Skip to main content

Adult Prostate Epithelium Renewal, Stem Cells and Cancer

  • Chapter
  • First Online:
  • 913 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Cancer is thought to develop from the neoplastic transformation of either stem cells that maintain the ability to self-renew or committed progenitor cells that undergo dedifferentiation and acquire stem cell characteristics. Thus, understanding prostate cell differentiation lineage during development as well as prostate epithelium renewal in adulthood represents a critical step in unraveling the mechanisms involved in prostate carcinogenesis. Recent advances in the field have started to clarify the hierarchical relationship between epithelial prostate cells. In addition, prostate cell populations with characteristics of stem cells have been identified. Further clarification of the processes that regulate normal prostate homeostasis is likely to shed additional light on the multistep process of prostate tumorigenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

REFERENCES

  1. Gronberg H. Prostate cancer epidemiology. Lancet 2003;361(9360):859–64.

    Article  PubMed  Google Scholar 

  2. Lawson DA, Xin L, Lukacs R, Xu Q, Cheng D, Witte ON. Prostate stem cells and prostate cancer. Cold Spring Harb Symp Quant Biol 2005;70:187–96.

    Article  PubMed  CAS  Google Scholar 

  3. Shen MM, Abate-Shen C. Roles of the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis. Dev Dyn 2003;228(4):767–78.

    Article  PubMed  CAS  Google Scholar 

  4. Shou J, Ross S, Koeppen H, de Sauvage FJ, Gao WQ. Dynamics of notch expression during murine prostate development and tumorigenesis. Cancer Res 2001;61(19):7291–7.

    PubMed  CAS  Google Scholar 

  5. Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature 2004;432(7015):324–31.

    Article  PubMed  CAS  Google Scholar 

  6. Monk M, Holding C. Human embryonic genes re-expressed in cancer cells. Oncogene 2001;20(56):8085–91.

    Article  PubMed  CAS  Google Scholar 

  7. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005;434(7035):843–50.

    Article  PubMed  CAS  Google Scholar 

  8. Weng AP, Aster JC. Multiple niches for Notch in cancer: context is everything. Curr Opin Genet Dev 2004;14(1):48–54.

    Article  PubMed  CAS  Google Scholar 

  9. Abate-Shen C, Shen MM. Molecular genetics of prostate cancer. Genes Dev 2000;14(19):2410–34.

    Article  PubMed  CAS  Google Scholar 

  10. Hayward SW, Cunha GR. The prostate: development and physiology. Radiol Clin North Am 2000;38(1):1–14.

    Article  PubMed  CAS  Google Scholar 

  11. Isaacs JT, Furuya Y, Berges R. The role of androgen in the regulation of programmed cell death/apoptosis in normal and malignant prostatic tissue. Semin Cancer Biol 1994;5(5):391–400.

    PubMed  CAS  Google Scholar 

  12. Closset J RE. Handbook of Cell Signaling, ch. Prostate; 2003.

    Google Scholar 

  13. Denmeade SR, Lin XS, Isaacs JT. Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate 1996;28(4):251–65.

    Article  PubMed  CAS  Google Scholar 

  14. Walsh PC. Human benign prostatic hyperplasia: etiological considerations. Prog Clin Biol Res 1984;145:1–25.

    PubMed  CAS  Google Scholar 

  15. Lowsley OS. Surgical pathology of the human prostate gland. Ann Surg 1918;68(4):399–415.

    Article  PubMed  CAS  Google Scholar 

  16. De Marzo AM, Meeker AK, Zha S, et al. Human prostate cancer precursors and pathobiology. Urology 2003;62(5 Suppl 1):55–62.

    Article  PubMed  Google Scholar 

  17. De Marzo AM, Coffey DS, Nelson WG. New concepts in tissue specificity for prostate cancer and benign prostatic hyperplasia. Urology 1999;53(3 Suppl 3a):29–39; discussion 42.

    Article  PubMed  CAS  Google Scholar 

  18. Cunha GR, Donjacour AA, Cooke PS, et al. The endocrinology and developmental biology of the prostate. Endocr Rev 1987;8(3):338–62.

    Article  PubMed  CAS  Google Scholar 

  19. McNeal JE. Normal and pathologic anatomy of prostate. Urology 1981;17(Suppl 3):11–6.

    PubMed  CAS  Google Scholar 

  20. Marker PC, Donjacour AA, Dahiya R, Cunha GR. Hormonal, cellular, and molecular control of prostatic development. Dev Biol 2003;253(2):165–74.

    Article  PubMed  CAS  Google Scholar 

  21. Roy-Burman P, Wu H, Powell WC, Hagenkord J, Cohen MB. Genetically defined mouse models that mimic natural aspects of human prostate cancer development. Endocr Relat Cancer 2004;11(2):225–54.

    Article  PubMed  CAS  Google Scholar 

  22. Bonkhoff H, Remberger K. Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate 1996;28(2):98–106.

    Article  PubMed  CAS  Google Scholar 

  23. Liu AY, True LD, LaTray L, et al. Cell–cell interaction in prostate gene regulation and cytodifferentiation. Proc Natl Acad Sci USA 1997;94(20):10705–10.

    Article  PubMed  CAS  Google Scholar 

  24. Rizzo S, Attard G, Hudson DL. Prostate epithelial stem cells. Cell Prolif 2005;38(6):363–74.

    Article  PubMed  CAS  Google Scholar 

  25. Ware JL. Prostate cancer progression. Implications of histopathology. Am J Pathol 1994;145(5):983–93.

    PubMed  CAS  Google Scholar 

  26. Wong YC, Wang XH, Ling MT. International Review of Cytology, ch. Prostate development and cytogenesis; 2003.

    Google Scholar 

  27. Kellokumpu-Lehtinen P, Santti R, Pelliniemi LJ. Correlation of early cytodifferentiation of the human fetal prostate and Leydig cells. Anat Rec 1980;196(3):263–73.

    Article  PubMed  CAS  Google Scholar 

  28. Sugimura Y, Cunha GR, Donjacour AA. Morphogenesis of ductal networks in the mouse prostate. Biol Reprod 1986;34(5):961–71.

    Article  PubMed  CAS  Google Scholar 

  29. Timms BG, Mohs TJ, Didio LJ. Ductal budding and branching patterns in the developing prostate. J Urol 1994;151(5):1427–32.

    PubMed  CAS  Google Scholar 

  30. Barkley MS, Goldman BD. A quantitative study of serum testosterone, sex accessory organ growth, and the development of intermale aggression in the mouse. Horm Behav 1977;8(2):208–18.

    Article  PubMed  CAS  Google Scholar 

  31. Yang A, Kaghad M, Wang Y, et al. p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 1998;2(3):305–16.

    Article  PubMed  CAS  Google Scholar 

  32. Signoretti S, Waltregny D, Dilks J, et al. p63 is a prostate basal cell marker and is required for prostate development. Am J Pathol 2000;157(6):1769–75.

    Article  PubMed  CAS  Google Scholar 

  33. Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999;398(6729):708–13.

    Article  PubMed  CAS  Google Scholar 

  34. Yang A, Schweitzer R, Sun D, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999;398(6729):714–8.

    Article  PubMed  CAS  Google Scholar 

  35. Senoo M, Pinto F, Crum CP, McKeon F. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell 2007;129(3):523–36.

    Article  PubMed  CAS  Google Scholar 

  36. Signoretti S, Pires MM, Lindauer M, et al. p63 regulates commitment to the prostate cell lineage. Proc Natl Acad Sci USA 2005;102(32):11355–60.

    Article  PubMed  CAS  Google Scholar 

  37. Kurita T, Medina RT, Mills AA, Cunha GR. Role of p63 and basal cells in the prostate. Development 2004;131(20):4955–64.

    Article  PubMed  CAS  Google Scholar 

  38. Ingham PW. Transducing Hedgehog: the story so far. EMBO J 1998;17(13):3505–11.

    Article  PubMed  CAS  Google Scholar 

  39. Weed M, Mundlos S, Olsen BR. The role of sonic hedgehog in vertebrate development. Matrix Biol 1997;16(2):53–8.

    Article  PubMed  CAS  Google Scholar 

  40. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev 2001;15(23):3059–87.

    Article  PubMed  CAS  Google Scholar 

  41. Ericson J, Muhr J, Placzek M, Lints T, Jessell TM, Edlund T. Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 1995;81(5):747–56.

    Article  PubMed  CAS  Google Scholar 

  42. Fukuda K, Yasugi S. Versatile roles for sonic hedgehog in gut development. J Gastroenterol 2002;37(4):239–46.

    Article  PubMed  CAS  Google Scholar 

  43. Hebrok M, Kim SK, Melton DA. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev 1998;12(11):1705–13.

    Article  PubMed  CAS  Google Scholar 

  44. Niswander L, Jeffrey S, Martin GR, Tickle C. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 1994;371(6498):609–12.

    Article  PubMed  CAS  Google Scholar 

  45. Hu D, Helms JA. The role of sonic hedgehog in normal and abnormal craniofacial morphogenesis. Development 1999;126(21):4873–84.

    PubMed  CAS  Google Scholar 

  46. Jaskoll T, Leo T, Witcher D, et al. Sonic hedgehog signaling plays an essential role during embryonic salivary gland epithelial branching morphogenesis. Dev Dyn 2004;229(4):722–32.

    Article  PubMed  CAS  Google Scholar 

  47. Pepicelli CV, Lewis PM, McMahon AP. Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol 1998;8(19):1083–6.

    Article  PubMed  CAS  Google Scholar 

  48. Zhu G, Zhau HE, He H, et al. Sonic and desert hedgehog signaling in human fetal prostate development. Prostate 2007;67(6):674–84.

    Article  PubMed  CAS  Google Scholar 

  49. Bitgood MJ, McMahon AP. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol 1995;172(1):126–38.

    Article  PubMed  CAS  Google Scholar 

  50. Podlasek CA, Barnett DH, Clemens JQ, Bak PM, Bushman W. Prostate development requires Sonic hedgehog expressed by the urogenital sinus epithelium. Dev Biol 1999;209(1):28–39.

    Article  PubMed  CAS  Google Scholar 

  51. Lamm ML, Catbagan WS, Laciak RJ, et al. Sonic hedgehog activates mesenchymal Gli1 expression during prostate ductal bud formation. Dev Biol 2002;249(2):349–66.

    Article  PubMed  CAS  Google Scholar 

  52. Berman DM, Desai N, Wang X, et al. Roles for Hedgehog signaling in androgen production and prostate ductal morphogenesis. Dev Biol 2004;267(2):387–98.

    Article  PubMed  CAS  Google Scholar 

  53. Freestone SH, Marker P, Grace OC, et al. Sonic hedgehog regulates prostatic growth and epithelial differentiation. Dev Biol 2003;264(2):352–62.

    Article  PubMed  CAS  Google Scholar 

  54. Wang BE, Shou J, Ross S, Koeppen H, De Sauvage FJ, Gao WQ. Inhibition of epithelial ductal branching in the prostate by sonic hedgehog is indirectly mediated by stromal cells. J Biol Chem 2003;278(20):18506–13.

    Article  PubMed  CAS  Google Scholar 

  55. Doles J, Cook C, Shi X, Valosky J, Lipinski R, Bushman W. Functional compensation in Hedgehog signaling during mouse prostate development. Dev Biol 2006;295(1):13–25.

    Article  PubMed  CAS  Google Scholar 

  56. Bhardwaj G, Murdoch B, Wu D, et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2001;2(2):172–80.

    Article  PubMed  CAS  Google Scholar 

  57. Lai K, Kaspar BK, Gage FH, Schaffer DV. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 2003;6(1):21–7.

    Article  PubMed  CAS  Google Scholar 

  58. Machold R, Hayashi S, Rutlin M, et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 2003;39(6):937–50.

    Article  PubMed  CAS  Google Scholar 

  59. Zhang Y, Kalderon D. Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 2001;410(6828):599–604.

    Article  PubMed  CAS  Google Scholar 

  60. Adolphe C, Narang M, Ellis T, Wicking C, Kaur P, Wainwright B. An in vivo comparative study of sonic, desert and Indian hedgehog reveals that hedgehog pathway activity regulates epidermal stem cell homeostasis. Development 2004;131(20):5009–19.

    Article  PubMed  CAS  Google Scholar 

  61. Rowitch DH, B SJ, Lee SM, Flax JD, Snyder EY, McMahon AP. Sonic hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J Neurosci 1999;19(20):8954–65.

    PubMed  CAS  Google Scholar 

  62. Kim Y, Nirenberg M. Drosophila NK-homeobox genes. Proc Natl Acad Sci USA 1989;86(20):7716–20.

    Article  PubMed  CAS  Google Scholar 

  63. Stanfel MN, Moses KA, Schwartz RJ, Zimmer WE. Regulation of organ development by the NKX-homeodomain factors: an NKX code. Cell Mol Biol (Noisy-le-grand) 2005;Suppl 51:OL785–99.

    CAS  Google Scholar 

  64. Bieberich CJ, Fujita K, He WW, Jay G. Prostate-specific and androgen-dependent expression of a novel homeobox gene. J Biol Chem 1996;271(50):31779–82.

    Article  PubMed  CAS  Google Scholar 

  65. Sciavolino PJ, Abrams EW, Yang L, Austenberg LP, Shen MM, Abate-Shen C. Tissue-specific expression of murine Nkx3.1 in the male urogenital system. Dev Dyn 1997;209(1):127–38.

    Article  PubMed  CAS  Google Scholar 

  66. Tanaka M, Lyons GE, Izumo S. Expression of the Nkx3.1 homobox gene during pre and postnatal development. Mech Dev 1999;85(1–2):179–82.

    Article  PubMed  CAS  Google Scholar 

  67. Bhatia-Gaur R, Donjacour AA, Sciavolino PJ, et al. Roles for Nkx3.1 in prostate development and cancer. Genes Dev 1999;13(8):966–77.

    Article  PubMed  CAS  Google Scholar 

  68. Schneider A, Brand T, Zweigerdt R, Arnold H. Targeted disruption of the Nkx3.1 gene in mice results in morphogenetic defects of minor salivary glands: parallels to glandular duct morphogenesis in prostate. Mech Dev 2000;95(1–2):163–74.

    Article  PubMed  CAS  Google Scholar 

  69. Tanaka M, Komuro I, Inagaki H, Jenkins NA, Copeland NG, Izumo S. Nkx3.1, a murine homolog of Drosophila bagpipe, regulates epithelial ductal branching and proliferation of the prostate and palatine glands. Dev Dyn 2000;219(2):248–60.

    Article  PubMed  CAS  Google Scholar 

  70. Abdulkadir SA. Mechanisms of prostate tumorigenesis: roles for transcription factors Nkx3.1 and Egr1. Ann N Y Acad Sci 2005;1059:33–40.

    Article  PubMed  CAS  Google Scholar 

  71. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science 1999;284(5415):770–6.

    Article  PubMed  CAS  Google Scholar 

  72. Lai EC. Notch signaling: control of cell communication and cell fate. Development 2004;131(5):965–73.

    Article  PubMed  CAS  Google Scholar 

  73. Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 2006;7(9):678–89.

    Article  PubMed  CAS  Google Scholar 

  74. Wang XD, Shou J, Wong P, French DM, Gao WQ. Notch1-expressing cells are indispensable for prostatic branching morphogenesis during development and re-growth following castration and androgen replacement. J Biol Chem 2004;279(23):24733–44.

    Article  PubMed  CAS  Google Scholar 

  75. Wang XD, Leow CC, Zha J, et al. Notch signaling is required for normal prostatic epithelial cell proliferation and differentiation. Dev Biol 2006;290(1):66–80.

    Article  PubMed  CAS  Google Scholar 

  76. English HF, Santen RJ, Isaacs JT. Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate 1987;11(3):229–42.

    Article  PubMed  CAS  Google Scholar 

  77. Isaacs JT, Coffey DS. Etiology and disease process of benign prostatic hyperplasia. Prostate 1989;Suppl 2:33–50.

    Article  Google Scholar 

  78. Danielpour D. Transdifferentiation of NRP-152 rat prostatic basal epithelial cells toward a luminal phenotype: regulation by glucocorticoid, insulin-like growth factor-I and transforming growth factor-beta. J Cell Sci 1999;112(Pt 2):169–79.

    PubMed  CAS  Google Scholar 

  79. Hayward SW, Haughney PC, Lopes ES, Danielpour D, Cunha GR. The rat prostatic epithelial cell line NRP-152 can differentiate in vivo in response to its stromal environment. Prostate 1999;39(3):205–12.

    Article  PubMed  CAS  Google Scholar 

  80. De Marzo AM, Meeker AK, Epstein JI, Coffey DS. Prostate stem cell compartments: expression of the cell cycle inhibitor p27Kip1 in normal, hyperplastic, and neoplastic cells. Am J Pathol 1998;153(3):911–9.

    Article  PubMed  CAS  Google Scholar 

  81. Hudson DL, Guy AT, Fry P, O’Hare MJ, Watt FM, Masters JR. Epithelial cell differentiation pathways in the human prostate: identification of intermediate phenotypes by keratin expression. J Histochem Cytochem 2001;49(2):271–8.

    Article  PubMed  CAS  Google Scholar 

  82. Peehl DM, Leung GK, Wong ST. Keratin expression: a measure of phenotypic modulation of human prostatic epithelial cells by growth inhibitory factors. Cell Tissue Res 1994;277(1):11–8.

    Article  PubMed  CAS  Google Scholar 

  83. Robinson EJ, Neal DE, Collins AT. Basal cells are progenitors of luminal cells in primary cultures of differentiating human prostatic epithelium. Prostate 1998;37(3):149–60.

    Article  PubMed  CAS  Google Scholar 

  84. Verhagen AP, Ramaekers FC, Aalders TW, Schaafsma HE, Debruyne FM, Schalken JA. Colocalization of basal and luminal cell-type cytokeratins in human prostate cancer. Cancer Res 1992;52(22):6182–7.

    PubMed  CAS  Google Scholar 

  85. Wang Y, Hayward S, Cao M, Thayer K, Cunha G. Cell differentiation lineage in the prostate. Differentiation 2001;68(4–5):270–9.

    Article  PubMed  CAS  Google Scholar 

  86. Xue Y, Smedts F, Debruyne FM, de la Rosette JJ, Schalken JA. Identification of intermediate cell types by keratin expression in the developing human prostate. Prostate 1998;34(4):292–301.

    Article  PubMed  CAS  Google Scholar 

  87. Bonkhoff H. Role of the basal cells in premalignant changes of the human prostate: a stem cell concept for the development of prostate cancer. Eur Urol 1996;30(2):201–5.

    PubMed  CAS  Google Scholar 

  88. Bonkhoff H, Stein U, Remberger K. The proliferative function of basal cells in the normal and hyperplastic human prostate. Prostate 1994;24(3):114–8.

    Article  PubMed  CAS  Google Scholar 

  89. Evans GS, Chandler JA. Cell proliferation studies in rat prostate. I. The proliferative role of basal and secretory epithelial cells during normal growth. Prostate 1987;10(2):163–78.

    Article  PubMed  CAS  Google Scholar 

  90. Bonkhoff H, Stein U, Remberger K. Multidirectional differentiation in the normal, hyperplastic, and neoplastic human prostate: simultaneous demonstration of cell-specific epithelial markers. Hum Pathol 1994;25(1):42–6.

    Article  PubMed  CAS  Google Scholar 

  91. Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004;429(6987):41–6.

    Article  PubMed  CAS  Google Scholar 

  92. Teta M, Rankin MM, Long SY, Stein GM, Kushner JA. Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell 2007;12(5):817–26.

    Article  PubMed  CAS  Google Scholar 

  93. Evans GS, Chandler JA. Cell proliferation studies in the rat prostate: II. The effects of castration and androgen-induced regeneration upon basal and secretory cell proliferation. Prostate 1987;11(4):339–51.

    Article  PubMed  CAS  Google Scholar 

  94. Tsujimura A, Koikawa Y, Salm S, et al. Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. J Cell Biol 2002;157(7):1257–65.

    Article  PubMed  CAS  Google Scholar 

  95. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003;114(6):763–76.

    Article  PubMed  CAS  Google Scholar 

  96. Collins CA, Olsen I, Zammit PS, et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 2005;122(2):289–301.

    Article  PubMed  CAS  Google Scholar 

  97. Herrera MB, Bruno S, Buttiglieri S, et al. Isolation and characterization of a stem cell population from adult human liver. Stem Cells 2006;24(12):2840–50.

    Article  PubMed  CAS  Google Scholar 

  98. Kim CF, Jackson EL, Woolfenden AE, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005;121(6):823–35.

    Article  PubMed  CAS  Google Scholar 

  99. Merkle FT, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A. Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci USA 2004;101(50):17528–32.

    Article  PubMed  CAS  Google Scholar 

  100. Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q. The renal papilla is a niche for adult kidney stem cells. J Clin Invest 2004;114(6):795–804.

    PubMed  CAS  Google Scholar 

  101. Stingl J, Eirew P, Ricketson I, et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006;439(7079):993–7.

    PubMed  CAS  Google Scholar 

  102. Till JE, Mc CE. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961;14:213–22.

    Article  PubMed  CAS  Google Scholar 

  103. Tumbar T, Guasch G, Greco V, et al. Defining the epithelial stem cell niche in skin. Science 2004;303(5656):359–63.

    Article  PubMed  CAS  Google Scholar 

  104. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 2004;95(4):343–53.

    Article  PubMed  CAS  Google Scholar 

  105. Hudson DL, O’Hare M, Watt FM, Masters JR. Proliferative heterogeneity in the human prostate: evidence for epithelial stem cells. Lab Invest 2000;80(8):1243–50.

    Article  PubMed  CAS  Google Scholar 

  106. Lawson DA, Xin L, Lukacs RU, Cheng D, Witte ON. Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci USA 2007;104(1):181–6.

    Article  PubMed  CAS  Google Scholar 

  107. Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 1996;175(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  108. Reynolds BA, Rietze RL. Neural stem cells and neurospheres – re-evaluating the relationship. Nat Methods 2005;2(5):333–6.

    Article  PubMed  CAS  Google Scholar 

  109. Dontu G, Abdallah WM, Foley JM, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003;17(10):1253–70.

    Article  PubMed  CAS  Google Scholar 

  110. Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 2004;6(6):R605–15.

    Article  PubMed  CAS  Google Scholar 

  111. Xin L, Lukacs RU, Lawson DA, Cheng D, Witte ON. Self-renewal and multilineage differentiation in vitro from murine prostate stem cells. Stem Cells 2007;25(11):2760–9.

    Article  PubMed  CAS  Google Scholar 

  112. Shi X, Gipp J, Bushman W. Anchorage-independent culture maintains prostate stem cells. Dev Biol 2007;312(1):396–406.

    Article  PubMed  CAS  Google Scholar 

  113. Cunha GR, Lung B. The possible influence of temporal factors in androgenic responsiveness of urogenital tissue recombinants from wild-type and androgen-insensitive (Tfm) mice. J Exp Zool 1978;205(2):181–93.

    Article  PubMed  CAS  Google Scholar 

  114. Xin L, Lawson DA, Witte ON. The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA 2005;102(19):6942–7.

    Article  PubMed  CAS  Google Scholar 

  115. Xin L, Ide H, Kim Y, Dubey P, Witte ON. In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme. Proc Natl Acad Sci USA 2003;100(Suppl 1):11896–903.

    Article  PubMed  CAS  Google Scholar 

  116. Goto K, Salm SN, Coetzee S, et al. Proximal prostatic stem cells are programmed to regenerate a proximal–distal ductal axis. Stem Cells 2006;24(8):1859–68.

    Article  PubMed  CAS  Google Scholar 

  117. Azuma M, Hirao A, Takubo K, Hamaguchi I, Kitamura T, Suda T. A quantitative matrigel assay for assessing repopulating capacity of prostate stem cells. Biochem Biophys Res Commun 2005;338(2):1164–70.

    Article  PubMed  CAS  Google Scholar 

  118. Collins AT, Habib FK, Maitland NJ, Neal DE. Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J Cell Sci 2001;114(Pt 21):3865–72.

    PubMed  CAS  Google Scholar 

  119. Burger PE, Xiong X, Coetzee S, et al. Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. Proc Natl Acad Sci USA 2005;102(20):7180–5.

    Article  PubMed  CAS  Google Scholar 

  120. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 2004;117(Pt 16):3539–45.

    Article  PubMed  CAS  Google Scholar 

  121. Liu H, Moy P, Kim S, et al. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res 1997;57(17):3629–34.

    PubMed  CAS  Google Scholar 

  122. Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, Gaudin PB. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res 1999;59(13):3192–8.

    PubMed  CAS  Google Scholar 

  123. Holmes C, Stanford WL. Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells 2007;25(6):1339–47.

    Article  PubMed  CAS  Google Scholar 

  124. Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 2003;4(1):33–45.

    Article  PubMed  CAS  Google Scholar 

  125. Alam TN, O’Hare MJ, Laczko I, et al. Differential expression of CD44 during human prostate epithelial cell differentiation. J Histochem Cytochem 2004;52(8):1083–90.

    Article  PubMed  CAS  Google Scholar 

  126. Weigmann A, Corbeil D, Hellwig A, Huttner WB. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA 1997;94(23):12425–30.

    Article  PubMed  CAS  Google Scholar 

  127. Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000;95(3):952–8.

    PubMed  CAS  Google Scholar 

  128. Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997;90(12):5002–12.

    PubMed  CAS  Google Scholar 

  129. Uchida N, Buck DW, He D, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 2000;97(26):14720–5.

    Article  PubMed  CAS  Google Scholar 

  130. Corbeil D, Roper K, Hellwig A, et al. The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 2000;275(8):5512–20.

    Article  PubMed  CAS  Google Scholar 

  131. Torrente Y, Belicchi M, Sampaolesi M, et al. Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 2004;114(2):182–95.

    PubMed  CAS  Google Scholar 

  132. Challen GA, Little MH. A side order of stem cells: the SP phenotype. Stem Cells 2006;24(1):3–12.

    Article  PubMed  Google Scholar 

  133. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996;183(4):1797–806.

    Article  PubMed  CAS  Google Scholar 

  134. Bhatt RI, Brown MD, Hart CA, et al. Novel method for the isolation and characterisation of the putative prostatic stem cell. Cytometry A 2003;54(2):89–99.

    Article  PubMed  Google Scholar 

  135. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin 2007;57(1):43–66.

    Article  PubMed  Google Scholar 

  136. Jamieson CH, Ailles LE, Dylla SJ, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004;351(7):657–67.

    Article  PubMed  CAS  Google Scholar 

  137. Daley GQ. Chronic myeloid leukemia: proving ground for cancer stem cells. Cell 2004;119(3):314–6.

    Article  PubMed  CAS  Google Scholar 

  138. De Marzo AM, Nelson WG, Meeker AK, Coffey DS. Stem cell features of benign and malignant prostate epithelial cells. J Urol 1998;160(6 Pt 2):2381–92.

    PubMed  CAS  Google Scholar 

  139. Jones EG, Harper ME. Studies on the proliferation, secretory activities, and epidermal growth factor receptor expression in benign prostatic hyperplasia explant cultures. Prostate 1992;20(2):133–49.

    Article  PubMed  CAS  Google Scholar 

  140. Wang S, Garcia AJ, Wu M, Lawson DA, Witte ON, Wu H. Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proc Natl Acad Sci USA 2006;103(5):1480–5.

    Article  PubMed  CAS  Google Scholar 

  141. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003;3(12):895–902.

    Article  PubMed  CAS  Google Scholar 

  142. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414(6859):105–11.

    Article  PubMed  CAS  Google Scholar 

  143. Tan BT, Park CY, Ailles LE, Weissman IL. The cancer stem cell hypothesis: a work in progress. Lab Invest 2006;86(12):1203–7.

    Article  PubMed  CAS  Google Scholar 

  144. Tang DG, Patrawala L, Calhoun T, et al. Prostate cancer stem/progenitor cells: identification, characterization, and implications. Mol Carcinog 2007;46(1):1–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Grisanzio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Grisanzio, C., Signoretti, S. (2009). Adult Prostate Epithelium Renewal, Stem Cells and Cancer. In: Teicher, B., Bagley, R. (eds) Stem Cells and Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-933-8_18

Download citation

Publish with us

Policies and ethics