Skip to main content

The Neuroendocrine Control of Energy Balance

  • Chapter
  • First Online:

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

When discussing the causes of obesity, it is easy to point fingers at the individual. “Gluttony” and “sloth” after all are two of the seven “deadly sins.” Obese adults and their children are assumed to have “free choice” with regard to food intake and energy expenditure and are therefore “responsible” for their metabolic “fates” (1). But no child chooses to become obese; indeed the quality of life of an obese child is similar to that of children receiving cancer chemotherapy (2). Furthermore, the striking increases in obesity prevalence in 2- to 5-year-old children (3) suggest that there are other explanations for the obesity epidemic. Here I explore the biochemical determinants that control energy balance and argue that difficulties in achieving and/or maintaining weight loss reflect the potency of central reinforcement systems, the effects of stress, and the resilience of the body’s adaptive responses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mello MM. Obesity – personal choice or public health issue? Nat Clin Pract Endocrinol Metab. 2008;4:2–3.

    Article  PubMed  Google Scholar 

  2. Schwimmer JB, Burwinkle TM, Varni JW. Health-related quality of life of severely obese children and adolescents. J Am Med Assoc. 2003;289:1813–19.

    Article  Google Scholar 

  3. Ogden CL, Carroll MD, Flegal KM. High body mass index for age among US children and adolescents, 2003–2006. J Am Med Assoc. 2008;299:2401–5.

    Article  CAS  Google Scholar 

  4. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;393:372–425.

    Google Scholar 

  5. Druce MR, Small CJ, Bloom SR. Minireview: gut peptides regulating satiety. Endocrinology. 2004;145:2660–65.

    Article  PubMed  CAS  Google Scholar 

  6. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature. 2006;443:289–95.

    Article  PubMed  CAS  Google Scholar 

  7. Hellstrom PM, Geliebter A, Naslund E, Schmidt PT, Yahav EK, Hashim SA, Yeomans MR. Peripheral and central signals in the control of eating in normal, obese and binge-eating human subjects. Br J Nutr. 2004;92:S47–57.

    Article  CAS  Google Scholar 

  8. Date Y, Murakami N, Toshinai K, Matsukura S, Niijima A, Matsuo H, Kangawa K, Nakazato M. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology. 2002;123:1120–28.

    Article  PubMed  CAS  Google Scholar 

  9. Bi S, Moran TH. Actions of CCK in the control of food intake and body weight: lessons from the CCK-A receptor deficient OLETF rat. Neuropeptides. 2002;36:171–81.

    Article  PubMed  CAS  Google Scholar 

  10. Abbott CR, Monteiro M, Small CJ, Sajedi A, Smith KL, Parkinson JRC, Ghatei MA, Bloom SR. The inhibitory effects of peripheral administration of peptide YY3–36 and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal–brainstem–hypothalamic pathway. Brain Res. 2005;1044:127–31.

    Article  PubMed  CAS  Google Scholar 

  11. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.

    Article  PubMed  CAS  Google Scholar 

  12. Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I. Central effect of ghrelin, an endogenous growth hormone secretagogue, on hypothalamic peptide gene expression. Endocrinology. 2000;141:4797–800.

    Article  PubMed  CAS  Google Scholar 

  13. Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.

    Article  PubMed  Google Scholar 

  14. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BF, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50:1714–19.

    Article  PubMed  CAS  Google Scholar 

  15. Druce MR, Neary NM, Small CJ, Milton J, Monteiro M, Patterson M, Ghatei MA, Bloom SR. Subcutaneous administration of ghrelin stimulates energy intake in healthy lean human volunteers. Int J Obes. 2006;30:293–96.

    Article  CAS  Google Scholar 

  16. Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, Purnell JQ. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346:1623–30.

    Article  PubMed  Google Scholar 

  17. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatel MA, Cone RD, Bloom SR. Gut hormone PYY3–36 physiologically inhibits food intake. Nature. 2002;418:650–54.

    Article  PubMed  CAS  Google Scholar 

  18. Kiefer TJ, Habener JF. The glucagon-like peptides. Endocr Rev. 1999;20:876–913.

    Article  Google Scholar 

  19. Drucker DJ. Biologic actions and therapeutic potential of the proglucagon-derived peptides. Nat Clin Pract Endocrinol Metab. 2005;1:22–31.

    Article  PubMed  CAS  Google Scholar 

  20. Gotoh K, Fukagawa K, Fukagawa T, Noguchi H, Kakuma T, Sakata T, Yoshimatsu H. Glucagon-like peptide-1, corticotropin-releasing hormone, and hypothalamic neuronal histamine interact in the leptin-signaling pathway to regulate feeding behavior. FASEB J. 2005;19:1131–33.

    PubMed  CAS  Google Scholar 

  21. Lustig RH. Childhood obesity: behavioral aberration or biochemical drive? Reinterpreting the First Law of Thermodynamics. Nat Clin Pract Endocrinol Metab. 2006;2:447–58.

    Article  PubMed  CAS  Google Scholar 

  22. Chehab FF, Mounzih K, Lu R, Lim ME. Early onset of reproductive function in normal female mice treated with leptin. Science. 1997;275:88–90.

    Article  PubMed  CAS  Google Scholar 

  23. Mantzoros CS, Flier JS, Rogol AD. A longitudinal assessment of hormonal and physical alterations during normal puberty in boys. Rising leptin levels may signal the onset of puberty. J Clin Endocrinol Metab. 1997;82:1066–70.

    Article  PubMed  CAS  Google Scholar 

  24. Mark AL, Rahmouni K, Correia M, Haynes WG. A leptin-sympathetic-leptin feedback loop: potential implications for regulation of arterial pressure and body fat. Acta Physiol Scand. 2003;177:345–49.

    Article  PubMed  CAS  Google Scholar 

  25. Boden G, Chen X, Mozzoli M, Ryan I. Effect of fasting on serum leptin in normal human subjects. J Clin Endocrinol Metabol. 1996;81:454–58.

    Article  Google Scholar 

  26. Keim NL, Stern JS, Havel PJ. Relation between circulating leptin concentrations and appetite during a prolonged, moderate energy deficit in women. Am J Clin Nutr. 1998;68:794–801.

    PubMed  CAS  Google Scholar 

  27. Flier JS. What’s in a name? In search of leptin’s physiologic role. J Clin Endocrinol Metab. 1998;83:1407–13.

    Article  PubMed  CAS  Google Scholar 

  28. Hassink SG, Sheslow DV, de Lancy E, Opentanova I, Considine RV, Caro JF. Serum leptin in children with obesity: relationship to gender and development. Pediatrics. 1996;98:201–3.

    PubMed  CAS  Google Scholar 

  29. Guven S, El-Bershawi A, Sonnenberg GE, Wilson CR, Hoffman RG, Krakower GR, Kissebah AH. Plasma leptin and insulin levels in weight-reduced obese women with normal body mass index: relationships with body composition and insulin. Diabetes. 1999;48:347–52.

    Article  PubMed  CAS  Google Scholar 

  30. Barr VA, Malide D, Zarnowski MJ, Taylor SI, Cushman SW. Insulin stimulates both leptin secretion and production by white adipose tissue. Endocrinology. 1997;138:4463–72.

    Article  PubMed  CAS  Google Scholar 

  31. Kolaczynski JW, Nyce MR, Considine RV, Boden G, Nolan JJ, Henry R, Mudaliar SR, Olefsky J, Caro JF. Acute and chronic effects of insulin on leptin production in humans: studies in vivo and in vitro. Diabetes. 1996;45:699–701.

    Article  PubMed  CAS  Google Scholar 

  32. Singhal A, Farooqi IS, O’Rahilly S, Cole TJ, Fewtrell M, Lucas A. Early nutrition and leptin concentrations later in life. Am J Clin Nutr. 2002;75:993–99.

    PubMed  CAS  Google Scholar 

  33. Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM. Abnormal splicing of the leptin receptor in diabetic mice. Nature. 1996;379:632–35.

    Article  PubMed  CAS  Google Scholar 

  34. Spanswick D, Smith MA, Groppi VE, Logan SD, Ashford ML. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature. 1997;390:521–25.

    Article  PubMed  CAS  Google Scholar 

  35. Kishimoto T, Taga T, Akira S. Cytokine signal transduction. Cell. 1994;76:252–62.

    Article  Google Scholar 

  36. Banks AS, Davis SM, Bates SJ, Myers MG. Activation of downstream signals by the long form of the leptin receptor. J Biol Chem. 2000;275:14563–72.

    Article  PubMed  CAS  Google Scholar 

  37. Niswender KD, Schwartz MW. Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Front Neuroendocrinol. 2003;24:1–10.

    Article  PubMed  CAS  Google Scholar 

  38. Porte D, Baskin DG, Schwartz MW. Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to humans. Diabetes. 2005;54:1264–76.

    Article  PubMed  CAS  Google Scholar 

  39. Baskin DG, Wilcox BJ, Figlewicz DP, Dorsa DM. Insulin and insulin-like growth factors in the CNS. Trends Neurosci. 1988;11:107–11.

    Article  PubMed  CAS  Google Scholar 

  40. Baura GD, Foster DM, Porte D, Kahn SE, Bergman RN, Cobelli C, Schwartz MW. Saturable transport of insulin from plasma into the central nervous system of dogs in vivo: a mechanism for regulated insulin delivery to the brain. J Clin Investig. 1993;92:1824–30.

    Article  PubMed  CAS  Google Scholar 

  41. VanderWeele DA. Insulin is a prandial satiety hormone. Physiol Behav. 1994;56:619–22.

    Article  PubMed  CAS  Google Scholar 

  42. McGowan MK, Andrews KM, Grossman SP. Role of intrahypothalamic insulin in circadian patterns of food intake, activity, and body temperature. Behav Neurosci. 1992;106:380–85.

    Article  PubMed  CAS  Google Scholar 

  43. Woods SC, Lotter EC, McKay LD, Porte D. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature. 1979;282:503–5.

    Article  PubMed  CAS  Google Scholar 

  44. Abusrewil SS, Savage DL. Obesity and diabetic control. Arch Dis Child. 1989;64:1313–15.

    Article  PubMed  CAS  Google Scholar 

  45. VanderWeele DA. Insulin and satiety from feeding in pancreatic-normal and diabetic rats. Physiol Behav. 1993;54:477–85.

    Article  PubMed  CAS  Google Scholar 

  46. Assimacopoulos-Jeannet F, Brichard S, Rencurel F, Cusin I, Jeanrenaud B. In vivo effects of hyperinsulinemia on lipogenic enzymes and glucose transporter expression in rat liver and adipose tissues. Metabolism. 1995;44(2):228–33.

    Article  PubMed  CAS  Google Scholar 

  47. Cusin I, Terrettaz J, Rohner-Jeanrenaud F, Zarjevski N, Assimacopoulos-Jeannet F, Jeanrenaud B. Hyperinsulinemia increases the amount of GLUT4 mRNA in white adipose tissue and decreases that of muscles: a clue for increased fat depot and insulin resistance. Endocrinology. 1990;127:3246–48.

    Article  PubMed  CAS  Google Scholar 

  48. Woo R, Kissileff HR, Pi-Sunyer FX. Elevated post-prandial insulin levels do not induce satiety in normal-weight humans. Am J Physiol. 1984;247:R776–87.

    Google Scholar 

  49. Niswender KD, Morton GJ, Stearns WH, Rhodes CJ, Myers MG, Schwartz MW. Intracellular signalling. Key enzyme in leptin-induced anorexia. Nature. 2001;413:794–795.

    Article  PubMed  CAS  Google Scholar 

  50. Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Müller-Wieland D, Kahn CR. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000;289:2122–25.

    Article  PubMed  Google Scholar 

  51. Schwartz MW, Figlewicz DP, Baskin DG, Woods SC, Porte D. Insulin and the central regulation of energy balance: Update 1994. Endocr Rev. 1994;2:109–13.

    Google Scholar 

  52. Lin X, Taguchi A, Park S, Kushner JA, Li F, Li Y, White MF. Dysregulation of insulin receptor substrate 2 in β-cells and brain causes obesity and diabetes. J Clin Investig. 2004;114:908–16.

    PubMed  CAS  Google Scholar 

  53. Plum L, Ma X, Hampel B, Balthasar N, Coppari R, Munzberg H, Shanabrough M, Burdakov D, Rother E, Janoschek R, Alber J, Belgardt BF, Koch L, Seibler J, Schwenk F, Fekete C, Suzuki A, Mak TW, Krone W, Horvath TL, Ashcroft FM, Bruning JC. Enhanced PIP(3) signaling in POMC neurons causes K(ATP) channel activation and leads to diet-sensitive obesity. J Clin Invest. 2006;116:1886–901.

    Article  PubMed  CAS  Google Scholar 

  54. Bjorkbaek C, Elmquist JK, Frantz JD, Shoelson SE, Flier JS. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell. 1998;1:619–25.

    Article  Google Scholar 

  55. Bence KK, Delibegovic M, Xue B, Gorgun CZ, Hotamisligil GS, Neel BG, Kahn BB. Neuronal PTP1B regulates body weight, adiposity, and leptin action. Nat Med. 2006;12:917–24.

    Article  PubMed  CAS  Google Scholar 

  56. Elmquist JK, Ahima RS, Elias CF, Flier JS, Saper CB. Leptin activates distinct projections from the dorsomedial and ventromedial hypothalamic nuclei. Proc Natl Acad Sci USA. 1998;95:741–46.

    Article  PubMed  CAS  Google Scholar 

  57. Thornton JE, Cheung CC, Clifton DK, Steiner RA. Regulation of hypothalamic proopiomelanocortin mRNA by leptin in ob/ob mice. Endocrinology. 1997;138:5063–66.

    Article  PubMed  CAS  Google Scholar 

  58. Kristensen P, Judge ME, Thim L, Ribel U, Christjansen KN, Wulff BS, Clausen JT, Jensen PB, Madsen OD, Vrang N, Larsen PJ, Hastrup S. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature. 1998;393:72–76.

    Article  PubMed  CAS  Google Scholar 

  59. Broberger C, Johansen J, Johasson C, Schalling M, Hokfelt T. The neuropeptide Y/agouti gene related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci USA. 1998;95:15043–48.

    Article  PubMed  CAS  Google Scholar 

  60. Liebowitz SF. Brain peptides and obesity: pharmacologic treatment. Obes Res. 1995;3:573S–89S.

    Article  Google Scholar 

  61. Kalra SP, Kalra PS. Nutritional infertility: the role of the interconnected hypothalamic neuropeptide Y-galanin-opioid network. Front Neuroendocrinol. 1996;17:371–401.

    Article  PubMed  CAS  Google Scholar 

  62. Beck B, Stricker-Krongard A, Nicolas JP, Burlet C. Chronic and continuous intracerebroventricular infusion of neuropeptide Y in Long-Evans rats mimics the feeding behavior of obese Zucker rats. Int J Obes. 1992;16:295–302.

    CAS  Google Scholar 

  63. Stephens TW, Basinski M, Bristow PK, Bue-Valleskey JM, Burgett SG, Craft L, Hale J, Hoffmann J, Hsiung HM, Kriaciunas A. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature. 1995;377:530–34.

    Article  PubMed  CAS  Google Scholar 

  64. Broberger C, Landry M, Wong H, Walsh JN, Hokfelt T. Subtypes of the Y1 and Y2 of the neuropeptide Y receptor are respectively expressed in pro-opiomelanocortin and neuropeptide Y-containing neurons of the rat hypothalamic arcuate nucleus. Neuroendocrinology. 1997;66:393–408.

    Article  PubMed  CAS  Google Scholar 

  65. Shutter JR, Graham M, Kinsey AC, Scully S, Luthy R, Stark KL. Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes Dev. 1997;7:454–67.

    Google Scholar 

  66. Graham M, Shutter JR, Sarmiento U, Sarosi I, Stark KL. Overexpression of Agrt leads to obesity in transgenic mice. Nat Genet. 1997;17:273–274.

    Article  PubMed  CAS  Google Scholar 

  67. Wellman PJ. Modulation of eating by central catecholamine systems. Curr Drug Targets. 2005;6:191–99.

    Article  PubMed  CAS  Google Scholar 

  68. Leibowitz S, Roosin P, Rosenn M. Chronic norepinephrine injection into the hypothalamic paraventricular nucleus produces hyperphagia and increased body weight in the rat. Pharmacol Biochem Behav. 1984;21:801–8.

    Article  PubMed  CAS  Google Scholar 

  69. Wellman PJ, Davies BT. Reversal of cirazoline-induced and phenylpropanolamine-induced anorexia by the alpha-1-receptor antagonist prazosin. Pharmacol Biochem Behav. 1992;42:97–100.

    Article  PubMed  CAS  Google Scholar 

  70. Liebowitz SF, Alexander JT, Cheung WK, Weiss GF. Effects of serotonin and the serotonin blocker metergoline on meal patterns and macronutrient selection. Pharmacol Biochem Behav. 1993;45:185–94.

    Article  Google Scholar 

  71. Wong DT, Reid LR, Threlkeld PG. Suppression of food intake in rats by fluoxetine: comparison of enantiomers and effects of serotonin antagonists. Pharmacol Biochem Behav. 1988;31:475–79.

    Article  PubMed  CAS  Google Scholar 

  72. Garattini S, Bizzi A, Caccia S, Mennini T. Progress report on the anorectic effects of dexfenfluramine, fluoxetine, and sertraline. Int J Obes. 1992;16:S43–50.

    Google Scholar 

  73. Calapai G, Corica F, Corsonello A, Saubetin L, DiRosa M, Campo GM, Buemi M, Mauro VN, Caputi AP. Leptin increases serotonin turnover by inhibition of nitric oxide synthesis. J Clin Investig. 1999;104:975–82.

    Article  PubMed  CAS  Google Scholar 

  74. Nonogaki K, Strack AM, Dallman MF, Tecott LH. Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2c receptor gene. Nat Med. 1998;4:1152–56.

    Article  PubMed  CAS  Google Scholar 

  75. Simansky KJ. Serotonergic control of the organization of feeding and satiety. Behav Brain Res. 1996;73:37–42.

    Article  PubMed  CAS  Google Scholar 

  76. Pissios P, Bradley RL, Maratos-Flier E. Expanding the scales: the multiple roles of MCH in regulating energy balance and other biological functions. Endocr Rev. 2006;27:606–20.

    Article  PubMed  CAS  Google Scholar 

  77. Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E. Mice lacking melanin-concentrating hormone receptor are hypophagic and lean. Nature. 1998;396:670–74.

    Article  PubMed  CAS  Google Scholar 

  78. Ludwig DS, Tritos NA, Mastaitis JW, Kulkarni R, Kokkotou E, Elmquist J, Lowell B, Flier JS, Maratos-Flier E. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Investig. 2001;107:379–86.

    Article  PubMed  CAS  Google Scholar 

  79. Gomori A, Ishihara A, Ito M, Mashiko S, Matsushita H, Yumoto M, Tanaka T, Tokita S, Moriya M, Iwaasa H, Kanatani A. Chronic intracerebroventricular infusion of MCH causes obesity in mice. Am J Physiol. 2003;284:E583–8.

    CAS  Google Scholar 

  80. Taylor MM, Samson WK. The other side of the orexins: endocrine and metabolic actions. Am J Physiol. 2003;284:E13–7.

    CAS  Google Scholar 

  81. Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, Sugiyama F, Yagami K, Goto K, Yanigasawa M, Sakurai T. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001;30:345–54.

    Article  PubMed  CAS  Google Scholar 

  82. Harris GC, Aston-Jones G. Arousal and reward: a dichotomy in orexin function. Trends Neurosci. 2006;29:571–77.

    Article  PubMed  CAS  Google Scholar 

  83. Mieda M, Yanigasawa M. Sleep, feeding, and neuropeptides: roles of orexins and orexin receptors. Curr Opin Neurobiol. 2002;12:339–46.

    Article  PubMed  CAS  Google Scholar 

  84. Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev. 2006;27:73–100.

    Article  PubMed  CAS  Google Scholar 

  85. Malcher-Lopes R, Di S, Marcheselli VS, Weng FJ, Stuart CT, Bazan NG, Tasker JG. Opposing crosstalk between leptin and glucocorticoids rapidly modulates synaptic excitation via endocannabinoid release. J Neurosci. 2006;26:6643–50.

    Article  PubMed  CAS  Google Scholar 

  86. Ranadive S, Vaisse C. Lessons from extreme human obesity: monogenetic disorders. Endocrinol Metab Clin North Am. 2008;37:733–51.

    Article  PubMed  CAS  Google Scholar 

  87. Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan XM, Yu H, Rosenblum CI, Vongs A, Feng Y, Cao L, Metzger JM, Strack AM, Camacho RE, Mellin TN, Nunes CN, Min W, Fisher J, Gopal-Truter S, MacIntyre DE, Chen HY, Van der Ploeg LH. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet. 2000;26:97–102.

    Article  PubMed  CAS  Google Scholar 

  88. Li WD, Joo EJ, Furlong EB, et al. Melanocortin 3 receptor (MC3R) gene variants in extremely obese women. Int J Obes. 2000;24:206–10.

    Article  CAS  Google Scholar 

  89. Mencarelli M, Walker GE, Maestrini S, Alberti L, Verti B, Brunani A, Petroni ML, Tagliaferri M, Liuzzi A, Di Blasio AM. Sporadic mutations in melanocortin receptor 3 in morbid obese individuals. Eur J Hum Genet. 2008;16:581–86.

    Article  PubMed  CAS  Google Scholar 

  90. Butler AA, Cone RD. The melanocortin receptors: lessons from knockout models. Neuropeptides. 2002;36:77–84.

    Article  PubMed  CAS  Google Scholar 

  91. Rahmouni K, Haynes WG, Morgan DA, Mark AL. Role of melanocortin-4 receptors in mediating renal sympathoactivation to leptin and insulin J. Neurosciences. 2003;23:5998–6004.

    CAS  Google Scholar 

  92. Collins S, Kuhn CM, Petro AE, Swick AG, Chrunyk BA, Surwit RS. Role of leptin in fat regulation. Nature. 1996;380:677.

    Article  PubMed  CAS  Google Scholar 

  93. Muntzel M, Morgan DA, Mark AL, Johnson AK. Intracerebroventricular insulin produces non-uniform regional increases in sympathetic nerve activity. Am J Physiol. 1994;267:R1350–5.

    PubMed  CAS  Google Scholar 

  94. Vollenweider L, Tappy L, Owlya R, Jequier E, Nicod P, Scherrer U. Insulin-induced sympathetic activation and vasodilation in skeletal muscle. Effects of insulin resistance in lean subjects. Diabetes. 1995;44:641–45.

    Article  PubMed  CAS  Google Scholar 

  95. Blaak EE, Saris WH, van Baak MA. Adrenoceptor subtypes mediating catecholamine-induced thermogenesis in man. Int J Obes. 1993;17:S78–81.

    CAS  Google Scholar 

  96. Viguerie N, Clement K, Barbe P, Courtine M, Benis A, Larrouy D, Hanczar B, Pelloux V, Poitou C, Khalfallah Y, Barsh GS, Thalamas C, Zucker JD, Langin D. In vivo epinephrine-mediated regulation of gene express in human skeletal muscle. J Clin Endocrinol Metabol. 2004;89:2000–14.

    Article  CAS  Google Scholar 

  97. Navegantes LC, Migliorini RH, do Carmo Kettelhut I. Adrenergic control of protein metabolism in skeletal muscle. Curr Opin Clin Nutr Metab Care. 2002;5:281–6.

    Article  PubMed  CAS  Google Scholar 

  98. Susulic VS, Frederich RC, Lawitts J, Tozzo E, Kahn BB, Harper ME, Himms-Hagen J, Flier JS, Lowell BB. Targeted disruption of the beta 3-adrenergic receptor gene. J Biol Chem. 1995;270:29483–92.

    Article  PubMed  CAS  Google Scholar 

  99. Boss O, Bachman E, Vidal-Puig A, Zhang CY, Peroni O, Lowell BB. Role of the β3-adrenergic receptor and/or a putative β3-adrenergic receptor on the expression of uncoupling proteins and peroxisome proliferator-activated receptor-γ coactivator-1. Biochem Biophys Res Commun. 1999;261:870–76.

    Article  PubMed  CAS  Google Scholar 

  100. Lowell BB, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis. Nature. 2000;404:652–60.

    PubMed  CAS  Google Scholar 

  101. Klingenberg M, Huang SG. Structure and function of the uncoupling protein from brown adipose tissue. Biochem Biophys Acta. 1999;1415:271–96.

    Article  PubMed  CAS  Google Scholar 

  102. Powley TL, Laughton W. Neural pathways involved in the hypothalamic integration of autonomic responses. Diabetologia. 1981;20:378–87.

    Article  PubMed  CAS  Google Scholar 

  103. Peles E, Goldstein DS, Akselrod S, Nitzan H, Azaria M, Almog S, Dolphin D, Halkin H, Modan M. Interrelationships among measures of autonomic activity and cardiovascular risk factors during orthostasis and the oral glucose tolerance test. Clin Auton Res. 1995;5:271–8.

    Article  PubMed  CAS  Google Scholar 

  104. Rohner-Jeanrenaud F, Jeanrenaud B. Involvement of the cholinergic system in insulin and glucagon oversecretion of genetic preobesity. Endocrinology. 1985;116:830–4.

    Article  PubMed  CAS  Google Scholar 

  105. Lustig RH. Autonomic dysfunction of the β-cell and the pathogenesis of obesity. Rev Endocr Metab Dis. 2003;4:23–32.

    Article  CAS  Google Scholar 

  106. Kreier F, Fliers E, Voshol PJ, Van Eden CG, Havekes LM, Kalsbeek A, Van Heijningen CL, Sluiter AA, Mettenleiter TC, Romijn JA, Sauerwein HP, Buijs RM. Selective parasympathetic innervation of subcutaneous and intra-abdominal fat-functional implications. J Clin Investig. 2002;110:1243–50.

    PubMed  CAS  Google Scholar 

  107. Boden G, Hoeldtke RD. Nerves, fat, and insulin resistance. N Engl J Med. 2003;349:1966–7.

    Article  PubMed  CAS  Google Scholar 

  108. D’Alessio DA, Kieffer TJ, Taborsky GJ, Havel PJ. Activation of the parasympathetic nervous system is necessary for normal meal induced-insulin secretion in rhesus macaques. J Clin Endocrinol Metab. 2001;86:1253–9.

    Article  PubMed  Google Scholar 

  109. Ahren B, Holst JJ. The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholingergic mechanisms and is important for postprandial glycemia. Diabetes. 2001;50:1030–8.

    Article  PubMed  CAS  Google Scholar 

  110. Marin P, Russeffé-Scrive A, Smith J, Bjorntorp P. Glucose uptake in human adipose tissue. Metabolism. 1988;36:1154–64.

    Article  Google Scholar 

  111. Ramsay TG. Fat cells. Endocrinol Metab Clin North Am. 1996;25:847–70.

    Article  PubMed  CAS  Google Scholar 

  112. Kelley AE, Bakshi VP, Haber SN, Steininger TL, Will MJ, Zhang M. Opioid modulation of taste hedonics within the ventral striatum. Physiol Behav. 2002;76:365–77.

    Article  PubMed  CAS  Google Scholar 

  113. Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB, Thurmon JJ, Marinelli M, DiLeone RJ. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron. 2006;51:801–10.

    Article  PubMed  CAS  Google Scholar 

  114. Shalev U, Yap J, Shaham Y. Leptin attenuates food deprivation-induced relapse to heroin seeking. J Neurosci. 2001;21:RC129:121–5.

    Google Scholar 

  115. Carr KD, Tsimberg Y, Berman Y, Yamamoto N. Evidence of increased dopamine receptor signaling in food-restricted rats. Neuroscience. 2003;119:1157–67.

    Article  PubMed  CAS  Google Scholar 

  116. Figlewicz DP, Szot P, Chavez M, Woods SC, Veith RC. Intraventricular insulin increases dopaminergic transporter mRNA in rat VTA/substantia nigra. Brain Res. 1994;644:331–4.

    Article  PubMed  CAS  Google Scholar 

  117. Sipols AJ, Bayer J, Bennett R, Figlewicz DP. Intraventricular insulin decreases kappa opioid-mediated sucrose intake in rats. Peptides. 2002;23:2181–7.

    Article  PubMed  CAS  Google Scholar 

  118. Figlewicz DP. Adiposity signals and food reward: expanding the CNS roles of insulin and leptin. Am J Phyisol Regul Integr Comp Physiol. 2003;284:R882–92.

    CAS  Google Scholar 

  119. Volkow ND, Wise RA. How can drug addiction help us understand obesity? Nat. Neurosciences. 2005;8:555–60.

    CAS  Google Scholar 

  120. Figlewicz DP, MacDonald Naleid A, Sipols AJ. Modulation of food reward by adiposity signals. Physiol Behav. 2007;91:473–78.

    Article  PubMed  CAS  Google Scholar 

  121. Tataranni PA, Gautier JF, Chen K, Uecker A, Bandy D, Salbe AD, Pratley RE, Lawson M, Reiman EM, Ravussin E. Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc Natl Acad Sci USA. 1999;96:4569–74.

    Article  PubMed  CAS  Google Scholar 

  122. Peters JC, Wyatt HR, Donahoo WT, Hill JO. From instinct to intellect: the challenge of maintaining healthy weight in the modern world. Obes Res. 2002;3:69–74.

    Article  CAS  Google Scholar 

  123. Black PH. The inflammatory consequences of psychologic stress: relationship to insulin resistance, obesity, atherosclerosis and diabetes mellitus, type II. Med Hypotheses. 2006;67:879–91.

    Article  PubMed  CAS  Google Scholar 

  124. Dallman MF, Pecoraro NC, La Fleur SE. Chronic stress and comfort foods: self-medication and abdominal obesity. Brain Behav Immun. 2005;19:275–80.

    Article  PubMed  Google Scholar 

  125. La Fleur SE, Akana SF, Manalo SL, Dallman MF. Interaction between corticosterone and insulin in obesity: regulation of lard intake and fat stores. Endocrinology. 2004;145:2174–85.

    Article  PubMed  CAS  Google Scholar 

  126. Dallman MF, Pecoraro N, Akana SF, La Fleur SE, Gomez F, Houshyar H, Bell ME, Bhatnagar S, Laugero KD, Manalo S. Chronic stress and obesity: a new view of “comfort food”. Proc Natl Acad Sci USA. 2003;100:11696–701.

    Article  PubMed  CAS  Google Scholar 

  127. Tataranni PA, Larson DE, Snitker S, Young JB, Flatt JP, Ravussin E. Effects of glucocorticoids on energy metabolism and food intake in humans. Am J Physiol. 1996;271:E317–25.

    PubMed  CAS  Google Scholar 

  128. Adam TC, Epel ES. Stress, eating, and the reward system. Physiol Behav. 2007;91:449–58.

    Article  PubMed  CAS  Google Scholar 

  129. Oliver G, Wardle J. Perceived effects of stress on food choice. Physiol Behav. 1999;66:511–5.

    Article  PubMed  CAS  Google Scholar 

  130. Roemmich JN, Wright SM, Epstein LH. Dietary restraint and stress-induced snacking in youth. Obes Res. 2002;10:1120–6.

    Article  PubMed  Google Scholar 

  131. Kuo LE, Kitlinska JB, Tilan JU, Li L, Baker SB, Johnson MD, Lee EW, Burnett MS, Fricke ST, Kvetnansky R, Herzog H, Zukowska Z. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med. 2007;13:803–11.

    Article  PubMed  CAS  Google Scholar 

  132. Leibel RL. The role of leptin in the control of body weight. Nutr Rev. 2002;60:S15–9.

    Article  PubMed  Google Scholar 

  133. Leibel RL, Rosenbaum M, Hirsch J. Changes in energy expenditure resulting from altered body weight. N Engl J Med. 1995;332:621–8.

    Article  PubMed  CAS  Google Scholar 

  134. Champigny O, Ricquier D. Effects of fasting and refeeding on the level of uncoupling protein mRNA in rat brown adipose tissue: evidence for diet-induced and cold-induced responses. J Nutr. 1990;120:1730–6.

    PubMed  CAS  Google Scholar 

  135. Aronne LJ, Mackintosh R, Rosenbaum M, Leibel RL, Hirsch J. Autonomic nervous system activity in weight gain and weight loss. Am J Physiol. 1995;269:R222–5.

    CAS  Google Scholar 

  136. Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T, Lubina JA, Patane J, Self B, Hunt P, McCamish M. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. J Am Med Assoc. 1999;282:1568–75.

    Article  CAS  Google Scholar 

  137. Rosenbaum M, Nicolson M, Hirsch J, Murphy E, Chu F, Leibel RL. Effects of weight change on plasma leptin concentrations and energy expenditure. J Clin Endocrinol Metab. 1997;82:3647–54.

    Article  PubMed  CAS  Google Scholar 

  138. Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, Lynn RB, Zhang PL, Sinha MK, Considine RV. Decreased cerebrospinal fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet. 1996;348:159–61.

    Article  PubMed  CAS  Google Scholar 

  139. Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. Leptin enters the brain by a saturable system independent of insulin. Peptides. 1996;17:305–11.

    Article  PubMed  CAS  Google Scholar 

  140. Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R, Morley JE. Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes. 2004;53:1253–60.

    Article  PubMed  CAS  Google Scholar 

  141. El-Haschimi K, Pierroz DD, Hileman SM, Bjorbaek C, Flier JS. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J Clin Investig. 2000;105:1827–32.

    Article  PubMed  CAS  Google Scholar 

  142. Rosenbaum M, Murphy EM, Heymsfield SB, Matthews DE, Leibel RL. Low dose leptin administration reverses effects of sustained weight reduction on energy expenditure and circulating concentrations of thyroid hormones. J Clin Endocrinol Metab. 2002;87:2391–4.

    Article  PubMed  CAS  Google Scholar 

  143. Rosenbaum M, Goldsmith R, Bloomfield D, Magnano A, Weimer L, Heymsfield S, Gallagher D, Mayer L, Murphy E, Leibel RL. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest. 2005;115:3579–86.

    Article  PubMed  CAS  Google Scholar 

  144. Lustig RH, Sen S, Soberman JE, Velasquez-Mieyer PA. Obesity, leptin resistance, and the effects of insulin suppression. Int J Obes. 2004;28:1344–8.

    Article  CAS  Google Scholar 

  145. Isganaitis E, Lustig RH. Fast food, central nervous system insulin resistance, and obesity. Arterioscler Thromb Vasc Biol. 2005;25:2451–62.

    Article  PubMed  CAS  Google Scholar 

  146. Lustig RH, Mietus-Snyder ML, Bacchetti P, Lazar AA, Velasquez-Mieyer PA, Christensen ML. Insulin dynamics predict BMI and z-score response to insulin suppression or sensitization pharmacotherapy in obese children. J Pediatr. 2006;148:23–9.

    Article  PubMed  CAS  Google Scholar 

  147. Mietus-Snyder ML, Lustig RH. Childhood obesity: adrift in the “limbic triangle”. Annu Rev Med. 2008;59:119–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lustig, R.H. (2010). The Neuroendocrine Control of Energy Balance. In: Freemark, M. (eds) Pediatric Obesity. Contemporary Endocrinology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-60327-874-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-874-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-60327-873-7

  • Online ISBN: 978-1-60327-874-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics