Skip to main content

Stem Cell Chromatin Patterns and DNA Hypermethylation

  • Chapter
  • First Online:
  • 922 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Normal development requires carefully orchestrated cellular remodeling on both a global and gene-specific/tissue-specific level. Heritable changes in gene expression that occur independently of alterations in the primary DNA sequence are deemed “epigenetic,” and are largely characterized by a tightly regulated program of active and repressive histone modifications. In this chapter, we will discuss the histone modifications that help modulate gene expression during development, as well as the normal stem/progenitor cell epigenetic remodeling proteins, including polycomb group (PcG) proteins, which control these modifications. Intriguingly, the methylation of CpG dinucleotides in DNA also plays a critical role during both normal and malignant epigenetic reprogramming. DNA methylation is a critical mediator of both X-chromosome inactivation and paternal and maternal imprinting, the variable regulation of tissue/cell specific activation of genes required for successful differentiation of alternate cell lineages, and the permanent silencing of genes required for stem/progenitor cell maintenance and pluripotency. Aberrant DNA methylation is a key component of the malignant epigenetic programs that are pervasive in all types of cancer and are thought to contribute to tumor initiation and progression. The clustering of silenced genes within single cell pathways and the remarkable frequency with which epigenetically silenced genes are being identified within any given cancer type begs the question of whether gene silencing is a series of random events resulting in an enhanced survival of a premalignant clone, or whether silencing is the result of a directed, instructive program for silencing initiation reflective of the cells of origin for tumors. We hypothesize that a combination of both chromatin and DNA regulatory networks controlling stem cell epigenetics may go awry in cells that give rise to tumors and during tumor progression. In this regard, the current chapter stresses the hypothesis that the malignant epigenetic program is linked, at least for silencing of some cancer genes, to the epigenetic control of stem/precursor cell gene expression patterns.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

REFERENCES

  1. Horn PJ, Peterson CL. Molecular biology. Chromatin higher order folding-wrapping up transcription. Science 2002; 297:1824–7.

    Article  PubMed  CAS  Google Scholar 

  2. Kiefer JC. Epigenetics in development. Dev Dyn 2007; 236:1144–56.

    Article  PubMed  CAS  Google Scholar 

  3. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403:41–5.

    Article  PubMed  CAS  Google Scholar 

  4. Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293:1074–80.

    Article  PubMed  CAS  Google Scholar 

  5. Kouzarides T. Chromatin modifications and their function. Cell 2007; 128:693–705.

    Article  PubMed  CAS  Google Scholar 

  6. Pruitt K, Zinn RL, Ohm JE, et al Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet 2006; 2:e40.

    Article  PubMed  Google Scholar 

  7. Tucker KL, Beard C, Dausmann J, et al Germ-line passage is required for establishment of methylation and expression patterns of imprinted but not of nonimprinted genes. Genes Dev 1996; 10:1008–20.

    Article  PubMed  CAS  Google Scholar 

  8. Xie S, Wang Z, Okano M, et al Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene 1999; 236:87–95.

    Article  PubMed  CAS  Google Scholar 

  9. Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH. Dnmt3L and the establishment of maternal genomic imprints. Science 2001; 294:2536–9.

    Article  PubMed  Google Scholar 

  10. Penterman J, Zilberman D, Huh JH, Ballinger T, Henikoff S, Fischer RL. DNA demethylation in the Arabidopsis genome. Proc Natl Acad Sci USA 2007; 104:6752–7.

    Article  PubMed  CAS  Google Scholar 

  11. Agius F, Kapoor A, Zhu JK. Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proc Natl Acad Sci USA 2006; 103:11796–801.

    Article  PubMed  CAS  Google Scholar 

  12. Bruniquel D, Schwartz RH. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol 2003; 4:235–40.

    Article  PubMed  CAS  Google Scholar 

  13. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet 1999; 21:163–167.

    Article  PubMed  CAS  Google Scholar 

  14. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer 2004; 4:143–53.

    Article  PubMed  CAS  Google Scholar 

  15. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003; 349:2042–54.

    Article  PubMed  CAS  Google Scholar 

  16. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002; 3:415–28.

    Article  PubMed  CAS  Google Scholar 

  17. Meshorer E, Misteli T. Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 2006; 7:540–6.

    Article  PubMed  CAS  Google Scholar 

  18. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007; 447:425–32.

    Article  PubMed  CAS  Google Scholar 

  19. Lee TI, Jenner RG, Boyer LA, et al Control of developmental regulators by polycomb in human embryonic stem cells. Cell 2006; 125:301–13.

    Article  PubMed  CAS  Google Scholar 

  20. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 2006; 20:1123–1136.

    Article  PubMed  CAS  Google Scholar 

  21. Bernstein BE, Mikkelsen TS, Xie X, et al A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006; 125:315–226.

    Article  PubMed  CAS  Google Scholar 

  22. Azuara V, Perry P, Sauer S, et al Chromatin signatures of pluripotent cell lines. Nat Cell Biol 2006; 8:532–8.

    Article  PubMed  CAS  Google Scholar 

  23. Mikkelsen TS, Ku M, Jaffe DB, et al Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 2007; 448:553–60.

    Article  PubMed  CAS  Google Scholar 

  24. Ren B, Robert F, Wyrick JJ, et al Genome-wide location and function of DNA binding proteins. Science 2000; 290:2306–9.

    Article  PubMed  CAS  Google Scholar 

  25. Barski A, Cuddapah S, Cui K, et al High-resolution profiling of histone methylations in the human genome. Cell 2007; 129:823–37.

    Article  PubMed  CAS  Google Scholar 

  26. Lee TI, Jenner RG, Boyer LA, et al Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006; 125:301–313.

    Article  PubMed  CAS  Google Scholar 

  27. Sakashita K, Koike K, Kinoshita T, et al Dynamic DNA methylation change in the CpG island region of p15 during human myeloid development. J Clin Invest 2001; 108:1195–204.

    PubMed  CAS  Google Scholar 

  28. Allegrucci C, Thurston A, Lucas E, Young L. Epigenetics and the germline. Reproduction 2005; 129:137–49.

    Article  PubMed  CAS  Google Scholar 

  29. Plath K, Fang J, Mlynarczyk-Evans SK, et al Role of histone H3 lysine 27 methylation in X inactivation. Science 2003; 300:131–5.

    Article  PubMed  CAS  Google Scholar 

  30. Valley CM, Pertz LM, Balakumaran BS, Willard HF. Chromosome-wide, allele-specific analysis of the histone code on the human X chromosome. Hum Mol Genet 2006; 15:2335–47.

    Article  PubMed  CAS  Google Scholar 

  31. Kratzer PG, Chapman VM, Lambert H, Evans RE, Liskay RM. Differences in the DNA of the inactive X chromosomes of fetal and extraembryonic tissues of mice. Cell 1983; 33:37–42.

    Article  PubMed  CAS  Google Scholar 

  32. Reik W, Lewis A. Co-evolution of X-chromosome inactivation and imprinting in mammals. Nat Rev Genet 2005; 6:403–10.

    Article  PubMed  CAS  Google Scholar 

  33. Lopatina NG, Poole JC, Saldanha SN, et al Control mechanisms in the regulation of telomerase reverse transcriptase expression in differentiating human teratocarcinoma cells. Biochem Biophys Res Commun 2003; 306:650–9.

    Article  PubMed  CAS  Google Scholar 

  34. Hattori N, Nishino K, Ko YG, et al Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J Biol Chem 2004; 279:17063–9.

    Article  PubMed  CAS  Google Scholar 

  35. Deb-Rinker P, Ly D, Jezierski A, Sikorska M, Walker PR. Sequential DNA methylation of the Nanog and Oct-4 upstream regions in human NT2 cells during neuronal differentiation. J Biol Chem 2005; 280:6257–60.

    Article  PubMed  CAS  Google Scholar 

  36. Feldman N, Gerson A, Fang J, et al G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol 2006; 8:188–94.

    Article  PubMed  CAS  Google Scholar 

  37. Hattori N, Imao Y, Nishino K, et al Epigenetic regulation of Nanog gene in embryonic stem and trophoblast stem cells. Genes Cells 2007; 12:387–96.

    Article  PubMed  CAS  Google Scholar 

  38. Yeo S, Jeong S, Kim J, Han JS, Han YM, Kang YK. Characterization of DNA methylation change in stem cell marker genes during differentiation of human embryonic stem cells. Biochem Biophys Res Commun 2007; 359:536–42.

    Article  PubMed  CAS  Google Scholar 

  39. Aoto T, Saitoh N, Ichimura T, Niwa H, Nakao M. Nuclear and chromatin reorganization in the MHC-Oct3/4 locus at developmental phases of embryonic stem cell differentiation. Dev Biol 2006; 298:354–67.

    Article  PubMed  CAS  Google Scholar 

  40. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100:3983–8.

    Article  PubMed  CAS  Google Scholar 

  41. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414:105–11.

    Article  PubMed  CAS  Google Scholar 

  42. Clarke MF, Fuller M. Stem cells and cancer: two faces of eve. Cell 2006; 124:1111–5.

    Article  PubMed  CAS  Google Scholar 

  43. Harrison DE, Lerner CP. Most primitive hematopoietic stem cells are stimulated to cycle rapidly after treatment with 5-fluorouracil. Blood 1991; 78:1237–40.

    PubMed  CAS  Google Scholar 

  44. Rapp UR, Ceteci F, Schreck R. Oncogene-induced plasticity and cancer stem cells. Cell Cycle 2007; 7.

    Google Scholar 

  45. Ohm JE, McGarvey KM, Yu X, et al A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 2007; 39:237–42.

    Article  PubMed  CAS  Google Scholar 

  46. Widschwendter M, Fiegl H, Egle D, et al Epigenetic stem cell signature in cancer. Nat Genet 2007; 39:157–8.

    Article  PubMed  CAS  Google Scholar 

  47. Schlesinger Y, Straussman R, Keshet I, et al Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 2007; 39:232–6.

    Article  PubMed  CAS  Google Scholar 

  48. Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature 2004; 432:324–31.

    Article  PubMed  CAS  Google Scholar 

  49. Baylin SB, Ohm JE. Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 2006; 6:107–16.

    Article  PubMed  CAS  Google Scholar 

  50. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA. Creation of human tumour cells with defined genetic elements. Nature 1999; 400:464–8.

    Article  PubMed  CAS  Google Scholar 

  51. Aaltonen LA, Peltomaki P, Leach FS, et al Clues to the pathogenesis of familial colorectal cancer. Science 1993; 260:812–6.

    Article  PubMed  CAS  Google Scholar 

  52. Kinzler KW, Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 1997; 386:761–3.

    Article  PubMed  CAS  Google Scholar 

  53. Gregorieff A, Clevers H. Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 2005; 19:877–90.

    Article  PubMed  CAS  Google Scholar 

  54. Furukawa Y. Cell cycle control genes and hematopoietic cell differentiation. Leuk Lymphoma 2002; 43:225–31.

    Article  PubMed  CAS  Google Scholar 

  55. Burch JB. Regulation of GATA gene expression during vertebrate development. Semin Cell Dev Biol 2005; 16:71–81.

    Article  PubMed  CAS  Google Scholar 

  56. Park IK, Qian D, Kiel M, et al Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423:302–5.

    Article  PubMed  CAS  Google Scholar 

  57. Sharpless NE, Alson S, Chan S, Silver DP, Castrillon DH, DePinho RA. p16(INK4a) and p53 deficiency cooperate in tumorigenesis. Cancer Res 2002; 62:2761–5.

    PubMed  CAS  Google Scholar 

  58. Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell 2007; 130:223–33.

    Article  PubMed  CAS  Google Scholar 

  59. Molofsky AV, Slutsky SG, Joseph NM, et al Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 2006; 443:448–52.

    Article  PubMed  CAS  Google Scholar 

  60. Janzen V, Forkert R, Fleming HE, et al Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 2006; 443:421–6.

    PubMed  CAS  Google Scholar 

  61. Krishnamurthy J, Ramsey MR, Ligon KL, et al p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 2006; 443:453–7.

    Article  PubMed  CAS  Google Scholar 

  62. Laverriere AC, MacNeill C, Mueller C, Poelmann RE, Burch JB, Evans T. GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem 1994; 269:23177–84.

    PubMed  CAS  Google Scholar 

  63. Andrews PW. Human teratocarcinomas. Biochim Biophys Acta 1988; 948:17–36.

    PubMed  CAS  Google Scholar 

  64. Andrews PW. Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev Biol 1984; 103:285–93.

    Article  PubMed  CAS  Google Scholar 

  65. Mintz B, Illmensee K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci USA 1975; 72:3585–9.

    Article  PubMed  CAS  Google Scholar 

  66. Palmiter RD, Chen HY, Brinster RL. Differential regulation of metallothionein-thymidine kinase fusion genes in transgenic mice and their offspring. Cell 1982; 29:701–10.

    Article  PubMed  CAS  Google Scholar 

  67. McGarvey KM, Fahrner JA, Greene E, Martens J, Jenuwein T, Baylin SB. Silenced tumor suppressor genes reactivated by dna demethylation do not return to a fully euchromatic chromatin state. Cancer Res 2006; 66:3541–3549.

    Article  PubMed  CAS  Google Scholar 

  68. Jones PA, Baylin SB. The epigenomics of cancer. Cell 2007; 128:683–92.

    Article  PubMed  CAS  Google Scholar 

  69. Kuzmichev A, Margueron R, Vaquero A, et al Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation. Proc Natl Acad Sci USA 2005; 102:1859–1864.

    Article  PubMed  CAS  Google Scholar 

  70. Kleer CG, Cao Q, Varambally S, et al EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 2003; 100:11606–11.

    Article  PubMed  CAS  Google Scholar 

  71. Kirmizis A, Bartley SM, Farnham PJ. Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. Mol Cancer Ther 2003; 2:113–21.

    PubMed  CAS  Google Scholar 

  72. LundAavL, M. Polycomb complexes and silencing mechanisms. Curr Opin Genet Dev 2004; 16:1–8.

    Google Scholar 

  73. Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M. Stem cells and cancer; the polycomb connection. Cell 2004; 118:409–18.

    Article  PubMed  CAS  Google Scholar 

  74. Otte AP, Kwaks TH. Gene repression by Polycomb group protein complexes: a distinct complex for every occasion? Curr Opin Genet Dev 2003; 13:448–54.

    Article  PubMed  CAS  Google Scholar 

  75. Vire E, Brenner C, Deplus R, et al The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006; 439:871–4.

    Article  PubMed  CAS  Google Scholar 

  76. Schuebel KE, Chen W, Cope L, et al Comparing the DNA Hypermethylome with Gene Mutations in Human Colorectal Cancer. PLoS Genet 2007; 3:e157.

    Article  Google Scholar 

  77. McGarvey KM, Greene E, Fahrner JA, Jenuwein T, Baylin SB. DNA methylation and complete transcriptional silencing of cancer genes persist after depletion of EZH2. Cancer Res 2007; 67:5097–102.

    Article  PubMed  CAS  Google Scholar 

  78. Schotta G, Lachner M, Sarma K, et al A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 2004; 18:1251–62.

    Article  PubMed  CAS  Google Scholar 

  79. Lachner M, O’Sullivan RJ, Jenuwein T. An epigenetic road map for histone lysine methylation. J Cell Sci 2003; 116:2117–24.

    Article  PubMed  CAS  Google Scholar 

  80. Nguyen CT, Gonzales FA, Jones PA. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res 2001; 29:4598–606.

    Article  PubMed  CAS  Google Scholar 

  81. Fahrner JA, Eguchi S, Herman JG, Baylin SB. Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res 2002; 62:7213–8.

    PubMed  CAS  Google Scholar 

  82. Kouzarides T. Histone methylation in transcriptional control. Curr Opin Genet Dev 2002; 12:198–209.

    Article  PubMed  CAS  Google Scholar 

  83. Briggs SD, Xiao T, Sun ZW, et al Gene silencing: trans-histone regulatory pathway in chromatin. Nature 2002; 418:498.

    Article  PubMed  CAS  Google Scholar 

  84. Fischle W, Wang Y, Allis CD. Histone and chromatin cross-talk. Curr Opin Cell Biol 2003; 15:172–83.

    Article  PubMed  CAS  Google Scholar 

  85. Tamaru H, Selker EU. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 2001; 414:277–83.

    Article  PubMed  CAS  Google Scholar 

  86. Tamaru H, Zhang X, McMillen D, et al Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat Genet 2003; 34:75–9.

    Article  PubMed  CAS  Google Scholar 

  87. Johnson L, Cao X, Jacobsen S. Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation. Curr Biol 2002; 12:1360–7.

    Article  PubMed  CAS  Google Scholar 

  88. Malagnac F, Bartee L, Bender J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. Embo J 2002; 21:6842–52.

    Article  PubMed  CAS  Google Scholar 

  89. Jackson JP, Johnson L, Jasencakova Z, et al Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 2004; 112:308–15.

    Article  PubMed  CAS  Google Scholar 

  90. Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G. Genome regulation by polycomb and trithorax proteins. Cell 2007; 128:735–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyce E. Ohm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ohm, J.E., Baylin, S.B. (2009). Stem Cell Chromatin Patterns and DNA Hypermethylation. In: Teicher, B., Bagley, R. (eds) Stem Cells and Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-933-8_7

Download citation

Publish with us

Policies and ethics