Skip to main content

MS: Epidemiology and Genetics

  • Chapter
  • First Online:
  • 1652 Accesses

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

Our understanding of multiple sclerosis (MS) has advanced rapidly over the past decade, but the inciting events of this chronic, disabling disease of the central nervous system remain elusive. Our working model is that environmental factors and stochastic events trigger MS in genetically susceptible individuals. Evidence for certain environmental factors is mounting, but the most exciting component of the MS susceptibility equation today lies in its genetic component as recent technological and analytic advances have allowed several polymorphisms to be discovered and validated in the last 2 years. How these genetic risk factors interact with putative environmental risk factors is one of the fascinating questions that we can now begin to explore in the hope of shedding light on the earliest events involved in the onset of MS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hauser SL, Goodin DS. Multiple sclerosis and other demyelinating diseases. In: Kasper DL, Braunwald E, Hauser S, Longo D, Jameson LJ, Fauci AS, editors. Harrison’s principles of internal medicine. 16th ed. New York: McGraw-Hill; 2004. p. 2461–71.

    Google Scholar 

  2. Hernán MA, Olek MJ, Ascherio A. Geographic variation of MS incidence in two prospective studies of US women. Neurology. 1999;53(8):1711–8.

    PubMed  Google Scholar 

  3. Koch-Henriksen N, Hyllested K. Epidemiology of multiple sclerosis: incidence and prevalence rates in Denmark 1948–64 based on the Danish Multiple Sclerosis Registry. Acta Neurol Scand. 1988;78(5):369–80.

    Article  PubMed  CAS  Google Scholar 

  4. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502–17.

    Article  PubMed  CAS  Google Scholar 

  5. Ascherio A, Munger K. Epidemiology of multiple sclerosis: from risk factors to prevention. Semin Neurol. 2008;28(1):17–28. Review.

    Article  PubMed  Google Scholar 

  6. Smestad C, Sandvik L, Holmoy T, Harbo HF, Celius EG. Marked differences in prevalence of multiple sclerosis between ethnic groups in Oslo, Norway. J Neurol. 2008;255(1):49–55.

    Article  PubMed  Google Scholar 

  7. Rosati G. The prevalence of multiple sclerosis in the world: an update. Neurol Sci. 2001;22:117–39.

    Article  PubMed  CAS  Google Scholar 

  8. Kurtzke JF, Beebe GW, Norman Jr JE. Epidemiology of multiple sclerosis in US veterans. 1. Race, sex, and geographic distribution. Neurology. 1979;29:1228–35.

    PubMed  CAS  Google Scholar 

  9. Wallin MT, Page WF, Kurtzke JF. Multiple sclerosis in US veterans of the Vietnam era and later military service: race, sex, geography. Ann Neurol. 2004;55(1):65–71.

    Article  PubMed  Google Scholar 

  10. Gale CR, Martyn CN. Migrant studies in multiple sclerosis. Prog Neurobiol. 1995;47:425–48.

    PubMed  CAS  Google Scholar 

  11. Orton SM, Herrera BM, Yee IM, et al. for the Canadian Collaborative Study Group. Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol. 2006;5(11):932–6.

    Google Scholar 

  12. Hammond SR, English DR, McLeod JG. The age-range of risk of developing multiple sclerosis: evidence from a migrant population in Australia. Brain. 2000;123(5):968–74.

    Article  PubMed  Google Scholar 

  13. Norman Jr JE, Kurtzke JF, Beebe GW. Epidemiology of multiple sclerosis in U.S. veterans: 2. Latitude, climate, and the risk of multiple sclerosis. J Chronic Dis. 1983;36(8):551–9.

    Article  PubMed  Google Scholar 

  14. Hayes CE, Cantorna MT, DeLuca HF. Vitamin D and multiple sclerosis. Proc Soc Exp Biol Med. 1997;216:21–7.

    PubMed  CAS  Google Scholar 

  15. Freedman DM, Dosemeci M, Alavanja MC. Mortality from multiple sclerosis and exposure to residential and occupational solar radiation: a case-control study based on death certificates. Occup Environ Med. 2000;57:418–21.

    Article  PubMed  CAS  Google Scholar 

  16. Goldacre MJ, Seagroatt V, Yeates D, Acheson ED. Skin cancer in people with multiple sclerosis: a record linkage study. J Epidemiol Community Health. 2004;58:142–4.

    Article  PubMed  CAS  Google Scholar 

  17. Van der Mei IA, Ponsonby AL, Dwyer T, et al. Past exposure to sun, skin phenotype and risk of multiple sclerosis: a case-control study. BMJ. 2003;327:316–21.

    Article  PubMed  Google Scholar 

  18. Ascherio A, Munger K. Environmental risk factors for multiple sclerosis. Part II. Noninfectious factors. Ann Neurol. 2007;61(6):504–13.

    Article  PubMed  CAS  Google Scholar 

  19. Kurtzke JF. On the fine structure of the distribution of multiple sclerosis. Acta Neurol Scand. 1967;43:257–82.

    Article  PubMed  CAS  Google Scholar 

  20. Swank RL, Lerstad O, Strom A, Backer J. Multiple sclerosis in rural Norway: its geographic and occupational incidence in relation to nutrition. N Engl J Med. 1952;246:722–8.

    Article  PubMed  CAS  Google Scholar 

  21. Westlund K. Distribution and mortality time trend of multiple sclerosis and some other diseases in Norway. Acta Neurol Scand. 1970;46:455–83.

    Article  PubMed  CAS  Google Scholar 

  22. Goldberg P. Multiple sclerosis: vitamin D and calcium as environmental determinants of prevalence (A viewpoint) part 1: sunlight, dietary factors and epidemiology. Int J Environ Stud. 1974;6:19–27.

    Article  Google Scholar 

  23. Lemire JM, Archer DC. 1,25 dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. J Clin Invest. 1991;87:1103–7.

    Article  PubMed  CAS  Google Scholar 

  24. Pedersen LB, Nashold FE, Spach KM, Hayes CE. 1,25-dihydroxyvitamin D3 reverses experimental autoimmune encephalomyelitis by inhibiting chemokine synthesis and monocyte trafficking. J Neurosci Res. 2007;85(11):2480–90.

    Article  PubMed  CAS  Google Scholar 

  25. Cantorna MT, Hayes CE, DeLuca HF. 1,25-Dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple ­sclerosis. Proc Natl Acad Sci USA. 1996;93:7861–4.

    Article  PubMed  CAS  Google Scholar 

  26. Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA. 2006;296:2832–8.

    Article  PubMed  CAS  Google Scholar 

  27. Nieves J, Cosman F, Herbert J, Shen V, Lindsay R. High prevalence of vitamin D deficiency and reduced bone mass in multiple sclerosis. Neurology. 1994;44:1687–92.

    PubMed  CAS  Google Scholar 

  28. Ozgocmen S, Bulut S, Ilhan N, Gulkesen A, Ardicoglu O, Ozkan Y. Vitamin D deficiency and reduced bone mineral density in multiple sclerosis: effect of ambulatory status and functional capacity. J Bone Miner Metab. 2005;23:309–13.

    Article  PubMed  Google Scholar 

  29. Willer CJ, Dyment DA, Sadovnick AD, Rothwell PM, Murray TJ, Ebers GC. Timing of birth and risk of multiple sclerosis: population based study. BMJ. 2005;330:120.

    Article  PubMed  Google Scholar 

  30. Sotgiu S, Pugliatti M, Sotgiu MA, et al. Seasonal fluctuations of multiple sclerosis births in Sardinia. J Neurol. 2006;253:38–44.

    Article  PubMed  Google Scholar 

  31. Embry AF, Snowdon LR, Vieth R. Vitamin D and seasonal fluctuations of ­gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann Neurol. 2000;48:271–2.

    Article  PubMed  CAS  Google Scholar 

  32. Auer DP, Schumann EM, Kumpfel T, Gossl C, Trenkwalder C. Seasonal fluctuations of gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann Neurol. 2000;47:276–7.

    Article  PubMed  CAS  Google Scholar 

  33. Kurtzke JF, Hyllested K. Multiple sclerosis in the Faroe Islands I. Clinical and epidemiological features. Ann Neurol. 1979;5(1):6–21.

    Article  PubMed  CAS  Google Scholar 

  34. Gilden DH. Infectious causes of multiple sclerosis. Lancet Neurol. 2005;4(3):195–202.

    PubMed  CAS  Google Scholar 

  35. Ascherio A, Munger K. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol. 2007;61(4):288–99.

    Article  PubMed  Google Scholar 

  36. Giovannoni G, Cutter GR, Lunemann J, et al. Infectious causes of multiple sclerosis. Lancet Neurol. 2006;5:887–94.

    Article  PubMed  Google Scholar 

  37. Warner HB, Carb RI. Multiple sclerosis and Epstein-Barr virus. Lancet. 1981;2:1290.

    Article  PubMed  CAS  Google Scholar 

  38. Niederman JC, Evans AS. Epstein-Barr virus. In: Evans AS, Kaslow RA, editors. Epidemiology and control. 4th ed. New York: Plenum; 1997. p. 253–83.

    Google Scholar 

  39. Levin LI, Munger KL, Rubertone MV, et al. Multiple sclerosis and Epstein-Barr virus. JAMA. 2003;289:1533–6.

    Article  PubMed  Google Scholar 

  40. Levin LI, Munger KL, Rubertone MV, et al. Temporal relationship between elevation of Epstein Barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis. JAMA. 2005;293:2496–500.

    Article  PubMed  CAS  Google Scholar 

  41. Thacker EL, Mirzaei F, Ascherio A. Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis. Ann Neurol. 2006;59(3):499–503.

    Article  PubMed  Google Scholar 

  42. Serafini B, Rosicarelli B, Franciotta D, et al. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J Exp Med. 2007;204(12):2899–912.

    Article  PubMed  CAS  Google Scholar 

  43. Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358(7):676–88.

    Article  PubMed  CAS  Google Scholar 

  44. Holmoy T, Vitamin D. modulates the immune response to Epstein-Barr virus: ­synergistic effect of risk factors in multiple sclerosis. Med Hypotheses. 2008;70(1):66–9.

    Article  PubMed  CAS  Google Scholar 

  45. Riise T, Nortvedt MW, Ascherio A. Smoking is a risk factor for multiple sclerosis. Neurology. 2003;61:1122–4.

    PubMed  Google Scholar 

  46. Marrie RA, Cutter G, Tyry T, Campagnolo D, Vollmer T. Smoking status over two years in patients with multiple sclerosis. Neuroepidemiology. 2008;32(1):72–9.

    Article  PubMed  Google Scholar 

  47. Hernán MA, Jick SS, Logroscino G, Olek MJ, Ascherio A, Jick H. Cigarette smoking and the progression of multiple sclerosis. Brain. 2005;128:1461–5.

    Article  PubMed  Google Scholar 

  48. Courville CB, Maschmeyer JE, DeLay CP. Effects of smoking on the acute ­exacerbations of multiple sclerosis. Bull Los Angeles Neurol Soc. 1964;29:1–6.

    PubMed  CAS  Google Scholar 

  49. Di Pauli F, Reindl M, Ehling R, et al. Smoking is an early risk factor for conversion to clinically definite multiple sclerosis. Mult Scler. 2008;14:1026–30.

    Article  PubMed  Google Scholar 

  50. Whitacre CC, Reingold SC, O’Loony PA. A gender gap in autoimmunity. Science. 1999;283:1277–8.

    Article  PubMed  CAS  Google Scholar 

  51. Whitacre CC. Sex differences in autoimmune disease. Nat Immunol. 2001;2:777–80.

    Article  PubMed  CAS  Google Scholar 

  52. Tanzer J. Estrogen effect in multiple sclerosis more nuanced than described. Ann Neurol. 2008;63(2):263. Letter.

    Article  PubMed  Google Scholar 

  53. Dworkin RH, Bates D, Millar JHD, Paty DW. Linoleic acid and multiple sclerosis: a reanalysis of three double-blind trials. Neurology. 1984;34:1441–5.

    PubMed  CAS  Google Scholar 

  54. Bates D, Cartlidge NE, French JM, et al. A double-blind controlled trial of long chain n-3 polyunsaturated fatty acids in the treatment of multiple sclerosis. J Neurol Neurosurg Psychiatry. 1989;52:18–22.

    Article  PubMed  CAS  Google Scholar 

  55. Weinstock-Guttman B, Baier M, Park Y, et al. Low fat dietary intervention with omega-3 fatty acid supplementation in multiple sclerosis patients. Prostaglandins Leukot Essent Fatty Acids. 2005;73:397–404.

    Article  PubMed  CAS  Google Scholar 

  56. Oksenberg JR, Baranzini SE, Sawcer S, Hauser SL. The genetics of multiple sclerosis: SNPs to pathways to pathogenesis. Nat Rev Genet. 2008;9(7):516–26.

    Article  PubMed  CAS  Google Scholar 

  57. De Jager PL, Simon KC, Munger KL, Rioux JD, Hafler DA, Ascherio A. Integrating risk factors: HLA-DRB1*1501 and Epstein-Barr virus in multiple sclerosis. Neurology. 2008;70(13 Pt 2):1113–8.

    PubMed  Google Scholar 

  58. Islam T, Gauderman WJ, Cozen W, Mack TM. Childhood sun exposure influences risk of multiple sclerosis in monozygotic twins. Neurology. 2007;69(4):381–8.

    Article  PubMed  Google Scholar 

  59. Orton SM, Morris AP, Herrera BM, et al. Evidence for genetic regulation of vitamin D status in twins with multiple sclerosis. Am J Clin Nutr. 2008;88(2):441–7.

    PubMed  CAS  Google Scholar 

  60. Hafler DA, Compston A, Sawcer S. for the International Multiple Sclerosis Genetics Consortium. Risk alleles for multiple sclerosis identified by a genome-wide study. N Engl J Med. 2007;357:851–62.

    Article  PubMed  CAS  Google Scholar 

  61. Baranzini SE, Wang J, Gibson RA, et al. Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Hum Mol Genet. 2009;18(4):767–78.

    Article  PubMed  CAS  Google Scholar 

  62. Jersild C, Svejgaard A, Fog T. HL-A antigens and multiple sclerosis. Lancet. 1972;1:1240–1.

    Article  PubMed  CAS  Google Scholar 

  63. Fernando MM, Stevens CR, Walsh EC, et al. Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet. 2008;4(4):e1000024. Review.

    Article  PubMed  CAS  Google Scholar 

  64. Marrosu MG, Murru MR, Costa G, et al. Multiple sclerosis in Sardinia is associated and in linkage disequilibrium with HLA-DR3 and HLA-DR4 alleles. Am J Hum Genet. 1997;61:454–7.

    Article  PubMed  CAS  Google Scholar 

  65. Marrosu MG, Murru MR, Costa G, Murru R, Muntoni F, Cucca F. DRB1-DQA1-DQB1 loci and multiple sclerosis predisposition in the Sardinian population. Hum Mol Genet. 1998;7:1235–7.

    Article  PubMed  CAS  Google Scholar 

  66. Yeo TW, De Jager PL, Gregory SG, et al. A second major histocompatibility complex susceptibility locus for multiple sclerosis. Ann Neurol. 2007;61(3):228–36.

    Article  PubMed  CAS  Google Scholar 

  67. Fogdell-Hahn A, Ligers A, Gronning M, Hillert J, Olerup O. Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease. Tissue Antigens. 2000;55(2):140–8.

    Article  PubMed  CAS  Google Scholar 

  68. Barcellos LF, Oksenberg JR, Begovich AB, et al. HLA-DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course. Am J Hum Genet. 2003;72:710–6.

    Article  PubMed  CAS  Google Scholar 

  69. Oksenberg JR, Barcellos LF, Cree BA, et al. Mapping multiple sclerosis susceptibility to the HLA-DR locus in African-Americans. Am J Hum Genet. 2004;74(1):160–7.

    Article  PubMed  CAS  Google Scholar 

  70. Caillier SJ, Briggs F, Cree BA, et al. Uncoupling the roles of HLA-DRB1 and HLA-DRB5 genes in multiple sclerosis. J Immunol. 2008;181(8):5473–80.

    PubMed  CAS  Google Scholar 

  71. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273(5281):1516–7.

    Article  PubMed  CAS  Google Scholar 

  72. Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet. 1993;52(3):506–16.

    PubMed  CAS  Google Scholar 

  73. Spielman RS, Ewens WJ. The TDT and other family-based tests for linkage disequilibrium and association. Am J Hum Genet. 1996;59(5):983–9.

    PubMed  CAS  Google Scholar 

  74. Pe’er I, Yelensky R, Altshuler D, Daly MJ. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol. 2008;32(4):381–5.

    Article  PubMed  Google Scholar 

  75. Maier LM, Lowe CE, Cooper J, et al. IL2RA genetic heterogeneity in multiple sclerosis and type 1 diabetes susceptibility and soluble interleukin-2 receptor production. PLoS Genet. 2009;5(1):e1000322.

    Article  PubMed  CAS  Google Scholar 

  76. Weber F, Fontaine B, Cournu-Rebeix I, et al. IL2RA and IL7RA genes confer susceptibility for multiple sclerosis in two independent European populations. Genes Immun. 2008;9:259–63.

    Article  PubMed  CAS  Google Scholar 

  77. Ramagopalan SV, Anderson C, Sadovnick AD, Ebers GC. Genomewide study of multiple sclerosis. N Engl J Med. 2007;357:2199–201 (correspondence).

    Article  PubMed  CAS  Google Scholar 

  78. Lowe CE, Cooper JD, Brusko T, et al. Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat Genet. 2007;39(9):1074–82.

    Article  PubMed  CAS  Google Scholar 

  79. Schippling DS, Martin R. Spotlight on anti-CD25: daclizumab in MS. Int MS J. 2008;15(3):94–8.

    PubMed  Google Scholar 

  80. Gregory SG, Schmidt S, Seth P, et al. Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet. 2007;39:1083–91.

    Article  PubMed  CAS  Google Scholar 

  81. Lundmark F, Duvefelt K, Iacobaeus E, et al. Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis. Nat Genet. 2007;39:1108–13.

    Article  PubMed  CAS  Google Scholar 

  82. Hoppenbrouwers IA, Aulchenko YS, Ebers GC, et al. EVI5 is a risk gene for multiple sclerosis. Genes Immun. 2008;9:334–7.

    Article  PubMed  CAS  Google Scholar 

  83. Rubio JP, Stankovich J, Field J, et al. Replication of KIAA0350, IL2RA, RPL5, and CD58 as multiple sclerosis susceptibility genes in Australians. Genes Immun. 2008;9(7):624–30.

    Article  PubMed  CAS  Google Scholar 

  84. Aulchenko YS, Hoppenbrouwers IA, Ramagopalan SV, et al. Genetic variation in the KIF1B locus influences susceptibility to multiple sclerosis. Nat Genet. 2008;40(12):1402–3.

    Article  PubMed  CAS  Google Scholar 

  85. International Multiple Sclerosis Genetics Consortium (IMSGC). The expanding genetic overlap between multiple sclerosis and type I diabetes. Genes Immun. 2009;10:11.

    Article  CAS  Google Scholar 

  86. De Jager PL, Baecher-Allan C, Maier LM, et al. The role of the CD58 locus in multiple sclerosis. Proc Natl Acad Sci USA. 2009;106(13):5264–9.

    Article  PubMed  Google Scholar 

  87. Smestad C, Brynedal B, Jonasdottir G, et al. The impact of HLA-A and –DRB1 on age at onset, disease course, and severity in Scandinavian multiple sclerosis patients. Eur J Neurol. 2007;14:835–40.

    Article  PubMed  CAS  Google Scholar 

  88. Weatherby SJ, Thomson W, Pepper L, et al. HLA-DRB1 and disease outcome in multiple sclerosis. J Neurol. 2001;248:304–10.

    Article  PubMed  CAS  Google Scholar 

  89. Weinshenker BG, Santrach P, Bissonet AS, et al. Major histocompatibility complex class II alleles and the course and outcome of MS: a population-based study. Neurology. 1998;51:742–7.

    PubMed  CAS  Google Scholar 

  90. Hensiek AE, Sawcer SJ, Feakes R, et al. HLA-DR 15 is associated with female sex and younger age at diagnosis in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2002;72:184–7.

    Article  PubMed  CAS  Google Scholar 

  91. Barcellos LF, Sawcer S, Ramsay PP, et al. Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis. Hum Mol Genet. 2006;15(18):2813–24.

    Article  PubMed  CAS  Google Scholar 

  92. Okuda DT, Srinivasan R, Oksenberg JR, et al. Genotype-Phenotype correlations in multiple sclerosis: HLA genes influence disease severity inferred by 1HMR spectroscopy and MRI measures. Brain. 2009;132(Pt 1):250–9.

    PubMed  CAS  Google Scholar 

  93. Byun E, Caillier SJ, Montalban X, et al. Genome-wide pharmacogenomic ­analysis of the response to interferon beta therapy in multiple sclerosis. Arch Neurol. 2008;65(3):337–44.

    Article  PubMed  Google Scholar 

  94. Barcellos LF, Kamdar BB, Ramsay PP, et al. Clustering of autoimmune diseases in families with a high-risk for multiple sclerosis: a descriptive study. Lancet Neurol. 2006;5:924–31.

    Article  PubMed  CAS  Google Scholar 

  95. Broadley SA, Deans J, Sawcer SJ, Clayton D, Compston DA. Autoimmune disease in first-degree relatives of patients with multiple sclerosis. A UK survey. Brain. 2000;123(6):1102–11.

    Article  PubMed  Google Scholar 

  96. Todd JA, Bell JI, McDevitt HO. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature. 1987;329:599–604.

    Article  PubMed  CAS  Google Scholar 

  97. Stastny P. Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N Engl J Med. 1978;298:869–71.

    Article  PubMed  CAS  Google Scholar 

  98. Simmonds MJ, Howson JM, Heward JM, et al. A novel and major association of HLA-C in Graves’ disease that eclipses the classical HLA-DRB1 effect. Hum Mol Genet. 2007;16:2149–53.

    Article  PubMed  CAS  Google Scholar 

  99. Todd JA, Walker NM, Cooper JD, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet. 2007;39(7):857–64.

    Article  PubMed  CAS  Google Scholar 

  100. Brand OJ, Lowe CE, Heward JM, et al. Association of the interleukin-2 receptor alpha (IL-2Ralpha)/CD25 gene region with Graves’ disease using a multilocus test and tag SNPs. Clin Endocrinol (Oxf). 2007;66:508–12.

    CAS  Google Scholar 

  101. Gregersen PK, Lee HS, Batliwalla F, Begovich AB. PTPN22: setting thresholds for autoimmunity. Semin Immunol. 2006;18(4):214–23.

    Article  PubMed  CAS  Google Scholar 

  102. Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet. 2004;36:337–8.

    Article  PubMed  CAS  Google Scholar 

  103. Michou L, Lasbleiz S, Rat AC, et al. Linkage proof for PTPN22, a rheumatoid arthritis susceptibility gene and a human autoimmunity gene. Proc Natl Acad Sci USA. 2007;104(5):1649–54.

    Article  PubMed  CAS  Google Scholar 

  104. Velaga MR, Wilson V, Jennings CE, et al. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J Clin Endocrinol Metab. 2004;89:5862–5.

    Article  PubMed  CAS  Google Scholar 

  105. Wu H, Cantor RM, Graham DS, et al. Association analysis of the R620W polymorphism of protein tyrosine phosphatase PTPN22 in systemic lupus erythematosus patients with autoimmune thyroid disease. Arthritis Rheum. 2005;52:2396–402.

    Article  PubMed  CAS  Google Scholar 

  106. De Jager PL, Sawcer S, Waliszewska A, et al. Evaluating the role of the 620W allele of protein tyrosine phosphatase PTPN22 in Crohn’s disease and multiple sclerosis. Eur J Hum Genet. 2006;14(3):317–21.

    Article  PubMed  CAS  Google Scholar 

  107. Lee YH, Rho YH, Choi SJ, et al. The PTPN22 C1858T functional polymorphism and autoimmune diseases – a meta-analysis. Rheumatology (Oxford). 2007;46(1):49–56.

    Article  CAS  Google Scholar 

  108. Remmers EF, Plenge RM, Lee AT, et al. STAT4 and the risk of rheumatoid ­arthritis and systemic lupus erythematosus. N Engl J Med. 2007;357:977–86.

    Article  PubMed  CAS  Google Scholar 

  109. Hafler JP, Maier LM, Cooper JD, et al. CD226 Gly307Ser association with ­multiple autoimmune diseases. Genes Immun. 2008;10:5–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gross, R.H., De Jager, P.L. (2011). MS: Epidemiology and Genetics. In: Rizvi, S., Coyle, P. (eds) Clinical Neuroimmunology. Current Clinical Neurology. Humana Press. https://doi.org/10.1007/978-1-60327-860-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-860-7_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-859-1

  • Online ISBN: 978-1-60327-860-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics