Skip to main content

Mouse Mammary Tumor Virus: Stem Cells and Mammary Cancer

  • Chapter
  • First Online:
  • 915 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The paradigm of mammary cancer induction by the mouse mammary tumor virus (MMTV) is used to illustrate the body of evidence that supports the hypothesis that mammary epithelial stem/progenitor cells represent targets for oncogenic transformation. It is argued that this is not a special case applicable only to MMTV-induced mammary cancer, because MMTV acts as an environmental mutagen producing random interruptions in the somatic DNA of infected cells by insertion of proviral DNA copies. In addition to disrupting the host genome, the proviral DNA also influences gene expression through its associated enhancer sequences over significant intergenomic distances. Genes commonly affected by MMTV insertion in multiple individual tumors include, the Wnt genes, the FGF gene family, and the Notch gene family. All of these gene families are known to play essential roles in stem cell maintenance and behavior in a variety of organs. The MMTV-induced mutations accumulate in cells that are long lived and possess the properties of stem cells, namely, self-renewal and the capacity to produce divergent epithelial progeny through asymmetric division. The evidence shows that epithelial cells with these properties are present in normal mammary glands, may be infected with MMTV, and become transformed to produce epithelial hyperplasia through MMTV-induced mutagenesis and progress to frank mammary malignancy. Retroviral marking via MMTV proviral insertion demonstrates that this process progresses from a single mammary epithelial cell that possesses all of the features ascribed to tissue-specific stem cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

REFERENCES

  1. Burmeister T. Oncogenic retroviruses in animals and humans. Rev Med Virol 2001;11(6):369–80.

    Article  PubMed  CAS  Google Scholar 

  2. Stehelin D, Varmus HE, Bishop JM. Detection of nucleotide sequences associated with transformation by avian sarcoma viruses. Bibl Haematol 1975(43):539–41.

    Google Scholar 

  3. Bishop JM. Retroviruses and cancer genes. Adv Cancer Res 1982;37:1–32.

    Article  PubMed  CAS  Google Scholar 

  4. Yamashita YM, Fuller MT, Jones DL. Signaling in stem cell niches: lessons from the Drosophila germline. J Cell Sci 2005;118(Pt 4):665–72.

    Article  PubMed  CAS  Google Scholar 

  5. Theodorou V, Boer M, Weigelt B, Jonkers J, van der Valk M, Hilkens J. Fgf10 is an oncogene activated by MMTV insertional mutagenesis in mouse mammary tumors and overexpressed in a subset of human breast carcinomas. Oncogene 2004;23(36):6047–55.

    Article  PubMed  CAS  Google Scholar 

  6. Eblaghie MC, Song SJ, Kim JY, Akita K, Tickle C, Jung HS. Interactions between FGF and Wnt signals and Tbx3 gene expression in mammary gland initiation in mouse embryos. J Anat 2004;205(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  7. Farnie G, Clarke RB. Mammary stem cells and breast cancer – role of Notch signalling. Stem Cell Rev 2007;3(2):169–75.

    Article  PubMed  CAS  Google Scholar 

  8. Katoh M. Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. Stem Cell Rev 2007;3(1):30–8.

    Article  PubMed  CAS  Google Scholar 

  9. Smith GH, Boulanger CA. Mammary epithelial stem cells: Transplantation and self-renewal analysis. Cell Proliferation 2003;Suppl. 1:I3–15.

    Article  Google Scholar 

  10. Smith GH, Boulanger CA. Stem cells in mammary epithelium. In: Lanza R, Blau H., Melton D., Moore M., Thomas E.D., Verfaille C., Weissman I., West M., eds. Adult and Fetal Stem Cells: Handbook of Stem Cells. San Diego, CA: Elsevier Academic; 2004: 257–68.

    Google Scholar 

  11. Smith GH, Chepko G. Mammary epithelial stem cells. Microsc Res Tech 2001;52(2):190–203.

    Article  PubMed  CAS  Google Scholar 

  12. Smith GH, Boulanger CA. Mammary stem cell repertoire: New insights in aging epithelial populations. Mech Aging Dev 2002;123:1505–19.

    Article  PubMed  CAS  Google Scholar 

  13. Sonnenberg A, Daams H, Calafat J, Hilgers J. In vitro differentiation and progression of mouse mammary tumor cells. Cancer Res 1986;46(11):5913–22.

    PubMed  CAS  Google Scholar 

  14. Smith GH, Medina D. A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. J Cell Sci 1988;90(Pt 1):173–83.

    PubMed  Google Scholar 

  15. Chepko G, Smith GH. Three division-competent, structurally-distinct cell populations contribute to murine mammary epithelial renewal. Tissue Cell 1997;29(2):239–53.

    Article  PubMed  CAS  Google Scholar 

  16. Smith GH, Strickland P, Daniel CW. Putative stem cell loss corresponds with mammary growth senescence. Cell Tissue Res 2002;310:313–20.

    Article  PubMed  Google Scholar 

  17. Gudjonsson T, Villadsen R, Nielse HL, Ronnov-Jessen L, Bissell MJ, Petersen OW. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev 2002;16:693–706.

    Article  PubMed  CAS  Google Scholar 

  18. Kamiya K, Gould MN, Clifton KH. Quantitative studies of ductal versus alveolar differentiation from rat mammary clonogens. Proc Soc Exp Biol Med 1998;219(3):217–25.

    PubMed  CAS  Google Scholar 

  19. Stingl J, Eaves CJ, Zandich I, Emerman JT. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat 2001;67:93–109.

    Article  PubMed  CAS  Google Scholar 

  20. Stingl J, Raouf A, Eirew P, Eaves CJ. Deciphering the mammary epithelial cell hierarchy. Cell Cycle 2006;5(14):1519–22.

    Article  PubMed  CAS  Google Scholar 

  21. Smith GH. Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res Treat 1996;39(1):21–31.

    Article  PubMed  CAS  Google Scholar 

  22. Medina D. The preneoplastic phenotype in murine mammary tumorigenesis. J Mammary Gland Biol Neoplasia 2000;5(4):393–407.

    Article  PubMed  CAS  Google Scholar 

  23. Medina D. Mammary developmental fate and breast cancer risk. Endocr Relat Cancer 2005;12(3):483–95.

    Article  PubMed  CAS  Google Scholar 

  24. Callahan R, Smith GH. MMTV-induced mammary tumorigenesis: gene discovery, progression to malignancy and cellular pathways. Oncogene 2000;19(8):992–1001.

    Article  PubMed  CAS  Google Scholar 

  25. Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from a single cell. Development 1998;125(10):1921–30.

    PubMed  CAS  Google Scholar 

  26. Rajkumar L, Kittrell FS, Guzman RC, Brown PH, Nandi S, Medina D. Hormone-induced protection of mammary tumorigenesis in genetically engineered mouse models. Breast Cancer Res 2007;9(1):R12.

    Article  PubMed  Google Scholar 

  27. Cairns J. Mutation selection and the natural history of cancer. Nature 1975;255(5505):197–200.

    Article  PubMed  CAS  Google Scholar 

  28. Cairns J. Somatic stem cells and the kinetics of mutagenesis and carcinogenesis. Proc Natl Acad Sci USA 2002;99(16):10567–70.

    Article  PubMed  CAS  Google Scholar 

  29. Smith GH. Label-retaining mammary epithelial cells divide asymmetrically and retain their template DNA strands. Development 2005;132:681–7.

    Article  PubMed  CAS  Google Scholar 

  30. Booth BW, Smith GH. Estrogen receptor-alpha and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Res 2006;8(4):R49.

    Article  PubMed  Google Scholar 

  31. Ross SR, Schmidt JW, Katz E, et al An immunoreceptor tyrosine activation motif in the mouse mammary tumor virus envelope protein plays a role in virus-induced mammary tumors. J Virol 2006;80(18):9000–8.

    Article  PubMed  CAS  Google Scholar 

  32. DeOme KB, Miyamoto MJ, Osborn RC, Guzman RC, Lum K. Detection of inapparent nodule-transformed cells in the mammary gland tissues of virgin female BALB/cfC3H mice. Cancer Res 1978;38(7):2103–11.

    PubMed  CAS  Google Scholar 

  33. DeOme KB, Miyamoto MJ, Osborn RC, Guzman RC, Lum K. Effect of parity on recovery of inapparent nodule-transformed mammary gland cells in vivo. Cancer Res 1978;38(11 Pt 2):4050–3.

    PubMed  CAS  Google Scholar 

  34. Jhappan C, Geiser AG, Kordon EC, et al Targeting expression of a transforming growth factor beta 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J 1993;12(5):1835–45.

    PubMed  CAS  Google Scholar 

  35. Kordon EC, McKnight RA, Jhappan C, Hennighausen L, Merlino G, Smith GH. Ectopic TGF beta 1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Dev Biol 1995;168(1):47–61.

    Article  PubMed  CAS  Google Scholar 

  36. Boulanger CA, Smith GH. Reducing mammary cancer risk through premature stem cell senescence. Oncogene 2001;20(18):2264–72.

    Article  PubMed  CAS  Google Scholar 

  37. Buggiano V, Schere-Levy C, Abe K, et al Impairment of mammary lobular development induced by expression of TGFbeta1 under the control of WAP promoter does not suppress tumorigenesis in MMTV-infected transgenic mice. Int J Cancer 2001;92(4):568–76.

    Article  PubMed  CAS  Google Scholar 

  38. Wagner KU, Boulanger CA, Henry MD, Sgagias M, Hennighausen L, Smith GH. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development 2002;129(6):1377–86.

    PubMed  CAS  Google Scholar 

  39. Boulanger CA, Wagner KU, Smith GH. Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-β1 expression. Oncogene 2005;24:552–60.

    Article  PubMed  CAS  Google Scholar 

  40. Smith GH, Pauley RJ, Socher SH, Medina D. Chemical carcinogenesis in C3H/StWi mice, a worthwhile experimental model for breast cancer. Cancer Res 1978;38(12):4504–9.

    PubMed  CAS  Google Scholar 

  41. Smith GH, Arthur LA, Medina D. Evidence of separate pathways for viral and chemical carcinogenesis in C3H/StWi mouse mammary glands. Int J Cancer 1980;26(3):373–9.

    Article  PubMed  CAS  Google Scholar 

  42. Drohan WN, Benade LE, Graham DE, Smith GH. Mouse mammary tumor virus proviral sequences congenital to C3H/Sm mice are differentially hypomethylated in chemically induced, virus-induced, and spontaneous mammary tumors. J Virol 1982;43(3):876–84.

    PubMed  CAS  Google Scholar 

  43. Smith GH, Medina D. Re-evaluation of mammary stem cell biology based on in vivo transplantation. Breast Cancer Res 2008;10(1):203.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert H. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Smith, G.H. (2009). Mouse Mammary Tumor Virus: Stem Cells and Mammary Cancer. In: Teicher, B., Bagley, R. (eds) Stem Cells and Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-933-8_10

Download citation

Publish with us

Policies and ethics