Skip to main content

Human Embryonic Stem Cells: Their Nature, Properties, and Uses

  • Chapter
  • First Online:

Abstract

The ability to grow human embryos in vitro to the blastocyst stage via coculture or sequential culture media led to the isolation and growth of human embryonic stem cells (hESCs) from blastocysts left over from in vitro fertilization programs. These cells being pluripotent can be differentiated into almost all the tissues types of the human body and therefore offers promise in the treatment of a variety of incurable ­diseases by transplantation therapy. They also provide an ideal screening tool for potential drugs in the pharmaceutical industry and allow the study of early human development and infant cancers. Although all National Institutes of Health (NIH)–registered hESC lines are research grade, having been derived and propagated on xenosupports and with xenoproteins, clinical grade hESC lines derived and propagated in xenofree culture conditions and under current good manufacturing practices (cGMP) facilities are now available. hESCs have been differentiated in vitro into pancreatic islets, neurons, and cardiomyocytes, and transfer of such hESC-derived tissues into diseased animal models have shown successful engraftment. However, two hurdles are delaying hESC-derived cell therapy reaching human clinical trials: (1) possible immunorejection of hESC-derived tissues and (2) the concern of teratoma formation. To overcome immunorejection, attempts are being made to customize tissues for patients via nuclear transfer and other reprogramming methods. Recently, human skin fibroblasts were reprogrammed to the pluripotent embryonic state by transfection with four genes (induced pluripotent stem cells). This approach not only allows tissue customization but is also an embryo-free method that overcomes ethical sensitivities. The development of several hESC banks worldwide containing a diverse range of clinical grade hESC lines that could be HLA typed and tissue matched for treatment is also a practical approach to ­preventing immunorejection. Several approaches to eliminating teratoma formation from undifferentiated renegade hESCs residing in transferred hESC-derived tissues are in progress. It is hoped that this hurdle will be circumvented soon, then allowing the application of current successful animal validated transplantation studies in the human.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brockes JP. Amphibian limb regeneration: rebuilding a complex structure. Science 1997;276:81–7.

    Article  PubMed  CAS  Google Scholar 

  2. Bongso A, Richards M. History and perspective of stem cell research. Best Pract Res Clin Obstet Gynaecol 2004;18:827–42.

    Article  PubMed  Google Scholar 

  3. Bongso A, Lee EH. Stem Cells: From Bench to Bedside. World Science, Singapore, 2005.

    Book  Google Scholar 

  4. Kiessling AA, Anderson SC. Human Embryonic Stem Cells. Jones and Bartlett, Boston, MA, 2003.

    Google Scholar 

  5. Alison MR, Poulsom R, Forbes S, Wright NA. An introduction to stem cells. J Pathol 2002;197:419–23.

    Article  PubMed  Google Scholar 

  6. Adewumi O, Aflatoonian B, Ahrlund-Richter L, et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 2007;25:803–16.

    Article  PubMed  CAS  Google Scholar 

  7. Richards M, Tan SP, Tan JH, Chan WK, Bongso A. The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 2004;22:51–64.

    Article  PubMed  CAS  Google Scholar 

  8. Richards M, Chan WK, Bongso A, Tan SP. Reverse SAGE characterization of orphan SAGE tags from human embryonic stem cells identifies the presence of novel transcripts and antisense transcription of key pluripotency genes. Stem Cells 2006;24:1162–73.

    Article  PubMed  CAS  Google Scholar 

  9. Romalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. ‘Stemness’: transcriptional profiling of embryonic and adult stem cells. Science 2002;298:597–600.

    Article  Google Scholar 

  10. Yoshimizu T, Sugiyama N, De Felice M, et al. Germline-specific expresión of the Oct-4/green fluorescent protein (GFP) transgene in mice. Dev Growth Differ 1999;41:675–84.

    Article  PubMed  CAS  Google Scholar 

  11. Pesce M, Wang X, Wolgemuth DJ, Scholer H. Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mech Dev 1998;71:89–98.

    Article  PubMed  CAS  Google Scholar 

  12. Bongso A, Tan S. Human blastocyst culture and derivation of embryonic stem cell lines. Stem Cell Rev 2005;1:87–98.

    Article  PubMed  Google Scholar 

  13. Fong CY, Sathananthan AH, Wong PC, Bongso A. Nine-day-old human embryo cultured in vitro: a clue to the origins of embryonic stem cells. Reprod Biomed Online 2004;9:321–5.

    Article  PubMed  Google Scholar 

  14. Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 1999;283:534–7.

    Article  PubMed  CAS  Google Scholar 

  15. Jackson KA, Mi T, Goodell MA. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci U S A 1999;96:14482–6.

    Article  PubMed  CAS  Google Scholar 

  16. Clarke DL, Johansson CB, Wilbertz J, et al. Generalised potential of adult neural stem cells. Science 2000;288:1660–3.

    Article  PubMed  CAS  Google Scholar 

  17. Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow derived stem cell. Cell 2001;105:369–77.

    Article  PubMed  CAS  Google Scholar 

  18. McGuckin CP, Forraz N, Baradez MO, et al. Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif 2005;38:245–55.

    Article  PubMed  CAS  Google Scholar 

  19. Fong CY, Richards M, Manasi N, Biswas A, Bongso A. Comparative growth behaviour and characterization of human Wharton’s jelly stem cells. Reprod Biomed Online 2007;15:708–18.

    Article  PubMed  CAS  Google Scholar 

  20. Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 2005;23:220–9.

    Article  PubMed  Google Scholar 

  21. Bongso A, Fong CY. The effect of coculture on human zygote development. Curr Opin Obstet Gynecol 1993;5:585–93.

    PubMed  CAS  Google Scholar 

  22. Bongso A, Fong CY, Ng SC, et al. The growth of inner cell mass cells from human blastocysts. Theriogenology 1994;41:161.

    Article  Google Scholar 

  23. Bongso A, Fong CY, Ng SC, et al. Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod 1994;9:2110–7.

    PubMed  CAS  Google Scholar 

  24. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145–7.

    Article  PubMed  CAS  Google Scholar 

  25. Reubinoff BE, Pera MF, Fong CY, Trounson A. Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 2000;18:399–404.

    Article  PubMed  CAS  Google Scholar 

  26. Richards M, Fong CY, Chan WK, Wong PC, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 2002;20:933–6.

    Article  PubMed  CAS  Google Scholar 

  27. Richards M, Tan S, Fong CY, Biswase A, Chan WK, Bongso A. Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells 2003;21:546–56.

    Article  PubMed  CAS  Google Scholar 

  28. Hovatta O, Mikkola M, Gertow K, et al. A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum Reprod 2003;18:1404–9.

    Article  PubMed  Google Scholar 

  29. Xu C, Inokuma MS, Denham J, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 2001;19:971–4.

    Article  PubMed  CAS  Google Scholar 

  30. Richards M, Fong CY, Tan S, Chan WK, Bongso A. An efficient and safe xeno-free cryopreservation method for the storage of human embryonic stem cells. Stem Cells 2004;22:779–89.

    Article  PubMed  Google Scholar 

  31. Rao MS, Auerbach JM. Estimating human embryonic stem cell numbers. Lancet 2006;367:650–1.

    Article  PubMed  Google Scholar 

  32. Ben-hur T, Idelson M, Khaner H, et al. Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in parkinsonian rats. Stem Cells 2004;22:1246–55.

    Article  PubMed  Google Scholar 

  33. Mummery C, Ward-van Oostwaard D, Doevendans P, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 2003;107:2733–40.

    Article  PubMed  CAS  Google Scholar 

  34. Miyazaki S, Yamato E, Yasui Y. Regulated expression of Pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes 2004;53:1030–7.

    Article  PubMed  CAS  Google Scholar 

  35. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:1–12.

    Article  Google Scholar 

  36. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;315:1917–20.

    Article  Google Scholar 

  37. Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES cell-like state. Nature 2007;448:318–24.

    Article  PubMed  CAS  Google Scholar 

  38. Meissner A, Jaenisch R. Generation of nuclear transfer-derived pluriotent ES cells from cloned Cdx2-deficient blastocysts. Nature 2006;439:212–5.

    Article  PubMed  CAS  Google Scholar 

  39. Verslinsky Y, Strelchenko N, Rechitsky S, et al. Human embryonic stem cells with genetic disorders. Reprod Biomed Online 2005;10:105–10.

    Article  Google Scholar 

  40. Cowan CA, Atienza J, Melton DA, Eggan K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 2005;309:1369–73.

    Article  PubMed  CAS  Google Scholar 

  41. Do JT, Scholer HR. Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 2004;22:941–9.

    Article  PubMed  CAS  Google Scholar 

  42. Revazova ES, Turovets NA, Kochetkova OD, et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 2007;9:1–18.

    Article  Google Scholar 

  43. Hentze H, Graichen R, Colman A. Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol 2006;25:24–32.

    Article  PubMed  Google Scholar 

  44. Dean SK, Yulyana Y, Williams G. Differentiation of encapsulated embryonic stem cells after transplantation. Transplantation 2006;82:1175–84.

    Article  PubMed  Google Scholar 

  45. Qin M, Tai G, Colla P, Polak JM, Bishop AE. Cell extract-derived differentiation of embryonic stem cells. Stem Cells 2005;23:712–8.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang S, Wernig M, Duncan ID, Brustle O, Thomson JA. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature 2001;19:1129–33.

    Article  CAS  Google Scholar 

  47. Buttery LD, Bourne S, Xynos JD. Differentiation of osteoblasts and in vitro bone formation from embryonic stem cells. Tissue Eng 2001;7:89–99.

    Article  PubMed  CAS  Google Scholar 

  48. Klug MG, Soonpaa MH, Koh GY, Field LJ. Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J Clin Invest 1996;98:216–24.

    Article  PubMed  CAS  Google Scholar 

  49. Thomson H. Bioprocessing of embryonic stem cells for drug discovery. Trends Biotechnol 2007;25:224–30.

    Article  PubMed  CAS  Google Scholar 

  50. Scadden DT. The stem cell niche as an entity of action. Nature 2006;441:1075–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariff Bongso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bongso, A., Fong, CY. (2009). Human Embryonic Stem Cells: Their Nature, Properties, and Uses. In: Baharvand, H. (eds) Trends in Stem Cell Biology and Technology. Humana Press. https://doi.org/10.1007/978-1-60327-905-5_1

Download citation

Publish with us

Policies and ethics