Skip to main content

Investigational Angiogenesis Inhibitors

  • Chapter
  • First Online:
Book cover Drug Management of Prostate Cancer

Abstract

Targeting angiogenesis is an evolving field of cancer research. Tumor angiogenesis is considered as an important step in the progression and metastasis of prostate cancer. Several pathways that converge toward promotion of growth, proliferation, and survival of prostate cancer cells have been targeted, including modulation of proangiogenic factors such as vascular endothelial growth factor (VEGF), tyrosine kinases, cytokines, and the extracellular matrix. Accurately measuring antitumor activity remains a challenge with the use of investigational angiogenesis inhibitors in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182–6.

    Article  PubMed  CAS  Google Scholar 

  2. Fidler IJ. Modulation of the organ microenvironment for treatment of cancer metastasis. J Natl Cancer Inst 1995;87:1588–92.

    Article  PubMed  CAS  Google Scholar 

  3. Folkman J, Watson K, Ingber D, et al. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989;339:58–61.

    Article  PubMed  CAS  Google Scholar 

  4. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 2007;6:273–86.

    Article  PubMed  CAS  Google Scholar 

  5. FDA Approval for Bevacizumab-National Cancer Institute. (Accessed May 20, 2008, at http://www.cancer.gov/cancertopics/druginfo/fda-bevacizumab)

  6. Cohen MH, Gootenberg J, Keegan P, et al. FDA drug approval summary: bevacizumab plus FOLFOX4 as second-line treatment of colorectal cancer. Oncologist 2007;12:356–61.

    Article  PubMed  CAS  Google Scholar 

  7. Reese DM, Fratesi P, Corry M, et al. A Phase II trial of humanized anti-vascular endothelial growth factor antibody for the treatment of androgen-independent prostate cancer. Prostate 2001;3:65–70.

    Article  Google Scholar 

  8. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350:2335–42.

    Article  PubMed  CAS  Google Scholar 

  9. Hurwitz HI, Fehrenbacher L, Hainsworth JD, et al. Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J Clin Oncol 2005;23:3502–8.

    Article  PubMed  CAS  Google Scholar 

  10. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006;355:2542–50.

    Article  PubMed  CAS  Google Scholar 

  11. Jain, RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005;307:58–62.

    Article  PubMed  CAS  Google Scholar 

  12. Weidner N, Carroll PR, Flax J, et al. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 1993;143:401–9.

    PubMed  CAS  Google Scholar 

  13. Srivastava A, Laidler P, Hughes LE, et al. Neovascularization in human cutaneous melanoma: a quantitative morphological and Doppler ultrasound study. Eur J Cancer Clin Oncol 1986;22:1205–9.

    Article  PubMed  CAS  Google Scholar 

  14. Srivastava A, Laidler P, Davies RP, et al. The prognostic significance of tumor vascularity in intermediate-thickness (0.76–4.0 mm thick) skin melanoma. A quantitative histologic study. Am J Pathol 1988;133:419–23.

    PubMed  CAS  Google Scholar 

  15. Weidner N, Folkman J, Pozza F, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 1992;84:1875–87.

    Article  PubMed  CAS  Google Scholar 

  16. Weidner N, Semple JP, Welch WR, Folkman, J. Tumor angiogenesis and metastasis – correlation in invasive breast carcinoma. N Engl J Med 1991;324:1–8.

    Article  PubMed  CAS  Google Scholar 

  17. Macchiarini P, Fontanini G, Hardin MJ, et al. Relation of neovascularisation to metastasis of non-small-cell lung cancer. Lancet 1992;340:145–6.

    Article  PubMed  CAS  Google Scholar 

  18. Jaeger TM, Weidner N, Chew K, et al. Tumor angiogenesis correlates with lymph node metastases in invasive bladder cancer. J Urol 1995;154:69–71.

    Article  PubMed  CAS  Google Scholar 

  19. Borre M, Nerstrom B, Overgaard J. Association between immunohistochemical expression of vascular endothelial growth factor (VEGF), VEGF-expressing neuroendocrine-differentiated tumor cells, and outcome in prostate cancer patients subjected to watchful waiting. Clin Cancer Res 2000;6:1882–90.

    PubMed  CAS  Google Scholar 

  20. Shariat SF, Anwuri VA, Lamb DJ, et al. Association of preoperative plasma levels of vascular endothelial growth factor and soluble vascular cell adhesion molecule-1 with lymph node status and biochemical progression after radical prostatectomy. J Clin Oncol 2004;22:1655–63.

    Article  PubMed  CAS  Google Scholar 

  21. Offersen BV, Borre M, Overgaard, J. (1998) Immunohistochemical determination of tumor angiogenesis measured by the maximal microvessel density in human prostate cancer. APMIS 1998;106:463–9.

    Article  PubMed  CAS  Google Scholar 

  22. Borre M, Offersen BV, Nerstrom B, Overgaard J. Microvessel density predicts survival in prostate cancer patients subjected to watchful waiting. Br J Cancer 1998;78:940–4.

    Article  PubMed  CAS  Google Scholar 

  23. Borre M, Bentzen SM, Nerstrom B, Overgaard J. Tumor cell proliferation and survival in patients with prostate cancer followed expectantly. J Urol 1998;159:1609–14.

    Article  PubMed  CAS  Google Scholar 

  24. Bostwick DG, Wheeler TM, Blute M, et al. Optimized microvessel density analysis improves prediction of cancer stage from prostate needle biopsies. Urology 1996;48:47–57.

    Article  PubMed  CAS  Google Scholar 

  25. Nicholson B, Theodorescu D. Angiogenesis and prostate cancer tumor growth. J Cell Biochem 2004;91:125–50.

    Article  PubMed  CAS  Google Scholar 

  26. Balbay MD, Pettaway CA, Kuniyasu H, et al. Highly metastatic human prostate cancer growing within the prostate of athymic mice overexpresses vascular endothelial growth factor. Clin Cancer Res 1999;5:783–9.

    PubMed  CAS  Google Scholar 

  27. Gaudric A, N’Guyen T, Moenner M, et al. Quantification of angiogenesis due to basic fibroblast growth factor in a modified rabbit corneal model. Ophthalmic Res 1992;24:181–8.

    Article  PubMed  CAS  Google Scholar 

  28. Pepper MS, Ferrara N, Orci L, Montesano R. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 1992;189:824–31.

    Article  PubMed  CAS  Google Scholar 

  29. Zhong H, Agani F, Baccala AA, et al. Increased expression of hypoxia inducible factor-1alpha in rat and human prostate cancer. Cancer Res 1998;58:5280–4.

    PubMed  CAS  Google Scholar 

  30. Zhong H, DeMarzo AM, Laughner E, et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 1999;59:5830–5.

    PubMed  CAS  Google Scholar 

  31. Zhong H, Chiles K, Feldser D, et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 2000;60:1541–5.

    PubMed  CAS  Google Scholar 

  32. Kimbro KS, Simons JW. Hypoxia-inducible factor-1 in human breast and prostate cancer. Endocr Relat Cancer 2006;13:739–49.

    Article  PubMed  CAS  Google Scholar 

  33. Liu XH, Kirschenbaum A, Yao S, et al. Upregulation of vascular endothelial growth factor by cobalt chloride-simulated hypoxia is mediated by persistent induction of cyclooxygenase-2 in a metastatic human prostate cancer cell line. Clin Exp Metastasis 1999;17:687–94.

    Article  PubMed  CAS  Google Scholar 

  34. Hoosein NM, Boyd DD, Hollas WJ, et al. Involvement of urokinase and its receptor in the invasiveness of human prostatic carcinoma cell lines. Cancer Commun 1991;3:255–64.

    PubMed  CAS  Google Scholar 

  35. Hollas W, Hoosein N, Chung LW, et al. Expression of urokinase and its receptor in invasive and non-invasive prostate cancer cell lines. Thromb Haemost 1992;68:662–6.

    PubMed  CAS  Google Scholar 

  36. Nagakawa O, Murakami K, Yamaura T, et al. Expression of membrane-type 1 matrix metalloproteinase (MT1-MMP) on prostate cancer cell lines. Cancer Lett 2000;155:173–9.

    Article  PubMed  CAS  Google Scholar 

  37. Trudel D, Fradet Y, Meyer F, et al. Membrane-type-1 matrix metalloproteinase, matrix metalloproteinase 2, and tissue inhibitor of matrix proteinase 2 in prostate cancer: identification of patients with poor prognosis by immunohistochemistry. Hum Pathol 2008;39:731–9.

    Article  PubMed  CAS  Google Scholar 

  38. Trudel D, Fradet Y, Meyer F, et al. Significance of MMP-2 expression in prostate cancer: an immunohistochemical study. Cancer Res 2003;63:8511–5.

    PubMed  CAS  Google Scholar 

  39. Inoue K, Slaton JW, Eve BY, et al. Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer. Clin Cancer Res 2000;6:2104–19.

    PubMed  CAS  Google Scholar 

  40. Ferrer FA, Miller LJ, Andrawis RI, et al. Vascular endothelial growth factor (VEGF) expression in human prostate cancer: in situ and in vitro expression of VEGF by human prostate cancer cells. J Urol 1997;157:2329–33.

    Article  PubMed  CAS  Google Scholar 

  41. Ferrer FA, Miller LJ, Andrawis RI, et al. Angiogenesis and prostate cancer: in vivo and in vitro expression of angiogenesis factors by prostate cancer cells. Urology 1998;51:161–7.

    Article  PubMed  CAS  Google Scholar 

  42. Erlich S, Tal-Or P, Liebling R, et al. Ras inhibition results in growth arrest and death of androgen-dependent and androgen-independent prostate cancer cells. Biochem Pharmacol 2006;72:427–36.

    Article  PubMed  CAS  Google Scholar 

  43. Gioeli D, Mandell JW, Petroni GR, et al. Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res 1999;59:279–84.

    PubMed  CAS  Google Scholar 

  44. Gioeli D. Signal transduction in prostate cancer progression. Clin Sci (Lond) 2005;108:293–308.

    Article  CAS  Google Scholar 

  45. Malik SN, Brattain M, Ghosh PM, et al. Immunohistochemical demonstration of phospho-Akt in high Gleason grade prostate cancer. Clin Cancer Res 2002;8:1168–71.

    PubMed  Google Scholar 

  46. Giri D, Ittmann M. Inactivation of the PTEN tumor suppressor gene is associated with increased angiogenesis in clinically localized prostate carcinoma. Hum Pathol 1999;30:419–24.

    Article  PubMed  CAS  Google Scholar 

  47. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005;23:1011–27.

    Article  PubMed  CAS  Google Scholar 

  48. Ferrara N. VEGF and the quest for tumor angiogenesis factors. Nat Rev Cancer 2002;2:795–803.

    Article  PubMed  CAS  Google Scholar 

  49. Yamazaki Y, Morita T. Molecular and functional diversity of vascular endothelial growth factors. Mol Divers 2006;10:515–27.

    Article  PubMed  CAS  Google Scholar 

  50. Epstein RJ. (2007) VEGF signaling inhibitors: More pro-apoptotic than anti-angiogenic. Cancer Metastasis Rev 2007;26:443–52.

    Article  PubMed  CAS  Google Scholar 

  51. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999;13:9–22.

    PubMed  CAS  Google Scholar 

  52. Kerbel RS. Tumor angiogenesis. N Engl J Med 2008;358:2039–49.

    Article  PubMed  CAS  Google Scholar 

  53. Presta LG, Chen H, O’Connor SJ, et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 1997;57:4593–9.

    PubMed  CAS  Google Scholar 

  54. Picus J, Halabi S, Rini B, et al. The use of bevacizumab with docetaxel and estramustine in hormone refractory prostate cancer: Initial results of CALGB 90006 [abstract]. Proc Am Soc Clin Oncol 2003;22:No. 1578.

    Google Scholar 

  55. Picus J. Docetaxel/bevacizumab (Avastin) in prostate cancer [abstract]. Cancer Invest 2004;22:60:No. 46.

    Google Scholar 

  56. Kelly WK, Halabi S, Carducci MA, et al. A randomized, double-blind, placebo-controlled phase III trial comparing docetaxel, prednisone, and placebo with docetaxel, prednisone, and bevacizumab in men with metastatic castration-resistant prostate cancer (mCRPC): Survival results of CALGB 90401. ASCO Annual Meeting Proceedings J Clin Oncol 2010;28:LBA4511.

    Google Scholar 

  57. Ning YM, Gulley JL, Arlen PM, et al. A phase II trial of bevacizumab, thalidomide, docetaxel, and prednisone in patients with metastatic castration-resistant prostate cancer. J Clin Oncol 2010;28:2070–6.

    Google Scholar 

  58. Holash J, Davis S, Papadopoulos N, et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 2002;99:11393–8.

    Article  PubMed  CAS  Google Scholar 

  59. Ferrara N, Chen H, Davis-Smyth T, et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat Med 1998;4:336–40.

    Article  PubMed  CAS  Google Scholar 

  60. Gerber HP, Vu TH, Ryan AM, et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 1999;5:623–8.

    Article  PubMed  CAS  Google Scholar 

  61. Isambert N, Freyer G, Zanetta S, et al. A phase I dose escalation and pharmacokinetic (PK) study of intravenous aflibercept (VEGF trap) plus docetaxel (D) in patients (pts) with advanced solid tumors: Preliminary results [abstract]. J Clin Oncol 2008:No. 3599.

    Google Scholar 

  62. NCT00519285. Aflibercept in combination with docetaxel in metastatic androgen independent prostate cancer (VENICE). (Accessed April 15, 2008 at http://clinicaltrials.gov/ct2/show/NCT00519285)

  63. Arora A, Scholar EM. Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther 2005;315:971–9.

    Article  PubMed  CAS  Google Scholar 

  64. Bergsland EK. Vascular endothelial growth factor as a therapeutic target in cancer. Am J Health Syst Pharm 2004;61:S4–11.

    PubMed  CAS  Google Scholar 

  65. Parikh AA, Ellis LM. The vascular endothelial growth factor family and its receptors. Hematol Oncol Clin North Am 2004;18:951–71,vii.

    Google Scholar 

  66. Wilhelm S, Carter C, Lynch M, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 2006;5:835–44.

    Article  PubMed  CAS  Google Scholar 

  67. Yu C, Bruzek LM, Meng XW, et al. The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006. Oncogene 2005;24:6861–9.

    Article  PubMed  CAS  Google Scholar 

  68. Dahut WL, Scripture C, Posadas E, et al. A phase II clinical trial of sorafenib in androgen-independent prostate cancer. Clin Cancer Res 2008;14:209–14.

    Article  PubMed  CAS  Google Scholar 

  69. Chi KN, Ellard SL, Hotte SJ, et al. A phase II study of sorafenib in patients with chemo-naive castration-resistant prostate cancer. Ann Oncol 2008;19:746–51.

    Article  PubMed  CAS  Google Scholar 

  70. Steinbild S, Mross K, Frost A, et al. A clinical phase II study with sorafenib in patients with progressive hormone-refractory prostate cancer: a study of the CESAR Central European Society for Anticancer Drug Research-EWIV. Br J Cancer 2007;97:1480–5.

    Article  PubMed  CAS  Google Scholar 

  71. NCT00414388. Sorafenib to overcome resistance to systemic chemotherapy in androgen-independent prostate cancer. (Accessed September 22, 2007 at http://clinicaltrials.gov/show/NCT00414388)

  72. Chow LQ, Eckhardt SG. Sunitinib: from rational design to clinical efficacy. J Clin Oncol 2007;25:884–96.

    Article  PubMed  CAS  Google Scholar 

  73. Guerin O, Formento P, Lo Nigro C, et al. Supra-additive antitumor effect of sunitinib malate (SU11248, Sutent) combined with docetaxel. A new therapeutic perspective in hormone refractory prostate cancer. J Cancer Res Clin Oncol 2008;134:51–7.

    Article  PubMed  CAS  Google Scholar 

  74. NCT00137436. Study of SU11248 in combination with docetaxel and prednisone in patients with prostate cancer. (Accessed September 22, 2007 at http://clinicaltrials.gov/show/NCT00137436)

  75. Drevs J, Siegert P, Medinger M, et al. Phase I clinical study of AZD2171, an oral vascular endothelial growth factor signaling inhibitor, in patients with advanced solid tumors. J Clin Oncol 2007;25:3045–54.

    Article  PubMed  CAS  Google Scholar 

  76. Ryan CJ, Stadler WM, Roth B, et al. Phase I dose escalation and pharmacokinetic study of AZD2171, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinase, in patients with hormone refractory prostate cancer (HRPC). Invest New Drugs 2007;25:445–51.

    Article  PubMed  CAS  Google Scholar 

  77. Karakunnel JJ, Gulley J, Arlen P, et al. Phase II trial of cediranib (AZD2171) in docetaxel-resistant, castrate-resistant prostate cancer (CRPC) [abstract]. J Clin Oncol 2008;26:(May 20 suppl), No. 189.

    Google Scholar 

  78. Mathew P, Pagliaro LC, Tannir NM, et al. Single-agent platelet-derived growth factor (PDGF) receptor inhibitor therapy for castration-resistant prostate cancer with bone metastases [abstract]. J Clin Oncol 2008:No.5164.

    Google Scholar 

  79. Janvier R, Sourla A, Koutsilieris M, Doillon C. Stromal fibroblasts are required for PC-3 human prostate cancer cells to produce capillary-like formation of endothelial cells in a three-dimensional co-culture system. Anticancer Res 1997;17:1551–7.

    PubMed  CAS  Google Scholar 

  80. Hepburn PJ, Griffiths K, Harper ME. Angiogenic factors expressed by human prostatic cell lines: effect on endothelial cell growth in vitro. Prostate 1997;33:123–32.

    Article  PubMed  CAS  Google Scholar 

  81. Dahut WL, Gulley JL, Arlen PM, et al. Randomized phase II trial of docetaxel plus thalidomide in androgen-independent prostate cancer. J Clin Oncol 2004;22:2532–9.

    Article  PubMed  CAS  Google Scholar 

  82. Figg WD, Arlen P, Gulley J, et al. A randomized phase II trial of docetaxel (taxotere) plus thalidomide in androgen-independent prostate cancer. Semin Oncol 2001;28:62–6.

    Article  PubMed  CAS  Google Scholar 

  83. Franks ME, Macpherson GR, Figg WD. Thalidomide. Lancet 2004;363:1802–11.

    Article  PubMed  CAS  Google Scholar 

  84. Tohnya TM, Ng SS, Dahut WL, et al. A phase I study of oral CC-5013 (lenalidomide, Revlimid), a thalidomide derivative, in patients with refractory metastatic cancer. Clin Prostate Cancer 2004;2:241–3.

    Article  PubMed  CAS  Google Scholar 

  85. Moss R, Mohile S, Shelton G, et al. A phase I open-label study using lenalidomide and docetaxel in androgen-independent prostate cancer (AIPC) [abstract]. In ASCO Prostate Cancer Symposium: Orlando, FL, February 22–24, 2007, No. 89.

    Google Scholar 

  86. Sanborn SL, Cooney M, Gibbons J, et al. Phase I trial of daily lenalidomide and docetaxel given every three weeks in patients with advanced solid tumors. In ASCO Genitourinary Symposium: San Francisco, CA February 25–28, 2008, Abstract #183.

    Google Scholar 

  87. Rustin GJ, Bradley C, Galbraith S, et al. 5,6- Dimethylxanthenone-4-acetic acid (DMXAA), a novel antivascular agent: phase I clinical and pharmacokinetic study. Br J Cancer 2003;88:1160–7.

    Article  PubMed  CAS  Google Scholar 

  88. Pili R, Rosenthal M, and AS1404-203 study group investigators. Addition of DMXAA (ASA404) to docetaxel in patients with hormone-refractory metastatic prostate cancer (HRMPC): update from a randomized, phase II study. J Clin Oncol 2008;26(May 20 suppl), No. 5007.

    Google Scholar 

  89. Stupp R, Ruegg C. Integrin inhibitors reaching the clinic. J Clin Oncol 2007;25:1637–8.

    Article  PubMed  CAS  Google Scholar 

  90. Bradley DA, Daignault S, Ryan C, et al. Cilengitide in asymptomatic metastatic androgen independent prostate cancer (AIPC) patients (pts): A randomized phase II trial [abstract]. J Clin Oncol 2008;26(May 20 suppl), No. 5144.

    Google Scholar 

  91. Madigan MC, Kingsley EA, Cozzi PJ, et al. The role of extracellular matrix metalloproteinase inducer protein in prostate cancer progression. Cancer Immunol Immunother 2008;57:1367–79.

    Article  PubMed  CAS  Google Scholar 

  92. Kim YM, Jang JW, Lee OH, et al. Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase. Cancer Res 2000;60:5410–3.

    PubMed  CAS  Google Scholar 

  93. Logothetis CJ, Wu KK, Finn LD, et al. Phase I trial of the angiogenesis inhibitor TNP-470 for progressive androgen-independent prostate cancer. Clin Cancer Res 2001;7:1198–203.

    PubMed  CAS  Google Scholar 

  94. Dahut WL, Lakhani NJ, Gulley JL, et al. Phase I clinical trial of oral 2-methoxyestradiol, an antiangiogenic and apoptotic agent, in patients with solid tumors. Cancer Biol Ther 2006;5:22–7.

    Article  PubMed  CAS  Google Scholar 

  95. Hida K, Hida Y, Amin DN, et al. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res 2004;64:8249–55.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanny B. Aragon-Ching .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Aragon-Ching, J.B., Dahut, W. (2010). Investigational Angiogenesis Inhibitors. In: Figg, W., Chau, C., Small, E. (eds) Drug Management of Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-60327-829-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-829-4_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60327-831-7

  • Online ISBN: 978-1-60327-829-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics