Skip to main content

Cell Membrane Receptors and Phospholipids

  • Chapter
  • First Online:
  • 994 Accesses

Abstract

Membrane phospholipids, in particular phosphatidylinositol (PtdIns), provide crucial phosphoinositides that activate enzymes like PI3 kinase, which drives the protein kinase B (Akt), cell survival and signal pathway. Also, calcium ions entering through membrane ion channels exert controls over vital enzymes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berridge HJ, Irvine RF. Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 1984;312:315–322

    Article  PubMed  CAS  Google Scholar 

  2. (a) Rebecchi MJ, Pentyla SN. Structure, function and control of phosphatidylinositol specific phospholipase C. Physiol Rev 2000;80:1291–1235; (b) Cockroft S, Thomas G. Inositol lipid specific phospholipase C isoenzymes and their regulation by receptors. Biochem J 1992;288:1–14

    PubMed  CAS  Google Scholar 

  3. Spitzer M, Cantrell DA. Protein kinase C and beyond. Nat Immunol 2004;5:785–790

    Article  Google Scholar 

  4. Rhee SG. Regulation of phosphoinositide specific phospholipase C. Annu Rev Biochem 2001;70:281–312

    Article  PubMed  CAS  Google Scholar 

  5. van Haesebroeck B, Leevers SJ, Ahmadi K et al Synthesis and function of 3-phosphatidylinositol phospholipids. Annu Rev Biochem 2001;70:535–602

    Article  CAS  Google Scholar 

  6. Review.. Protein kinase C isoenzymes:divergence in signal transduction. Biochem J 1993;291:329–343

    Google Scholar 

  7. Tan S-L, Parker PJ. Diverse roles of protein kinase C in immune cell signaling. Biochem J 2003;376:545–552

    Article  PubMed  CAS  Google Scholar 

  8. Nakashima S. Protein kinase C alpha: regulation and biological function. J Biochem 2002;132:669–675

    PubMed  CAS  Google Scholar 

  9. Larsen EC, Digennaro JA, Saito N et al Differential requirement for classic and novel protein kinase C isoforms in respiratory burst and phagocytosis. J Immunol 2000;165:2809–2017

    PubMed  CAS  Google Scholar 

  10. Von Essen M, Nielsen MW, Bonefeld CM et al Protein kinases C PKC α and PKC θ are the major PKC isotypes in T cell receptor down-regulation. J Immunol 2006;176:7502–7510

    PubMed  CAS  Google Scholar 

  11. Altman A, Villalba M. Protein kinase C θ. J Biochem 2002;132:841–846

    PubMed  CAS  Google Scholar 

  12. Liu Y, Graham C, Parraviceni V et al PKC-θ is expressed in mast cells and is involved in Fcε receptor I signaling. J Leukocyte Biol 2001;69:831–846

    PubMed  CAS  Google Scholar 

  13. Jackson DN, Foster DA. The enigmatic protein kinase Cδ:complex roles in cell proliferation and survival. FASEB J 2004;18:627–636

    Article  PubMed  CAS  Google Scholar 

  14. Majerus PW. Inositol phosphates. Annu Rev Biochem 1992;61:225–250

    Article  PubMed  CAS  Google Scholar 

  15. Santarius M, Lee CH, Anderson RA. Supervised membrane swimming: small G-protein lifeguards regulate PIPK signalling and monitor intracellular PtdIns(4,5)P2 pools. Biochem J 2006;398:1–13

    Article  PubMed  CAS  Google Scholar 

  16. Forder J, Scriabne A, Rasmussen H. Plasma membrane calcium flux, protein kinase C activation and smooth muscle contraction. J Pharmacol Exp Ther 1985;235:267–273

    PubMed  CAS  Google Scholar 

  17. Di Paolo G, De Camilli P. Phosphoinsotides in cell regulation and membrane dynamics. Nature 2006;443:651–657

    Article  PubMed  CAS  Google Scholar 

  18. (a) Niggl V. Regulation of protein activities by phosphoinositide phosphates. Annu Rev Cell Dev Biol 2005;21:57–79; (b) Czech MP. Dynamics of phosphoinositides in membrane retrieval and insertion. Annu Rev Physiol 2003;65:791–815

    Article  Google Scholar 

  19. Sato M, Ueda Y, Takagi T, Umezawa Y. Production of PtdInsP3 at endomembranes is triggered by receptor endocytosis. Nat Cell Biol 2003;5:1016–1020

    Article  PubMed  CAS  Google Scholar 

  20. Rameh LE, Arvidsson A-K, Carraway KL et al A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. J Biol Chem 1997;272:22059–22066

    Article  PubMed  CAS  Google Scholar 

  21. Leslie NR, Downes CP. PTEN function. Biochem J 2004;382:1–11

    Article  PubMed  CAS  Google Scholar 

  22. Roth MG. Phosphoinositides in constitutive membrane Traffic. Physiol Rev 2004;84:699–730

    Article  PubMed  CAS  Google Scholar 

  23. Matteis MA, Godi A. PI-loting membrane traffic. Nat Cell Biol 2004;6:487–492

    Article  PubMed  Google Scholar 

  24. Shin HW, Nakayama K. Dual control of membrane targeting by PtdIns(4)P. Trends Biochem Sci 2004;29:513–515

    Article  PubMed  CAS  Google Scholar 

  25. Assano T, Yao Y, Zhu J et al The PI3kinase/Akt signaling pathway is activated due to aberrant PTEN expression in pancreatic cancer cells. Oncogene 2004;23:8571–8580

    Article  Google Scholar 

  26. He XC, Yin T, Grindley JC et al PTEN deficient intestinal stem cells initiate intestinal polyposis. Nature Genet 2007;39:189–198

    Article  PubMed  CAS  Google Scholar 

  27. Buckler JL, Walsh OT, Porrett PM et al T cell requirement for CD28 costimulation is due to negative regulation of T cell receptor signals by PTEN. J Immunol 2006;177:4262–4266

    PubMed  CAS  Google Scholar 

  28. Frauwirth KA, Thompson CB. Regulation of T lymphocyte metabolism. J Immunol 2004;172:4661–4665

    PubMed  CAS  Google Scholar 

  29. Richardson CJ, Schalm SS, Blenis J. PI-3kinase and TOR:PIKTORING cell growth. Semin Cell Dev Biol 2004;15:147–159

    Article  PubMed  CAS  Google Scholar 

  30. Wymann MP, Zvelebil M, Laffargue M. PI-3kinase signalling-which way to target? Trends Pharmacol Sci 2002;24:366–373

    Article  Google Scholar 

  31. (a) Deane JA, Fruman DA. Phosphoinositide 3-kinase:diverse roles in immune cell activation. Annu Rev Immunol 2004;22:563–598; (b) Icazar IA, Marques M, Kumar A et al. PI3-kinase γ participates in T cell receptor induced T cell activation. J Exp Med 2007;204:2977–2988

    Article  PubMed  CAS  Google Scholar 

  32. Ito K, Caramori G, Adcock IM. Therapeutic potential of PI3-kinase inhibitors in inflammatory respiratory disease. J Pharmacol Exp Ther 2007;321:1–8

    Article  PubMed  CAS  Google Scholar 

  33. Parry RV, Riley JL, Ward SG. Signalling to suit function: tailoring PI3kinase during T cell activation. Trend Immunol 2007;28:161–169

    Article  CAS  Google Scholar 

  34. Oak JS, Fruman DA. Role of phosphoinositide 3-kinase signaling in autoimmunity. Autoimmunity 2007;40(6):433–441

    Article  PubMed  CAS  Google Scholar 

  35. Procko E, McColl SR. Leukocytes on the move with PI3kinase and its downstream effectors. BioEssays 2005:27:153–163

    Article  PubMed  CAS  Google Scholar 

  36. Jones GE, Prigmore E, Calvez R et al Requirement for PI3kinase in macrophage migration to MCP-1 and CSF-1. Exp Cell Res 2003;290:120–131

    Article  PubMed  CAS  Google Scholar 

  37. Reif K, Okkenhaug K, Sasaki T et al Differentiation roles for PI3kinases p110γ and p110δ in lymphocyte chemotaxis and homing. J Immunol 2004;173:2236–2240

    PubMed  CAS  Google Scholar 

  38. Ortolano S, Huang IY, Han SB, Kehrl JH.Role of PI3-kinases, Brutons tyrosine kinase and Jun kinases in B lymphocyte chemotaxis and homing. Eur J Immunol 2006;36:1285–1295

    Article  PubMed  CAS  Google Scholar 

  39. Fruman DA, Rameh LE, Cantley LC. Phosphoinositide binding domains: embracing 3-phosphate. Cell 1999;97:817–820

    Article  PubMed  CAS  Google Scholar 

  40. Van Haesebroech B, Waterfield MD. Signaling by distinct classes of PI3kinases. Exp Cell Res 1999;253:239–254

    Article  Google Scholar 

  41. Coffer PJ, Jin J, Woodgett JR. Protein kinase B(Akt):a multifunctional mediator of PI3-kinase activation. Biochem J 1998;335:1–13

    PubMed  CAS  Google Scholar 

  42. Toker A, Cantley LC. Signalling through the lipid products of PI3kinase. Nature 1997;387:673–676

    Article  PubMed  CAS  Google Scholar 

  43. Wymann MP, Bjorklof K, Calvez R et al PI3kinase γ:a key modulator in inflammation and allergy. Biochem Soc Trans 2003;31:275–280

    Article  PubMed  CAS  Google Scholar 

  44. Stephens L, Ellson C, Hawkins P. Role of PI3kinase in leukocyte chemotaxis and phagocytosis. Curr Op Cell Biol 2002;14:203–213

    Article  PubMed  CAS  Google Scholar 

  45. Sadhu C, Masinivsky B, Dick K et al Essential role of PI3kinaseδ in neutrophil directional movement. J Immunol 2003;170:2647–2654

    PubMed  CAS  Google Scholar 

  46. Ward SG, Finan P. Isoform-specific PI3kinase inhibitors as therapeutic agents. Curr Opin Pharmacol 2003;3:426–434

    Article  PubMed  CAS  Google Scholar 

  47. Klein JB, Ranc MJ, Scherzer JA et al GM-CSF delays neutrophil apoptosis through PI3kinase and ERK pathway. J Immunol 2000;163:4286–4291

    Google Scholar 

  48. Yum H-K, Arcaroli J, Kupfner J et al Involvement of PI3kinases in neutrophil activation and development of acute lung injury. J Immunol 2001;167:6601–6608

    PubMed  CAS  Google Scholar 

  49. Hirsch E, Katanaev V, Garlanda C, Azzolino O et al Central role for G-protein coupled PI 3kinase in inflammation. Science 2000;287:1049–1053

    Article  PubMed  CAS  Google Scholar 

  50. Tanaka H, Fujita N, Tsuruo T. 3Phosphoinositide-dependent protein kinase-1 mediated IkBkinase β phospohorylation activates NFkB signaling. J Biol Chem 2005;280:40965–40973

    Article  PubMed  CAS  Google Scholar 

  51. Ward SG, June CH, Olive D. PI 3-kinase: a pivotal pathway in T cell activation. Immunol Today 1996;17:187–198

    Article  PubMed  CAS  Google Scholar 

  52. Eder AM, Dominiquez L, Frank TF et al PI 3-kinase regulation of a T cell receptor mediated interleukin 2 gene expression in normal T cells. J Biol Chem 1998; 273: 28025–28031

    Article  PubMed  CAS  Google Scholar 

  53. Hazeki K, Nogorikawa K, Hazeki O. Role of phosphoinositide 3-kinase in innate immunity. Biol Pharm Bull 2007;30(9):1617–1623

    Article  PubMed  CAS  Google Scholar 

  54. Stambolic V, Woodgett JR. Functional distinction of protein kinase B/Akt isoforms defined by their influence on cell migration. Trend Cell Biol 2006;16(9):461–466

    Article  CAS  Google Scholar 

  55. Zhang SL, Yu Y, Roos J et al STIM1 is a calcium sensor that activates CRAC channels. Nature 2005;437:902–905

    Article  PubMed  CAS  Google Scholar 

  56. Gallo EM, Cante-Barrett K, Crabtree GR. Lymphocyte calcium signaling from membrane to nucleus. Nature Immunol 2006;7:25–31

    Article  CAS  Google Scholar 

  57. Schlossman J, Feil R, Hofmann T. Signaling through nitric oxide and cGMP dependent protein kinases. Ann Med 2003;35(1):21–27

    Article  Google Scholar 

  58. Rakhelin SV, Olson PA, Nishi A et al A network of control mediated by regulator of calmodulin dependent signaling. Science 2004;306:698–701

    Article  Google Scholar 

  59. Berridge MJ. AM and FM of calcium signalling. Nature 1997;386:759–760

    Article  PubMed  CAS  Google Scholar 

  60. Feske S. Calcium signalling in lymphocyte activation. Nat Rev Immunol 07;7:690–702

    Article  Google Scholar 

  61. Yule DI. Subtype specific regulation of inositol 1,4,5 triphosphate receptors. Controlling agents in time and space. J Gen Physiol 2001;117:431–434

    Article  PubMed  CAS  Google Scholar 

  62. Taylor CW. Store operated Ca2+ entry: a STIMulating stOrai. Trends Biochem Sci 2006;31:597–601

    Article  PubMed  CAS  Google Scholar 

  63. Panyi G, Vannosi G, Bodnor A et al Looking through ion channels: recharged events in T cell signaling. Trends Immunol 2004;25:565–569

    Article  PubMed  CAS  Google Scholar 

  64. Ayub K, Hallett MB. The mitochondrial ADPR link between Ca2+ store release and Ca2+ influx channel opening in immune cells. FASEB J 2004;18:1335–1338

    Article  PubMed  CAS  Google Scholar 

  65. Di Fiore PP. Life on Mars, cellular speaking. Nature 2003;424:624–625

    Article  PubMed  CAS  Google Scholar 

  66. Savignac M, Gomes B, Gallard A et al Dihydropyridine receptors are selective markers of Th-2 cells. J Immunol 2004;172:5206–5212

    PubMed  CAS  Google Scholar 

  67. Gomes B, Savignac M, Cabral MD et al Cyclic GMP/protein kinase G pathway controls dihydropyridine channels. J Biol Chem 2006;281:12421–12427

    Article  PubMed  CAS  Google Scholar 

  68. Zhu P, Liu X, Labelle E, Freedman B. Mechanisms of hypotonicity induced calcium signaling. J Immunol 2005;175:4981–4989

    PubMed  CAS  Google Scholar 

  69. Lefkowitz RJ, Whalen EJ. β-Arrestins. Curr Opin Cell Biol 2004;16:162–168

    Article  PubMed  CAS  Google Scholar 

  70. Wojcikiewicz R, Tobin AB, Nahorski SR. Desensitization of cell signalling mediated by phosphoinositidase C. Trends Pharmacol Sci 1993;14:279–228

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Nigel Wardle .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wardle, E.N. (2009). Cell Membrane Receptors and Phospholipids. In: Guide to Signal Pathways in Immune Cells. Humana Press. https://doi.org/10.1007/978-1-60327-538-5_2

Download citation

Publish with us

Policies and ethics