Skip to main content

The Genetic Architecture of Longevity

  • Chapter
  • First Online:
Life-Span Extension

Part of the book series: Aging Medicine ((AGME))

Abstract

Longevity is a more complex process than is often thought. The adult life span can be naturally partitioned into two phases: the health span and the senescence span. The transition between them is characterized by the downward inflection of the survival curve. The evidence shows that there are three ways to increase longevity, only one of which involves an increase in the values of both mean and maximum life spans. In that case, the extra longevity is expressed as an extension of the health span, whereas the senescent span is little affected if at all. The delayed onset of senescence phenotype is the most desirable way of extending the life span. This multiphasic view of the life span is supported by a variety of literature data and springs from an evolutionary view of the aging process. Gene activity during the life span can best be viewed in terms of gene networks, their progressive increase in fidelity during development, their maintenance during much of the health span, their progressive loss of stringent feedback control as the force of natural selection wanes, and the stochastic destabilization of key cellular functions during the senescent phase. This systems biology overview should be of conceptual value in understanding the biology of specific long-lived mutants and selected strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DOS:

Delayed onset of senescence

MEMN:

Macrophage-enriched metabolic network

PD:

Population doubling

QTL:

Quantitative trait loci

SNP:

Single nucleotide polymorphism

References

  1. Arking R, Novoseltseva J, Hwangbo DS, et al. Different age-specific demographic profiles are generated in the same normal-lived Drosophila strain by different longevity stimuli. J Gerontol A Biol Sci Med Sci 2002;57:B390–8.

    PubMed  Google Scholar 

  2. Barja G. The gene cluster hypothesis of aging and longevity. Biogerontology 2008;9:57–66.

    Article  PubMed  Google Scholar 

  3. Arking R. The biology of aging: observations and principles, 3rd ed. New York, NY: Oxford University Press, 2006.

    Google Scholar 

  4. Arking R. Human reproductive costs and the predicted response to dietary restriction. Rejuvenation Res 2007;10:11–9.

    Article  Google Scholar 

  5. Penn DJ, Smith KR. Differential fitness costs of reproduction between the sexes. Proc Natl Acad Sci U S A 2007;104:553–8.

    Article  CAS  PubMed  Google Scholar 

  6. Larke A, Crews DE. Parental investment, late reproduction, and increased reserve capacity are associated with longevity in humans. J Physiol Anthropol 2006;25:119–31.

    Article  PubMed  Google Scholar 

  7. Walker R, Gurven M, Hill K, et al. Growth rate and life histories in twenty-two small-scale societies. Am J Hum Biol 2006;18:295–311.

    Article  PubMed  Google Scholar 

  8. Milne E. When does human ageing begin? Mech Ageing Dev 2006;127:290.

    Article  PubMed  Google Scholar 

  9. Davidson EH, Rast JP, Oliveri P. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. Dev Biol 2002;246:162–90.

    Article  CAS  PubMed  Google Scholar 

  10. Davidson EH, Erwin DH. Gene regulatory networks and the evolution of animal body plans. Science 2006;311:796–800.

    Article  CAS  PubMed  Google Scholar 

  11. Segal E, Raveh-Sadka T, Schroeder M, Unnerstall U, Gaul U. Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature 2008;451:535–40.

    Article  CAS  PubMed  Google Scholar 

  12. Finch CE, Kirkwood TBL. Chance, development, and aging. New York, NY: Oxford University Press, 2000.

    Google Scholar 

  13. Barker DJP. Intrauterine programming of adult disease. Mol Med Today 1995;1:418–23.

    Article  CAS  PubMed  Google Scholar 

  14. Baker KD, Thummel CS. Diabetic larvae and obese flies – emerging studies of metabolism in Drosophila. Cell Metab 2007;6:257–66.

    Article  CAS  PubMed  Google Scholar 

  15. Danese A, Pariante CM, Caspi A, Taylor A, Poultan R. Childhood maltreatment predicts adult inflammation in a life-course study. Proc Natl Acad Sci U S A 2007;104:1319–24.

    Article  CAS  PubMed  Google Scholar 

  16. Arking R, Wells RA. Genetic alteration of normal aging processes is responsible for extended longevity in Drosophila. Dev Genet 1990;11:141–8.

    Article  CAS  PubMed  Google Scholar 

  17. Dudas SP, Arking R. A coordinate up-regulation of antioxidant gene activities is required prior to the delayed onset of senescence characteristic of a long-lived strain of Drosophila. J Gerontol A Biol Sci Med Sci 1995;50A:B117–27.

    CAS  Google Scholar 

  18. Hari R, Burde V, Arking R. Immunological confirmation of elevated levels of CuZn superoxide dismutase protein in an artificially selected long-lived strain of Drosophila melanogaster. Exp Gerontol 1998;33:227–37.

    Article  CAS  PubMed  Google Scholar 

  19. Arking R, Burde V, Graves K, et al. Forward and reverse selection for longevity in Drosophila is characterized by alteration of antioxidant gene expression and oxidative damage patterns. Exp Gerontol 2000;35:167–85.

    Article  CAS  PubMed  Google Scholar 

  20. Libert S, Pletcher SD. Modulation of longevity by environmental sensing. Cell 2007;131:1231–4.

    Article  CAS  PubMed  Google Scholar 

  21. Novoseltsev VN, Arking R, Novoseltseva JA, Yashin AI. Evolutionary optimality applied to Drosophila experiments: hypothesis of constrained reproductive efficiency. Evolution 2002;56:1136–49.

    CAS  PubMed  Google Scholar 

  22. Rose MR. Making SENSE: strategies for engineering negligible senescence evolutionarily. Rejuvenation Res 2008;11:527–34.

    Article  PubMed  Google Scholar 

  23. Rose MR, Drapeau MD, Yazdi PG, et al. Evolution of late-life mortality in Drosophila melanogaster. Evolution 2002;56:1982–91.

    PubMed  Google Scholar 

  24. Finch CE. The biology of human longevity: inflammation, nutrition, and aging in the evolution of life spans. Burlington, MA: Academic, 2007.

    Google Scholar 

  25. Ideker T, Thorsson V, Ranish JA, et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 2001;292:929–34.

    Article  CAS  PubMed  Google Scholar 

  26. Rudan I, Smolej-Narancic N, Campbell H, et al. Inbreeding and the genetic complexity of human hypertension. Genetics 2003;163:1011–21.

    PubMed  Google Scholar 

  27. Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabasi A-L. The human disease network. Proc Natl Acad Sci U S A 2007;104:8685–90.

    Article  CAS  PubMed  Google Scholar 

  28. Cowley AW. The genetic dissection of essential hypertension. Nat Rev Genet 2006;7:829–40.

    Article  CAS  PubMed  Google Scholar 

  29. Weiss KM. Cryptic causation of human disease: reading between the (germ) lines. Trends Genet 2005;21:82–8.

    Article  CAS  PubMed  Google Scholar 

  30. Chen Y, Zhu J, Lum PY, et al. Variations in DNA elucidate molecular networks that cause disease. Nature 2008;452:429–35.

    Article  CAS  PubMed  Google Scholar 

  31. Emilsson V, Thorleifsson G, Zhang B, et al. Genetics of gene expression and its effect on disease. Nature 2008;452:423–8.

    Article  CAS  PubMed  Google Scholar 

  32. Sharpless NE, DePinho RA. How stem cells age and why this makes us grow old. Nat Rev Mol Biol 2007;8:703–13.

    Article  CAS  Google Scholar 

  33. Funk WD, Wang CK, Shelton DN, Harley CB, Pagon GD, Hoeffler WK. Telomerase expression restores dermal integrity to in vitro-aged fibroblasts in a reconstituted skin model. Exp Cell Res 2000;258:270–8.

    Article  CAS  PubMed  Google Scholar 

  34. Torella D, Rota M, Nurzynska D, et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res 2004;94:514–24.

    Article  CAS  PubMed  Google Scholar 

  35. Bronikowski AM, Carter PA, Morgan, et al 2003. Lifelong voluntary exercise in the mouse prevents age-related alterations in gene expression in the heart. Physiol Genomics 2003;12:129–38.

    CAS  PubMed  Google Scholar 

  36. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005;433:760–4.

    Article  CAS  PubMed  Google Scholar 

  37. Kirkwood TB. Evolution of ageing. Nature 1977;270:301–4.

    Article  CAS  PubMed  Google Scholar 

  38. Arking R, Wells RA. Genetic alteration of normal aging processes is responsible for extended longevity in Drosophila. Dev Genet 1990;11:141–8.

    Article  CAS  PubMed  Google Scholar 

  39. Jones DM, Song X, Rockwood K. Operationalizing a frailty index from a standardized comprehensive geriatric assessment. J Am Geriatr Soc 2004;52:1929–33.

    Article  PubMed  Google Scholar 

  40. Klein BEK, Klein R, Knudtson MD, Lee KE. Frailty, morbidity and survival. Arch Gerontol Geriatr 2005;41:141–9.

    Article  PubMed  Google Scholar 

  41. Rahim NG, Harismendy O, Topol EJ, Frazer KA. Genetic determinants of phenotypic diversity in humans. Genome Biol 2008;9:215.1–.9.

    Article  Google Scholar 

  42. Ruan H, Wu C-F. Social interaction-mediated life span extension of Drosophila CuZn superoxide dismutase mutants. Proc Natl Acad Sci U S A 2008;105:7506–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Arking .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Arking, R. (2009). The Genetic Architecture of Longevity. In: Sell, C., Lorenzini, A., Brown-Borg, H. (eds) Life-Span Extension. Aging Medicine. Humana Press. https://doi.org/10.1007/978-1-60327-507-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-507-1_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-506-4

  • Online ISBN: 978-1-60327-507-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics