Skip to main content

Current Developments in Genetically Manipulated Mice

  • Chapter
  • First Online:
  • 862 Accesses

Abstract

The use of genetically manipulated mice in medical research is one of the premier tools for the study of genetic diseases. I describe here our routine methods to produce these animals that have proven to be highly reliable as well as give exceptionally high rates of germline transmission with all strains of embryonic stem cells that we have used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Palmiter RD, Brinster RL, Hammer RE, et al. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 1982;300:611–5.

    Article  PubMed  CAS  Google Scholar 

  2. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292:154–6.

    Article  PubMed  CAS  Google Scholar 

  3. Doetschman T, Gregg RG, Maeda N, et al. Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 1987;330:576–8.

    Article  PubMed  CAS  Google Scholar 

  4. Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 1987;51:503–12.

    Article  PubMed  CAS  Google Scholar 

  5. Baharvand H, Matthaei KI. Culture condition difference for establishment of new embryonic stem cell lines from the C57BL/6 and BALB/c mouse strains. In Vitro Cell Dev Biol Anim 2004;40:76–81.

    Article  PubMed  CAS  Google Scholar 

  6. Abbondanzo SJ, Gadi I, Stewart CL. Derivation of embryonic stem cell lines. Methods Enzymol 1993;225:803–23.

    Article  PubMed  CAS  Google Scholar 

  7. Araki K, Araki M, Yamamura K. Negative selection with the diphtheria toxin A fragment gene improves frequency of Cre-mediated cassette exchange in ES cells. J Biochem 2006;140:793–8.

    Article  PubMed  CAS  Google Scholar 

  8. Kontgen F, Stewart CL. Simple screening procedure to detect gene targeting events in embryonic stem cells. Methods Enzymol 1993;225:878–90.

    Article  PubMed  CAS  Google Scholar 

  9. Nitschke L, Kopf M, Lamers MC. Quick nested PCR screening of ES cell clones for gene targeting events. BioTech 1993;14:914–6.

    CAS  Google Scholar 

  10. Stewart CL, Schuetze S, Vanek M, Wagner EF. Expression of retroviral vectors in transgenic mice obtained by embryo infection. EMBO J 1987;6:383–8.

    PubMed  CAS  Google Scholar 

  11. Kopf M, Brombacher F, Hodgkin PD, et al. IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 1996;4:15–24.

    Article  PubMed  CAS  Google Scholar 

  12. Tucker KL, Wang Y, Dausman J, Jaenisch R. A transgenic mouse strain expressing four drug-selectable marker genes. Nucleic Acids Res 1997;25:3745–6.

    Article  PubMed  CAS  Google Scholar 

  13. Matthaei KI. Genetically manipulated mice: a powerful tool with unsuspected caveats. J Physiol 2007;582:481–8.

    Article  PubMed  CAS  Google Scholar 

  14. Matthaei KI. Caveats of gene targeted and transgenic mice. In: Lanza R, Gearhart J, Hogan B, et al., editors. Handbook of Stem Cells, Elsevier, Amsterdam, 2004:589–98.

    Chapter  Google Scholar 

  15. Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ. Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat Genet 1997;16:19–27.

    Article  PubMed  CAS  Google Scholar 

  16. Moran JL, Bolton AD, Tran PV, et al. Utilization of a whole genome SNP panel for efficient genetic mapping in the mouse. Genome Res 2006;16:436–40.

    Article  PubMed  CAS  Google Scholar 

  17. Moran JL, Pollock JD, Fletcher CF, et al. Genetic variation among substrains of C57BL/6. Presented at Frontiers in Genome Engineering: Building a Better Mouse II 2007;1:47.

    Google Scholar 

  18. Ridgway WM, Healy B, Smink LJ, Rainbow D, Wicker LS. New tools for defining the ‘genetic background’ of inbred mouse strains. Nat Immunol 2007;8:669–73.

    Article  PubMed  CAS  Google Scholar 

  19. Ledermann B, Burki K. Establishment of a germ-line competent C57BL/6 embryonic stem cell line. Exp Cell Res 1991;197:254–8.

    Article  PubMed  CAS  Google Scholar 

  20. Kontgen F, Suss G, Stewart C, Steinmetz M, Bluethmann H. Targeted disruption of the MHC class II Aa gene in C57BL/6 mice. Int Immunol 1993;5:957–64.

    Article  PubMed  CAS  Google Scholar 

  21. Lemckert FA, Sedgwick JD, Korner H. Gene targeting in C57BL/6 ES cells. Successful germ line transmission using recipient BALB/c blastocysts developmentally matured in vitro. Nucleic Acids Res 1997;25:917–8.

    Article  PubMed  CAS  Google Scholar 

  22. Noben-Trauth N, Kohler G, Burki K, Ledermann B. Efficient targeting of the IL-4 gene in a BALB/c embryonic stem cell line. Transgenic Res 1996;5:487–91.

    Article  PubMed  CAS  Google Scholar 

  23. Dinkel A, Aicher WK, Warnatz K, Burki K, Eibel H, Ledermann B. Efficient generation of transgenic BALB/c mice using BALB/c embryonic stem cells. J Immunol Methods 1999;223:255–60.

    Article  PubMed  CAS  Google Scholar 

  24. Ledermann B. Embryonic stem cells and gene targeting. Exp Physiol 2000;85:603–13.

    Article  PubMed  CAS  Google Scholar 

  25. Witmer PD, Doheny KF, Adams MK, et al. The development of a highly informative mouse simple sequence length polymorphism (SSLP) marker set and construction of a mouse family tree using parsimony analysis. Genome Res 2003;13:485–91.

    Article  PubMed  CAS  Google Scholar 

  26. Yamanouchi J, Rainbow D, Serra P, et al. Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat Genet 2007;39:329–37.

    Article  PubMed  CAS  Google Scholar 

  27. Brook FA, Evans EP, Lord CJ, et al. The derivation of highly germline-competent embryonic stem cells containing NOD-derived genome. Diabetes 2003;52:205–8.

    Article  PubMed  CAS  Google Scholar 

  28. Nagy A, Gertsenstein M, Vintersten K, Behringer R. Manipulating the Mouse Embryo, Third ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2003.

    Google Scholar 

  29. Moreira PN, Giraldo P, Cozar P, et al. Efficient generation of transgenic mice with intact yeast artificial chromosomes by intracytoplasmic sperm injection. Biol Reprod 2004;71:1943–7.

    Article  PubMed  CAS  Google Scholar 

  30. Campbell HD, Fountain S, McLennan IS, et al. FliI, a gelsolin-related cytoskeletal regulator essential for early mammalian embryonic development. Mol Cell Biol 2002;22:3518–26.

    Article  PubMed  CAS  Google Scholar 

  31. Kraus M, Alimzhanov MB, Rajewsky N, Rajewsky K. Survival of resting mature B lymphocytes depends on BCR signaling via the Ig alpha/beta heterodimer. Cell 2004;117:787–800.

    Article  PubMed  CAS  Google Scholar 

  32. Schmidt-Supprian M, Rajewsky K. Vagaries of conditional gene targeting. Nat Immunol 2007;8:665–8.

    Article  PubMed  CAS  Google Scholar 

  33. Cowin AJ, Adams DH, Strudwick XL, et al. Flightless I deficiency enhances wound repair by increasing cell migration and proliferation. J Pathol 2007;211:572–81.

    Article  PubMed  CAS  Google Scholar 

  34. Schmidt EE, Taylor DS, Prigge JR, Barnett S, Capecchi MR. Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc Natl Acad Sci U S A 2000;97:13702–7.

    Article  PubMed  CAS  Google Scholar 

  35. Thyagarajan B, Guimaraes MJ, Groth AC, Calos MP. Mammalian genomes contain active recombinase recognition sites. Gene 2000;244:47–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I am indebted to my many collaborators with whom I have discussed ES cell culture. In my laboratory I am particularly indebted to my long-term technicians and valued colleagues Vane (Wayne) Damcevski and Helen Taylor without whom many of the mice would not have been so successfully generated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus I. Matthaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Matthaei, K.I. (2009). Current Developments in Genetically Manipulated Mice. In: Baharvand, H. (eds) Trends in Stem Cell Biology and Technology. Humana Press. https://doi.org/10.1007/978-1-60327-905-5_8

Download citation

Publish with us

Policies and ethics