Skip to main content

CRP, Uric Acid, and Other Novel Factors in the Pathogenesis of Hypertension

  • Chapter
  • First Online:
  • 835 Accesses

Part of the book series: Clinical Hypertension and Vascular Diseases ((CHVD))

Abstract

Hypertension is one of the most common diseases in the world. In Western countries, it affects between 20 and 75% of the adult population, depending on age, and is not only the most important risk factor for cardiovascular and renal disease but is also the most amenable to modification with current medical therapy (1). In adult populations, the vast majority of hypertension is essential hypertension, so that standard recommended practice is not to do extensive evaluation for the secondary etiologies of hypertension at the time of diagnosis (1). While this practice saves money, it compromises the ability of epidemiologists to identify mechanistic risk factors, as all hypertensive populations considered as essential hypertension are contaminated with patients with secondary hypertension of various etiologies, including monogenic conditions, renal parenchymal disease, hyperaldosteronism, renovascular disease, and others.

This is a preview of subscription content, log in via an institution.

References

  1. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289:2560–2572.

    Article  PubMed  CAS  Google Scholar 

  2. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114:555–576.

    Google Scholar 

  3. Johnson RJ, Feig DI, Nakagawa T, Sanchez-Lozada LG, Rodriguez-Iturbe B. Pathogenesis of essential hypertension: historical paradigms and modern insights. J Hypertens. 2008;26:381–391.

    Article  PubMed  CAS  Google Scholar 

  4. Johnson RJ, Herrera-Acosta J, Schreiner GF, Rodriguez-Iturbe B. Subtle acquired renal injury as a mechanism of salt-sensitive hypertension. N Engl J Med. 2002;346:913–923.

    Article  PubMed  CAS  Google Scholar 

  5. Karet FE, Lifton RP. Mutations contributing to human blood pressure variation. Recent Prog Horm Res. 1997;52:263–276.

    PubMed  CAS  Google Scholar 

  6. Lifton RP. Molecular genetics of human blood pressure variation. Science. 1996;272:676–680.

    Article  PubMed  CAS  Google Scholar 

  7. Caulfield M, Munroe P, Pembroke J, Samani N, Dominiczak A, Brown M, Benjamin N, Webster J, Ratcliffe P, O’Shea S, Papp J, Taylor E, Dobson R, Knight J, Newhouse S, Hooper J, Lee W, Brain N, Clayton D, Lathrop GM, Farrall M, Connell J. Genome-wide mapping of human loci for essential hypertension. Lancet. 2003;361:2118–2123.

    Article  PubMed  CAS  Google Scholar 

  8. Province MA, Kardia SL, Ranade K, Rao DC, Thiel BA, Cooper RS, Risch N, Turner ST, Cox DR, Hunt SC, Weder AB, Boerwinkle E. A meta-analysis of genome-wide linkage scans for hypertension: the National Heart, Lung and Blood Institute Family Blood Pressure Program. Am J Hypertens. 2003;16:144–147.

    Article  PubMed  Google Scholar 

  9. Carmelli D, Robinette D, Fabsitz R. Concordance, discordance and prevalence of hypertension in World War II male veteran twins. J Hypertens. 1994;12:323–328.

    Article  PubMed  CAS  Google Scholar 

  10. Johnson RJ, Titte SR, Cade JR, Rideout BA, Oliver WJ. Uric acid, primitive cultures and evolution. Semin Nephrol. 2005;25:3–8.

    Article  PubMed  CAS  Google Scholar 

  11. Yusuf S, Reddy S, Ounpuu S, Anand S. Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation. 2001;104:2746–2753.

    Article  PubMed  CAS  Google Scholar 

  12. Robinson SC, Brucer M. Range of normal blood pressure. A statistical and clinical study of 11,383 persons. Arch Intern Med. 1939;64:409–444.

    Google Scholar 

  13. Fields LE, Burt VL, Cutler JA, Hughes J, Roccella EJ, Sorlie P. The burden of adult hypertension in the United States 1999 to 2000: a rising tide. Hypertension. 2004;44:398–404.

    Article  PubMed  CAS  Google Scholar 

  14. Beretta-Piccoli C, Davies DL, Boddy K, Brown JJ, Cumming AM, East BW, Fraser R, Lever AF, Padfield PL, Semple PF, Robertson JI, Weidmann P, Williams ED. Relation of arterial pressure with body sodium, body potassium and plasma potassium in essential hypertension. Clin Sci (Lond). 1982;63:257–270.

    CAS  Google Scholar 

  15. Beretta-Piccoli C, Weidmann P. Circulatory volume in essential hypertension. Relationships with age, blood pressure, exchangeable sodium, renin, aldosterone and catecholamines. Miner Electrolyte Metab. 1984;10:292–300.

    PubMed  CAS  Google Scholar 

  16. Lebel M, Grose JH, Blais R. Abnormal relation of extracellular fluid volume and exchangeable sodium with systemic arterial pressure in early borderline essential hypertension. Am J Cardiol. 1984;54:1267–1271.

    Article  PubMed  CAS  Google Scholar 

  17. Weinberger MH, Fineberg NS. Sodium and volume sensitivity of blood pressure. Age and pressure change over time. Hypertension. 1991;18:67–71.

    PubMed  CAS  Google Scholar 

  18. Brenner BM, Garcia DL, Anderson S. Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens. 1988;1:335–347.

    PubMed  CAS  Google Scholar 

  19. Murakami K, Kojima S, Kimura G, Sanai T, Yoshida K, Imanishi M, Abe H, Kawamura M, Kawano Y, Ashida T, et al. The association between salt sensitivity of blood pressure and family history of hypertension. Clin Exp Pharmacol Physiol Suppl. 1992;20:61–63.

    PubMed  CAS  Google Scholar 

  20. Barker DJ. The fetal origins of adult hypertension. J Hypertens Suppl. 1992;10:S39–S44.

    Article  PubMed  CAS  Google Scholar 

  21. Hughson M, Farris AB, Douglas-Denton R, Hoy WE, Bertram JF. Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int. 2003;63:2113–2122.

    Article  PubMed  Google Scholar 

  22. Woods LL, Weeks DA, Rasch R. Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int. 2004;65:1339–1348.

    Article  PubMed  Google Scholar 

  23. Keller J, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N Engl J Med. 2003;348:101–118.

    Article  PubMed  Google Scholar 

  24. Zimanyi MA, Hoy WE, Douglas-Denton RN, Hughson MD, Holden LM, Bertram JF. Nephron number and individual glomerular volumes in male Caucasian and African American subjects. Nephrol Dial Transplant. 2009;24(8):2428–2433. Epub 2009 Mar 18.

    Article  PubMed  Google Scholar 

  25. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation. 2003;107:363–369.

    Article  PubMed  Google Scholar 

  26. Pearson TA, Blair SN, Daniels SR, Eckel RH, Fair JM, Fortmann SP, Franklin BA, Goldstein LB, Greenland P, Grundy SM, Hong Y, Miller NH, Lauer RM, Ockene IS, Sacco RL, Sallis JF Jr, Smith SC Jr, Stone NJ, Taubert KA. AHA guidelines for primary prevention of cardiovascular disease and stroke: 2002 update: consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases. American Heart Association Science Advisory and Coordinating Committee. Circulation. 2002;106:388–391.

    Article  PubMed  Google Scholar 

  27. Schwedler SB, Amann K, Wernicke K, Krebs A, Nauck M, Wanner C, Potempa LA, Galle J. Native C-reactive protein increases whereas modified C-reactive protein reduces atherosclerosis in apolipoprotein E-knockout mice. Circulation. 2005;112:1016–1023.

    Article  PubMed  CAS  Google Scholar 

  28. Lagrand WK, Niessen HW, Wolbink GJ, Jaspars LH, Visser CA, Verheugt FW, Meijer CJ, Hack CE. C-reactive protein colocalizes with complement in human hearts during acute myocardial infarction. Circulation. 1997;95:97–103.

    PubMed  CAS  Google Scholar 

  29. Griselli M, Herbert J, Hutchinson WL, Taylor KM, Sohail M, Krausz T, Pepys MB. C-reactive protein and complement are important mediators of tissue damage in acute myocardial infarction. J Exp Med. 1999;190:1733–1740.

    Article  PubMed  CAS  Google Scholar 

  30. Pepys MB, Hirschfield GM, Tennent GA, Gallimore JR, Kahan MC, Bellotti V, Hawkins PN, Myers RM, Smith MD, Polara A, Cobb AJ, Ley SV, Aquilina JA, Robinson CV, Sharif I, Gray GA, Sabin CA, Jenvey MC, Kolstoe SE, Thompson D, Wood SP. Targeting C-reactive protein for the treatment of cardiovascular disease. Nature. 2006;440:1217–1221.

    Article  PubMed  CAS  Google Scholar 

  31. Kitsis RN, Jialal I. Limiting myocardial damage during acute myocardial infarction by inhibiting C-reactive protein. N Engl J Med. 2006;355:513–515.

    Article  PubMed  CAS  Google Scholar 

  32. Bisoendial RJ, Kastelein JJ, Levels JH, Zwaginga JJ, van den Bogaard B, Reitsma PH, Meijers JC, Hartman D, Levi M, Stroes ES. Activation of inflammation and coagulation after infusion of C-reactive protein in humans. Circ Res. 2005;96:714–716.

    Article  PubMed  CAS  Google Scholar 

  33. Zacho J, Tybjaerg-Hansen A, Jensen JS, Grande P, Sillesen H, Nordestgaard BG. Genetically elevated C-reactive protein and ischemic vascular disease. N Engl J Med. 2008;359:1897–1908.

    Article  PubMed  CAS  Google Scholar 

  34. Timpson NJ, Lawlor DA, Harbord RM, Gaunt TR, Day IN, Palmer LJ, Hattersley AT, Ebrahim S, Lowe GD, Rumley A, Davey Smith G. C-reactive protein and its role in metabolic syndrome: Mendelian randomisation study. Lancet. 2005;366:1954–1959.

    Article  PubMed  CAS  Google Scholar 

  35. Lange LA, Carlson CS, Hindorff LA, Lange EM, Walston J, Durda JP, Cushman M, Bis JC, Zeng D, Lin D, Kuller LH, Nickerson DA, Psaty BM, Tracy RP, Reiner AP. Association of polymorphisms in the CRP gene with circulating C-reactive protein levels and cardiovascular events. JAMA. 2006;296:2703–2711.

    Article  PubMed  CAS  Google Scholar 

  36. Pai JK, Mukamal KJ, Rexrode KM, Rimm EB. C-reactive protein (CRP) gene polymorphisms, CRP levels, and risk of incident coronary heart disease in two nested case-control studies. PLoS One. 2008;3:e1395.

    Article  PubMed  CAS  Google Scholar 

  37. Lawlor DA, Harbord RM, Timpson NJ, Lowe GD, Rumley A, Gaunt TR, Baker I, Yarnell JW, Kivimaki M, Kumari M, Norman PE, Jamrozik K, Hankey GJ, Almeida OP, Flicker L, Warrington N, Marmot MG, Ben-Shlomo Y, Palmer LJ, Day IN, Ebrahim S, Smith GD. The association of C-reactive protein and CRP genotype with coronary heart disease: findings from five studies with 4,610 cases amongst 18,637 participants. PLoS One. 2008;3:e3011.

    Article  PubMed  CAS  Google Scholar 

  38. Soriano-Guillen L, Hernandez-Garcia B, Pita J, Dominguez-Garrido N, Del Rio-Camacho G, Rovira A. High-sensitivity C-reactive protein is a good marker of cardiovascular risk in obese children and adolescents. Eur J Endocrinol. 2008;159:R1–R4.

    Article  PubMed  CAS  Google Scholar 

  39. Guran O, Akalin F, Ayabakan C, Dereli FY, Haklar G. High-sensitivity C-reactive protein in children at risk for coronary artery disease. Acta Paediatr. 2007;96:1214–1219.

    Article  PubMed  Google Scholar 

  40. Oliveira AC, Oliveira AM, Adan LF, Oliveira NF, Silva AM, Ladeia AM. C-reactive protein and metabolic syndrome in youth: a strong relationship? Obesity (Silver Spring). 2008;16:1094–1098.

    Article  CAS  Google Scholar 

  41. Assadi F. C-reactive protein and incident left ventricular hypertrophy in essential hypertension. Pediatr Cardiol. 2007;28:280–285.

    Article  PubMed  Google Scholar 

  42. Diaz JJ, Arguelles J, Malaga I, Perillan C, Dieguez A, Vijande M, Malaga S. C-reactive protein is elevated in the offspring of parents with essential hypertension. Arch Dis Child. 2007;92:304–308.

    Article  PubMed  Google Scholar 

  43. Rader DJ. Inflammatory markers of coronary risk. N Engl J Med. 2000;343:1179–1182.

    Article  PubMed  CAS  Google Scholar 

  44. Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J Clin Invest. 2003;112:1785–1788.

    PubMed  CAS  Google Scholar 

  45. Verma S, Wang CH, Li SH, Dumont AS, Fedak PW, Badiwala MV, Dhillon B, Weisel RD, Li RK, Mickle DA, Stewart DJ. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation. 2002;106:913–919.

    Article  PubMed  CAS  Google Scholar 

  46. Venugopal SK, Devaraj S, Yuhanna I, Shaul P, Jialal I. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation. 2002;106:1439–1441.

    Article  PubMed  CAS  Google Scholar 

  47. Verma S, Li SH, Badiwala MV, Weisel RD, Fedak PW, Li RK, Dhillon B, Mickle DA. Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein. Circulation. 2002;105:1890–1896.

    Article  PubMed  CAS  Google Scholar 

  48. Devaraj S, Xu DY, Jialal I. C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and atherothrombosis. Circulation. 2003;107:398–404.

    Article  PubMed  CAS  Google Scholar 

  49. Wang CH, Li SH, Weisel RD, Fedak PW, Dumont AS, Szmitko P, Li RK, Mickle DA, Verma S. C-reactive protein upregulates angiotensin type 1 receptors in vascular smooth muscle. Circulation. 2003;107:1783–1790.

    Article  PubMed  CAS  Google Scholar 

  50. Sesso HD, Buring JE, Rifai N, Blake GJ, Gaziano JM, Ridker PM. C-reactive protein and the risk of developing hypertension. JAMA. 2003;290:2945–2951.

    Article  PubMed  CAS  Google Scholar 

  51. Ford ES. C-reactive protein concentration and cardiovascular disease risk factors in children: findings from the National Health and Nutrition Examination Survey 1999–2000. Circulation. 2003;108:1053–1058.

    Article  PubMed  CAS  Google Scholar 

  52. Lande MB, Pearson TA, Vermilion RP, Auinger P, Fernandez ID. Elevated blood pressure, race/ethnicity, and C-reactive protein levels in children and adolescents. Pediatrics. 2008;122:1252–1257.

    Article  PubMed  Google Scholar 

  53. Lambert M, Delvin EE, Paradis G, O’Loughlin J, Hanley JA, Levy E. C-reactive protein and features of the metabolic syndrome in a population-based sample of children and adolescents. Clin Chem. 2004;50:1762–1768.

    Article  PubMed  CAS  Google Scholar 

  54. Lopez-Jaramillo P, Herrera E, Garcia RG, Camacho PA, Castillo VR. Inter-relationships between body mass index, C-reactive protein and blood pressure in a Hispanic pediatric population. Am J Hypertens. 2008;21:527–532.

    Article  PubMed  CAS  Google Scholar 

  55. Jialal I, Stein D, Balis D, Grundy SM, Adams-Huet B, Devaraj S. Effect of hydroxymethyl glutaryl coenzyme a reductase inhibitor therapy on high sensitive C-reactive protein levels. Circulation. 2001;103:1933–1935.

    PubMed  CAS  Google Scholar 

  56. Malik J, Melenovsky V, Wichterle D, Haas T, Simek J, Ceska R, Hradec J. Both fenofibrate and atorvastatin improve vascular reactivity in combined hyperlipidaemia (fenofibrate versus atorvastatin trial—FAT). Cardiovasc Res. 2001;52:290–298.

    Article  PubMed  CAS  Google Scholar 

  57. Grundy SM. Statin therapy in older persons: pertinent issues. Arch Intern Med. 2002;162:1329–1331.

    Article  PubMed  Google Scholar 

  58. Haffner SM, Greenberg AS, Weston WM, Chen H, Williams K, Freed MI. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation. 2002;106:679–684.

    Article  PubMed  CAS  Google Scholar 

  59. Takeda T, Hoshida S, Nishino M, Tanouchi J, Otsu K, Hori M. Relationship between effects of statins, aspirin and angiotensin II modulators on high-sensitive C-reactive protein levels. Atherosclerosis. 2003;169:155–158.

    Article  PubMed  CAS  Google Scholar 

  60. Karpinski L, Plaksej R, Derzhko R, Orda A, Witkowska M. Serum levels of interleukin-6, interleukin-10 and C-reactive protein in patients with myocardial infarction treated with primary angioplasty during a 6-month follow-up. Pol Arch Med Wewn. 2009;119:115–121.

    PubMed  CAS  Google Scholar 

  61. Eguchi T, Maruyama T, Ohno Y, Morii T, Hirao K, Hirose H, Kawabe H, Saito I, Hayashi M, Saruta T. Possible association of tumor necrosis factor receptor 2 gene polymorphism with severe hypertension using the extreme discordant phenotype design. Hypertens Res. 2009;32:775–779.

    Article  PubMed  CAS  Google Scholar 

  62. Rollins BJ, Yoshimura T, Leonard EJ, Pober JS. Cytokine-activated human endothelial cells synthesize and secrete a monocyte chemoattractant, MCP-1/JE. Am J Pathol. 1990;136:1229–1233.

    PubMed  CAS  Google Scholar 

  63. Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature. 1998;394:894–897.

    Article  PubMed  CAS  Google Scholar 

  64. Kanellis J, Nakagawa T, Herrera-Acosta J, Schreiner GF, Rodriguez-Iturbe B, Johnson RJ. A single pathway for the development of essential hypertension. Cardiol Rev. 2003;11:180–196.

    Article  PubMed  Google Scholar 

  65. Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M, Parhami F, Gerrity R, Schwartz CJ, Fogelman AM. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA. 1990;87:5134–5138.

    Article  PubMed  CAS  Google Scholar 

  66. Kanellis J, Watanabe S, Li JH, Kang DH, Li P, Nakagawa T, Wamsley A, Sheikh-Hamad D, Lan HY, Feng L, Johnson RJ. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension. 2003;41:1287–1293.

    Article  PubMed  CAS  Google Scholar 

  67. Martinovic I, Abegunewardene N, Seul M, Vosseler M, Horstick G, Buerke M, Darius H, Lindemann S. Elevated monocyte chemoattractant protein-1 serum levels in patients at risk for coronary artery disease. Circ J. 2005;69:1484–1489.

    Article  PubMed  CAS  Google Scholar 

  68. Bucova M, Lietava J, Penz P, Mrazek F, Petrkova J, Bernadic M, Petrek M. Association of MCP-1 -2518 A/G single nucleotide polymorphism with the serum level of CRP in Slovak patients with ischemic heart disease, angina pectoris, and hypertension. Mediators Inflamm. 2009;2009:390951.

    Article  PubMed  CAS  Google Scholar 

  69. Mahomed FA. On chronic Bright’s disease, and its essential symptoms. Lancet. 1879;1:399–401.

    Article  Google Scholar 

  70. Haig A. On uric acid and arterial tension. Br Med J. 1889;1:288–291.

    Article  PubMed  CAS  Google Scholar 

  71. Huchard H. Allgemeine Betrachtungen ber die Arteriosklerose. Klin Med Berlin. 1909;5:1318–1321.

    Google Scholar 

  72. Gertler MM, Garn SM, Levine SA. Serum uric acid in relation to age and physique in health and in coronary heart disease. Ann Int Med. 1951;34:1421–1431.

    PubMed  CAS  Google Scholar 

  73. Breckenridge A. Hypertension and hyperuricaemia. Lancet. 1966;1:15–18.

    Article  PubMed  CAS  Google Scholar 

  74. Brand FN, McGee DL, Kannel WB, Stokes J 3rd, Castelli WP. Hyperuricemia as a risk factor of coronary heart disease: the Framingham Study. Am J Epidemiol. 1985;121:11–18.

    PubMed  CAS  Google Scholar 

  75. Nakanishi N, Okamato M, Yoshida H, Matsuo Y, Suzuki K, Tatara K. Serum uric acid and the risk for development of hypertension and impaired fasting glucose or type II diabetes in Japanese male office workers. Eur J Epidemiol. 2003;18:523–530.

    Article  PubMed  CAS  Google Scholar 

  76. Taniguchi Y, Hayashi T, Tsumura K, Endo G, Fujii S, Okada K. Serum uric acid and the risk for hypertension and type 2 diabetes in Japanese men. The Osaka Health Survey. J Hypertens. 2001;19:1209–1215.

    Article  PubMed  CAS  Google Scholar 

  77. Masuo K, Kawaguchi H, Mikami H, Ogihara T, Tuck ML. Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation. Hypertension. 2003;42:474–480.

    Article  PubMed  CAS  Google Scholar 

  78. Alper AB Jr, Chen W, Yau L, Srinivasan SR, Berenson GS, Hamm LL. Childhood uric acid predicts adult blood pressure: the Bogalusa Heart Study. Hypertension. 2005;45:34–38.

    Google Scholar 

  79. Sundstrom J, Sullivan L, D’Agostino RB, Levy D, Kannel WB, Vasan RS. Relations of serum uric acid to longitudinal blood pressure tracking and hypertension incidence. Hypertension. 2005;45:28–33.

    PubMed  Google Scholar 

  80. Culleton BF, Larson MG, Kannel WB, Levy D. Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Ann Intern Med. 1999;131:7–13.

    PubMed  CAS  Google Scholar 

  81. Nefzger MD, Acheson RM, Heyman A. Mortality from stroke among U.S. veterans in Georgia and 5 western states. I. Study plan and death rates. J Chronic Dis. 1973;26:393–404.

    Article  PubMed  CAS  Google Scholar 

  82. Saito I, Folsom AR, Brancati FL, Duncan BB, Chambless LE, McGovern PG. Nontraditional risk factors for coronary heart disease incidence among persons with diabetes: the Atherosclerosis Risk in Communities (ARIC) study. Ann Intern Med. 2000;133:81–91.

    PubMed  CAS  Google Scholar 

  83. Staessen J. The determinants and prognostic significance of serum uric acid in elderly patients of the European Working Party on High Blood Pressure in the Elderly trial. Am J Med. 1991;90:50S–54S.

    Article  PubMed  CAS  Google Scholar 

  84. Mazzali M, Hughes J, Kim YG, Jefferson JA, Kang DH, Gordon KL, Lan HY, Kivlighn S, Johnson RJ. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension. 2001;38:1101–1106.

    Article  PubMed  CAS  Google Scholar 

  85. Watanabe S, Kang DH, Feng L, Nakagawa T, Kanellis J, Lan HY, Johnson RJ. Uric acid hominoid evolution and the pathogenesis of salt-sensitivity. Hypertension. 2002;40:355–360.

    Article  PubMed  CAS  Google Scholar 

  86. Kang DH, Johnson RJ. Uric acid induces C-reactive protein expression via upregulation of angiotensin type I receptor in vascular endothelial and smooth muscle cells. J Am Soc Nephrol. 2003;F-PO336 abstract.

    Google Scholar 

  87. Mazzali M, Kanellis J, Han L, Feng L, Xia YY, Chen Q, Kang DH, Gordon KL, Watanabe S, Nakagawa T, Lan HY, Johnson RJ. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Renal Physiol. 2002;282:F991–F997.

    PubMed  CAS  Google Scholar 

  88. Rovda Iu I, Kazakova LM, Plaksina EA. [Parameters of uric acid metabolism in healthy children and in patients with arterial hypertension]. Pediatriia. 1990;8:19–22 (in Russian).

    PubMed  Google Scholar 

  89. Torok E, Gyarfas I, Csukas M. Factors associated with stable high blood pressure in adolescents. J Hypertens Suppl. 1985;3(Suppl 3):S389–S390.

    PubMed  CAS  Google Scholar 

  90. Gruskin AB. The adolescent with essential hypertension. Am J Kidney Dis. 1985;6:86–90.

    PubMed  CAS  Google Scholar 

  91. Feig DI, Johnson RJ. Hyperuricemia in childhood primary hypertension. Hypertension. 2003;42:247–252.

    Article  PubMed  CAS  Google Scholar 

  92. Feig DI, Nakagawa T, Karumanchi SA, Oliver WJ, Kang DH, Finch J, Johnson RJ. Hypothesis: uric acid, nephron number and the pathogenesis of essential hypertension. Kidney Int. 2004;66:281–287.

    Article  PubMed  CAS  Google Scholar 

  93. Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA. 2008;300:924–932.

    Article  PubMed  CAS  Google Scholar 

  94. Reyes AJ. The increase in serum uric acid concentration caused by diuretics might be beneficial in heart failure. Eur J Heart Fail. 2005;7:461–467.

    Article  PubMed  CAS  Google Scholar 

  95. Graessler J, Graessler A, Unger S, Kopprasch S, Tausche AK, Kuhlisch E, Schroeder HE. Association of the human urate transporter 1 with reduced renal uric acid excretion and hyperuricemia in a German Caucasian population. Arthritis Rheum. 2006;54:292–300.

    Article  PubMed  CAS  Google Scholar 

  96. Cannella AC, Mikuls TR. Understanding treatments for gout. Am J Manag Care. 2005;11:S451–S458.

    PubMed  Google Scholar 

  97. Lee SJ, Terkeltaub RA, Kavenaugh A. Recent developments in diet and gout. Curr Opin Rheumatol. 2006;18:193–198.

    Article  PubMed  CAS  Google Scholar 

  98. Schlesinger N. Dietary factors and hyperuricaemia. Curr Pharm Des. 2005;11:4133–4138.

    Article  PubMed  CAS  Google Scholar 

  99. Hwang LC, Tsai CH, Chen TH. Overweight and obesity-related metabolic disorders in hospital employees. J Formos Med Assoc. 2006;105:56–63.

    Article  PubMed  Google Scholar 

  100. Masseoud D, Rott K, Liu-Bryan R, Agudelo C. Overview of hyperuricaemia and gout. Curr Pharm Des. 2005;11:4117–4124.

    Article  PubMed  CAS  Google Scholar 

  101. Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, Ouyang X, Feig DI, Block ER, Herrera-Acosta J, Patel JM, Johnson RJ. A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 2006;290:F625–F631.

    Article  PubMed  CAS  Google Scholar 

  102. Fox IH, Kelley WN. Studies on the mechanism of fructose-induced hyperuricemia in man. Metabolism. 1972;21:713–721.

    Article  PubMed  CAS  Google Scholar 

  103. Hwang IS, Ho H, Hoffman BB, Reaven GM. Fructose-induced insulin resistance and hypertension in rats. Hypertension. 1987;10:512–516.

    PubMed  CAS  Google Scholar 

  104. Brown CM, Dulloo AG, Yepuri G, Montani JP. Fructose ingestion acutely elevates blood pressure in healthy young humans. Am J Physiol Regul Integr Comp Physiol. 2008;294:R730–R737.

    Article  PubMed  CAS  Google Scholar 

  105. Brown CM, Dulloo AG, Montani JP. Sugary drinks in the pathogenesis of obesity and cardiovascular diseases. Int J Obes (Lond). 2008;32(Suppl 6):S28–S34.

    Article  CAS  Google Scholar 

  106. Nguyen S, Choi H, Lustig R, Hsu C. Sugar-sweetened beverages, serum uric acid, and blood pressure in adolescents. J Pediatr. 2009;154:807–813.

    Article  PubMed  CAS  Google Scholar 

  107. Kahn HA, Medalie JH, Neufeld HN, et al. The incidence of hypertension and associated factors: the Israel ischemic heart study. Am Heart J. 1972;84:171–182.

    Article  PubMed  CAS  Google Scholar 

  108. Fessel WJ, Siegelaub AB, Johnson ES. Correlates and consequences of asymptomatic hyperuricemia. Arch Intern Med. 1993;132:44–54.

    Article  Google Scholar 

  109. Rovda Iu I. [Uric acid and arterial hypertension]. Pediatriia. 1992;10–12:74–78 (in Russian).

    PubMed  Google Scholar 

  110. Selby JV, Friedman GD, Quesenberry CP Jr. Precursors of essential hypertension: pulmonary function, heart rate, uric acid, serum cholesterol, and other serum chemistries. Am J Epidemiol. 1990;131:1017–1027.

    PubMed  CAS  Google Scholar 

  111. Hunt SC, Stephenson SH, Hopkins PN, Williams RR. Predictors of an increased risk of future hypertension in Utah. A screening analysis. Hypertension. 1991;17:969–976.

    PubMed  CAS  Google Scholar 

  112. Goldstein HS, Manowitz P. Relation between serum uric acid and blood pressure in adolescents. Ann Hum Biol. 1993;20:423–431.

    Article  PubMed  CAS  Google Scholar 

  113. Jossa F, Farinaro E, Panico S, Krogh V, Celentano E, Galasso R, Mancini M, Trevisan M. Serum uric acid and hypertension: the Olivetti heart study. J Hum Hypertens. 1994;8:677–681.

    PubMed  CAS  Google Scholar 

  114. Dyer AR, Liu K, Walsh M, Kiefe C, Jacobs DR Jr, Bild DE. Ten-year incidence of elevated blood pressure and its predictors: the CARDIA study. Coronary Artery Risk Development in (Young) Adults. J Hum Hypertens. 1999;13:13–21.

    Article  PubMed  CAS  Google Scholar 

  115. Imazu M, Yamamoto H, Toyofuku M, Sumii K, Okubo M, Egusa G, Yamakido M, Kohno N. Hyperinsulinemia for the development of hypertension: data from the Hawaii-Los Angeles-Hiroshima Study. Hypertens Res. 2001;24:531–536.

    Article  PubMed  CAS  Google Scholar 

  116. Nagahama K, Inoue T, Iseki K, Touma T, Kinjo K, Ohya Y, Takishita S. Hyperuricemia as a predictor of hypertension in a screened cohort in Okinawa, Japan. Hypertens Res. 2004;27:835–841.

    Article  PubMed  Google Scholar 

  117. Perlstein TS, Gumieniak O, Williams GH, Sparrow D, Vokonas PS, Gaziano M, Weiss ST, Litonjua AA. Uric acid and the development of hypertension: the normative aging study. Hypertension. 2006;48:1031–1036.

    Article  PubMed  CAS  Google Scholar 

  118. Krishnan E, Kwoh CK, Schumacher HR, Kuller L. Hyperuricemia and incidence of hypertension among men without metabolic syndrome. Hypertension. 2007;49:298–303.

    Article  PubMed  CAS  Google Scholar 

  119. Mellen PB, Bleyer TJ, Erlinger TP, Evans GW, Nieto FJ, Wagenknecht LE, Wofford MR, Herrington DM. Serum uric acid predicts incident hypertension in a biethnic cohort: the atherosclerosis risk in communities study. Hypertension. 2006;48:1037–1042.

    Article  PubMed  CAS  Google Scholar 

  120. Shankar A, Klein R, Klein BE, Nieto FJ. The association between serum uric acid level and long-term incidence of hypertension: population-based cohort study. J Hum Hypertens. 2006;20:937–945.

    Article  PubMed  CAS  Google Scholar 

  121. Forman JP, Choi H, Curhan GC. Plasma uric acid level and risk for incident hypertension among men. J Am Soc Nephrol. 2007;18:287–292.

    Article  PubMed  CAS  Google Scholar 

  122. Rathmann W, Haastert B, Icks A, Giani G, Roseman JM. Ten-year change in serum uric acid and its relation to changes in other metabolic risk factors in young black and white adults: the CARDIA study. Eur J Epidemiol. 2007;22:439–445.

    Article  PubMed  CAS  Google Scholar 

  123. Forman JP, Choi H, Curhan GC. Uric acid and insulin sensitivity and risk of incident hypertension. Arch Intern Med. 2009;169:155–162.

    Article  PubMed  CAS  Google Scholar 

  124. Jones DP, Richey PA, Alpert BS. Comparison of ambulatory blood pressure reference standards in children evaluated for hypertension. Blood Press Monit. 2009;14:103–107.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel I. Feig MD, PhD, MS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Feig, D.I. (2011). CRP, Uric Acid, and Other Novel Factors in the Pathogenesis of Hypertension. In: Flynn, J., Ingelfinger, J., Portman, R. (eds) Pediatric Hypertension. Clinical Hypertension and Vascular Diseases. Humana Press. https://doi.org/10.1007/978-1-60327-824-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-824-9_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-823-2

  • Online ISBN: 978-1-60327-824-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics