar 

  122. Mallen-St Clair J, Pham CT, Villalta SA, et al. Mast cell dipeptidyl peptidase I mediates survival from sepsis. J Clin Invest. 2004;113:628–634.

    PubMed  CAS  Google Scholar 

  123. Pham CT, Ivanovich JL, Raptis SZ, et al. Papillon-Lefevre syndrome: correlating the molecular, cellular, and clinical consequences of cathepsin C/dipeptidyl peptidase I deficiency in humans. J Immunol. 2004;173:7277–7281.

    PubMed  CAS  Google Scholar 

  124. Polanowska J, Krokoszynska I, Czapinska H, et al. Specificity of human cathepsin G. Biochim Biophys Acta. 1998;1386:189–198.

    Article  PubMed  CAS  Google Scholar 

  125. McNeil HP, Austen KF, Somerville LL, et al. Molecular cloning of the mouse mast cell protease-5 gene. A novel secretory granule protease expressed early in the differentiation of serosal mast cells. J Biol Chem. 1991;266:20316–20322.

    PubMed  CAS  Google Scholar 

  126. Kunori Y, Koizumi M, Masegi T, et al. Rodent α (alpha)-chymases are elastase-like proteases. Eur J Biochem. 2002;269:5921–5930.

    Article  PubMed  CAS  Google Scholar 

  127. Nakamura N, Tsuru A, Hirayoshi K, Nagata K. Purification and characterization of a vimentin-specific protease in mouse myeloid leukemia cells. Regulation during differentiation and identity with cathepsin G. Eur J Biochem. 1992;205:947–954.

    Article  PubMed  CAS  Google Scholar 

  128. Raymond WW, Trivedi NN, Makarova A, Caughey GH. How peptidases evolve: acquisition of cathepsin G tryptic activity in primates by missense mutation. Am J Respir Crit Care Med. 2009;10:A.

    Google Scholar 

  129. Pemberton AD, Brown JK, Wright SH, et al. Purification and characterization of mouse mast cell proteinase-2 and the differential expression and release of mouse mast cell proteinase-1 and -2 in vivo. Clin Exp Allergy. 2003;33:1005–1012.

    Article  PubMed  CAS  Google Scholar 

  130. Andersson MK, Pemberton AD, Miller HR, Hellman L. Extended cleavage specificity of mMCP-1, the major mucosal mast cell protease in mouse-high specificity indicates high substrate selectivity. Mol Immunol. 2008;45:2548–2558.

    Article  PubMed  CAS  Google Scholar 

  131. Coussens LM, Raymond WW, Bergers G, et al. Inflammatory mast cells upregulate angiogenesis during squamous epithelial carcinogenesis. Genes Develop. 1999;13:1382–1397.

    Article  PubMed  CAS  Google Scholar 

  132. Tchougounova E, Pejler G, Abrink M. The chymase, mouse mast cell protease 4, constitutes the major chymotrypsin-like activity in peritoneum and ear tissue. A role for mouse mast cell protease 4 in thrombin regulation and fibronectin turnover. J Exp Med. 2003;198:423–431.

    Article  PubMed  CAS  Google Scholar 

  133. Hunt JE, Friend DS, Gurish MF, et al. Mouse mast cell protease 9, a novel member of the chromosome 14 family of serine proteases that is selectively expressed in uterine mast cells. J Biol Chem. 1997;272:29158–29166.

    Article  PubMed  CAS  Google Scholar 

  134. Lutzelschwab C, Pejler G, Aveskogh M, Hellman L. Secretory granule proteases in rat mast cells. Cloning of 10 different serine proteases and a carboxypeptidase A from various rat mast cell populations. J Exp Med. 1997;185:13–29.

    Article  PubMed  CAS  Google Scholar 

  135. Karlson U, Pejler G, Tomasini-Johansson B, Hellman L. Extended substrate specificity of rat mast cell protease 5, a rodent α (alpha)-chymase with elastase-like primary specificity. J Biol Chem. 2003;278:39625–39631.

    Article  PubMed  CAS  Google Scholar 

  136. Andersson MK, Karlson U, Hellman L. The extended cleavage specificity of the rodent β (beta)-chymases rMCP-1 and mMCP-4 reveal major functional similarities to the human mast cell chymase. Mol Immunol. 2007;45:766–775.

    Article  PubMed  CAS  Google Scholar 

  137. Karlson U, Pejler G, Froman G, Hellman L. Rat mast cell protease 4 is a β (beta)-chymase with unusually stringent substrate recognition profile. J Biol Chem. 2002;277:18579–18585.

    Article  PubMed  CAS  Google Scholar 

  138. Sakai K, Ren S, Schwartz LB. A novel heparin-dependent processing pathway for human tryptase: autocatalysis followed by activation with dipeptidyl peptidase I. J Clin Invest. 1996;97:988–995.

    Article  PubMed  CAS  Google Scholar 

  139. Miller JS, Moxley G, Schwartz LB. Cloning and characterization of a second complementary cDNA for human tryptase. J Clin Invest. 1990;86:864–870.

    Article  PubMed  CAS  Google Scholar 

  140. Pereira PJB, Bergner A, Macedo-Ribeiro S, et al. Human β (beta)-tryptase is a ring-like tetramer with active sites facing a central pore. Nature. 1998;392:306–311.

    Article  PubMed  CAS  Google Scholar 

  141. Min HK, Kambe N, Schwartz LB. Human mouse mast cell protease 7-like tryptase genes are pseudogenes. J Allergy Clin Immunol. 2001;107:315–321.

    Article  PubMed  CAS  Google Scholar 

  142. Ide H, Itoh H, Tomita M, et al. cDNA sequencing and expression of rat mast cell tryptase. J Biochem. 1995;118:210–215.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George H. Caughey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Caughey, G.H. (2011). Protease Mediators of Anaphylaxis. In: Castells, M. (eds) Anaphylaxis and Hypersensitivity Reactions. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-951-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-951-2_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-950-5

  • Online ISBN: 978-1-60327-951-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics