Skip to main content

Cancer Stem Cells: Gastrointestinal Cancers

  • Chapter
  • First Online:
  • 941 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The multistep model of tumor progression emphasizes the accumulation of genetic alterations as the central mechanism driving tumorigenesis. It is indicated that the normal stem/progenitor cells are an almost passive recipient of the mutations, and its cancer-associated heterogeneity are governed largely by somatic mutations and cancer stem cell-specific signaling, which are detectable by marker analysis during the course of tumor progression. Here we update our knowledge of esophagus, stomach, colon and liver, which would help our better understanding gastrointestinal cancer stem cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

REFERENCES

  1. Bixby S, Kruger GM, Mosher JT, Joseph NM, Morrison SJ. Cell-intrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity. Neuron 2002:35:643–56.

    Article  PubMed  CAS  Google Scholar 

  2. Sagar J, Chaib B, Sales K, Winslet M, Seifalian A. Role of stem cells in cancer therapy and cancer stem cells: a review. Cancer Cell Intern 2007:7:9.

    Article  Google Scholar 

  3. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001:414:105–11.

    Article  PubMed  CAS  Google Scholar 

  4. Waterland RA. Epigenetic mechanisms and gastrointestinal development. J Pediatr 2006:149(5 Suppl): S137–42.

    PubMed  CAS  Google Scholar 

  5. Nowell PC. Chromosomes and cancer: the evolution of an idea. Adv Cancer Res 1993:62:1–17.

    Article  PubMed  CAS  Google Scholar 

  6. Clarke M, DJ, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM. Cancer stem cells-perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 2006:66:9339–44.

    Article  PubMed  CAS  Google Scholar 

  7. Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends Genet 1993:9:138–41.

    Article  PubMed  CAS  Google Scholar 

  8. Hickman ES, Moroni MC, Helin K. The role of p53 and pRB in apoptosis and cancer. Curr Opin Genet Dev 2002:12:60–6.

    Article  PubMed  CAS  Google Scholar 

  9. Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer 2003:3:459–65.

    Article  PubMed  CAS  Google Scholar 

  10. Calin GA, Croce CM. MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene 2006:25:6202–10.

    Article  PubMed  CAS  Google Scholar 

  11. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 2004:73:39–85.

    Article  PubMed  CAS  Google Scholar 

  12. Almadori G, Bussu F, Paludetti G. Should there be more molecular staging of head and neck cancer to improve the choice of treatments and thereby improve survival? Curr Opin Otolaryngol Head Neck Surg 2008:16:117–26.

    Article  PubMed  Google Scholar 

  13. Yen TH, Wright NA. The gastrointestinal tract stem cell niche. Stem Cell Rev 2006:2:203–12.

    Article  PubMed  CAS  Google Scholar 

  14. Nakamura M, Okano H, Blendy J, Montell C. Musashi, a neural RNA-binding protein required for Drosophila adult external sensory organ development. Neuron 1994:13:67–81.

    Article  PubMed  CAS  Google Scholar 

  15. Ishibashi M, Ang SL, Shiota K, Nakanishi S, Kageyama R, Guillemot F. Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev 1995:9:3136–48.

    Article  PubMed  CAS  Google Scholar 

  16. Lin EH, Hassan M, Li Y, Zhao H, Nooka A, Sorenson E, Xie K, Champlin R, Wu X, Li D. Elevated circulating endothelial progenitor marker CD133 messenger RNA levels predict colon cancer recurrence. Cancer 2007:110:534–42.

    Article  PubMed  CAS  Google Scholar 

  17. Mehra N, Penning M, Maas J, Beerepoot LV, van Daal N, van Gils CH, Giles RH, Voest EE. Progenitor marker CD133 mRNA is elevated in peripheral blood of cancer patients with bone metastases. Clin Cancer Res 2006:12:4859–66.

    Article  PubMed  CAS  Google Scholar 

  18. Kuhn S, Koch M, Nübel T, Ladwein M, Antolovic D, Klingbeil P, Hildebrand D, Moldenhauer G, Langbein L, Franke WW, Weitz J, Zöller M. A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression. Mol Cancer Res 2007:5:553–67.

    Article  PubMed  CAS  Google Scholar 

  19. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007:449:1003–7.

    Article  PubMed  CAS  Google Scholar 

  20. Ingham PW, McMahon AP. Hedgehog signaling in animal development: Paradigms and principles. Genes Dev 2001:15:3059–87.

    Article  PubMed  CAS  Google Scholar 

  21. Koenig BB, Cook JS, Wolsing DH, Ting J, Tiesman JP, Correa PE, Olson CA, Pecquet Al, Ventura F, Grant RA. Characterization and cloning of a receptor for BMP-2 and BMP-4 from NIH 3T3 cells. Mol Cell Biol 1994:14:5961–74.

    PubMed  CAS  Google Scholar 

  22. ten Dijke P, Yamashita H, Sampath TK, Reddi AH, Estevez M, Riddle DL, Ichijo H, Heldin CH, Miyazono K. Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4. J Biol Chem 1994:269:16985–8.

    PubMed  CAS  Google Scholar 

  23. Bray S. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 2006:7:678–89.

    Article  PubMed  CAS  Google Scholar 

  24. Katoh Y, Katoh M. Hedgehog signaling pathway and gastrointestinal stem cell signaling network. Int J Mol Med 2006:18:1019–23.

    PubMed  CAS  Google Scholar 

  25. Nishizawa T, Suzuki H, Masaoka T, Minegishi Y, Iwasahi E, Hibi T. Helicobacter pylori eradication restored sonic hedgehog expression in the stomach. Hepatogastroenterology 2007:54:697–700.

    PubMed  CAS  Google Scholar 

  26. Pepinsky RB, Rayhorn P, Day ES, Dergay A, Williams KP, Galdes A, Taylor FR, Boriack-Sjodin PA, Garber EA. Mapping sonic hedgehog-receptor interactions by steric interference. J Biol Chem 2000:275:10995–1001.

    Article  PubMed  CAS  Google Scholar 

  27. Murone M, Rosenthal A, de Sauvage FJ. Sonic hedgehog signaling by the patched-smoothened receptor complex. Curr Biol 1999:9:76–84.

    Article  PubMed  CAS  Google Scholar 

  28. Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF. Vertebrate Smoothened functions at the primary cilium. Nature 2005:437:1018–21.

    Article  PubMed  CAS  Google Scholar 

  29. Bolos V, Grego-Bessa J, de la Pompa JL. Notchsignaling in development and cancer. Endocr Rev 2007:28:339–63.

    Article  PubMed  CAS  Google Scholar 

  30. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: Cell fate control and signal integration in development. Science:1999:284:770–6.

    Article  PubMed  CAS  Google Scholar 

  31. Katoh M, Katoh M. Notch signaling in gastrointestinal tract. Int J Oncol 2007:30:247–51.

    PubMed  CAS  Google Scholar 

  32. Bailey JM, Singh PK, Hollingsworth MA. Cancer metastasis facilitated by developmental pathways: Sonic hedgehog, Notch, and bone morphogenic proteins. J Cell Biochem 2007:102:829–39.

    Article  PubMed  CAS  Google Scholar 

  33. Hay ED. An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 1995:154:8–20.

    Article  CAS  Google Scholar 

  34. Hugo HA, ML, Blick T, Lawrence MG, Clements JA, Williams ED, Thompson EW. Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J Cell Physiol 2007:213:374–83.

    Article  PubMed  CAS  Google Scholar 

  35. Kahn LB, Uys CJ, Dale J, Rutherfoord S. Carcinoma of the breast with metaplasia to chondrosarcoma: A light and electron microscopic study. Histopathology 1978:2:93–106.

    Article  PubMed  CAS  Google Scholar 

  36. Ishikawa S, Kaneko H, Sumida T, Sekiya M. Ultrastructure of mesodermalmixed tumor of the uterus. Acta Pathol Jpn 1979:29:801–9.

    PubMed  CAS  Google Scholar 

  37. Krug EL, Mjaatvedt CH, Markwald RR. Extracellular matrix from embryonic myocardium elicits an early morphogenetic event in cardiac endothelial differentiation. Dev Biol 1987:120:348–55.

    Article  PubMed  CAS  Google Scholar 

  38. Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M, Karikari C, Alvarez H, Iacobuzio-Donahue C, Jimeno A, Gabrielson KL, Matsui W, Maitra A. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: A new paradigm for combination therapy in solid cancers. Cancer Res 2007:67:2187–96.

    Article  PubMed  CAS  Google Scholar 

  39. Ma L, Lu MF, Schwartz RJ, Martin JF. Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 2005:132:5601–11.

    Article  PubMed  CAS  Google Scholar 

  40. Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, Aranda S, Palomo S, McCormick F, Izpisua-Belmonte JC, de la Pompa JL. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 2004:18:99–115.

    Article  PubMed  CAS  Google Scholar 

  41. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R. Identification and expansion of human colon-cancer-initiating cells. Nature 2007:445:111–5.

    Article  PubMed  CAS  Google Scholar 

  42. Ieta K, Tanaka F, Haraguchi N, Kita Y, Sakashita H, Mimori K, Matsumoto T, Inoue H, Kuwano H, Mori M. Biological and genetic characteristics of tumor-initiating cells in colon cancer. Ann Surg Oncol 2008:15:638–48.

    Article  PubMed  Google Scholar 

  43. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006:444:756–60.

    Article  PubMed  CAS  Google Scholar 

  44. Blazek ER, Foutch JL, Maki G. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys 2007:67:1–5.

    Article  PubMed  CAS  Google Scholar 

  45. Czarnowska E, Gajerska-Dzieciatkowska M, Kuśmierski K, Lichomski J, Machaj EK, Pojda Z, Brudek M, Beresewicz A. Expression of SDF-1-CXCR4 axis and an anti-remodelling effectiveness of foetal-liver stem cell transplantation in the infarcted rat heart. J Physiol Pharmacol. 2007:58:729–44.

    PubMed  CAS  Google Scholar 

  46. Shupe T, Petersen BE. Evidence regarding a stem cell origin of hepatocellular carcinoma. Stem Cell Rev 2005:1:261–4.

    Article  PubMed  CAS  Google Scholar 

  47. Alison MR. Liver stem cells: implications for hepatocarcinogenesis. Stem Cell Rev 2005:1:253–60.

    Article  PubMed  CAS  Google Scholar 

  48. Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S, Bachmann MH, Borowsky AD, Ruebner B, Cardiff RD, Yang Q, Bishop JM, Contag CH, Felsher DW. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 2004:431:1112–7.

    Article  PubMed  CAS  Google Scholar 

  49. Seery JP. Stem cells of the oesophageal epithelium. J Cell Sci 2002:115:1783–9.

    PubMed  Google Scholar 

  50. Rustgi AK. Models of esophageal carcinogenesis. Semin Oncol 2006: 33(6 Suppl 11):S57–8.

    Article  PubMed  Google Scholar 

  51. Katoh Y, Katoh M. Hedgehog signaling pathway and gastric cancer. Cancer Biol Ther 2005:4:1050–4.

    Article  PubMed  CAS  Google Scholar 

  52. Wershil BK, Furuta GT. Gastrointestinal mucosal immunity. J Allergy Clin Immunol 2008:121(2 Suppl):S380–3;quiz S415.

    Article  PubMed  CAS  Google Scholar 

  53. Ince TA, Richardson AL, Bell GW, Saitoh M, Godar S, Karnoub AE, Iglehart JD, Weinberg RA. Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell 2007:12:160–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Mori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ishii, H., Haraguchi, N., Ieta, K., Mimori, K., Mori, M. (2009). Cancer Stem Cells: Gastrointestinal Cancers. In: Teicher, B., Bagley, R. (eds) Stem Cells and Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-933-8_12

Download citation

Publish with us

Policies and ethics