Skip to main content

Aging and Longevity in Animal Models and Humans

  • Chapter
  • First Online:
Life-Span Extension

Abstract

How many animal models are adequate to study human aging? Aging is an adaptive process performed by an integrated panel of evolutionarily selected mechanisms aimed at maintaining soma integrity. The possibility of extrapolating results from animal models to human beings has to be addressed in an ecological context. Model systems fit basic requirements of scientific research, and experimental animals show a series of advantages for the study of aging and longevity in humans. However, animal models have intrinsic constraints because they are artificial: Humans are not inbred and live in different conditions from both an environmental and a socio-anthropological-cultural point of view. Even if research on aging and longevity has been performed primarily in model systems such as yeast, worms, and flies, results obtained in humans are not only of basic importance but are also largely unexpected, probably because of the peculiar characteristics of humans (protected environment, culture, economic conditions, stochasticity). In some cases, studies in animal models or humans have led to analogous results, largely because basic mechanisms involved in aging have been conserved throughout evolution. In other cases, results are different or even opposite, as is described in this chapter. Animal models are often not sufficiently adequate for the study of human longevity, but their usefulness in achieving knowledge at different levels (molecular, cellular, physiological, behavioral) is unquestionable. Thus, it seems that the concomitant and integrated use of ad hoc models, also comparing different species, together with new in silico and high throughput strategies, will be the general framework within which studies on human aging and longevity should be performed to accelerate the identification of new determinants of healthy aging and longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CR:

Caloric restriction

FOXO1A:

Forkhead box 01A

IGF-I:

Insulin-like growth factor I

IGF-IR:

Insulin-like growth factor I receptor

NF-κB:

Nuclear factor-κB

PI3KCB:

Phosphoinositide 3-kinase

PON1:

Paraoxonase 1

VNTR:

Variable number tandem repeat

References

  1. Franceschi C, Monti D, Sansoni P, Cossarizza A. The immunology of exceptional individuals: The lesson of centenarians. Immunol Today 1995;16:12–6.

    Article  CAS  PubMed  Google Scholar 

  2. Franceschi C, Monti D, Barbieri D, et al. Immunosenescence in humans: deterioration or remodelling? Int Rev Immunol 1995;12:57–74.

    Article  CAS  PubMed  Google Scholar 

  3. Hasty P, Campisi J, Hoeijmakers J, Van Steeg H, Vijg J. Aging and genome maintenance: Lessons from the mouse? Science 2003;299:1355–9.

    Article  CAS  PubMed  Google Scholar 

  4. Salmon AB, Akha AA, Buffenstein R, Miller RA. Fibroblasts from naked mole-rats are resistant to multiple forms of cell injury, but sensitive to peroxide, ultraviolet light, and endoplasmic reticulum stress. J Gerontol A Biol Sci Med Sci 2008;63:232–41.

    PubMed  Google Scholar 

  5. Hyun M, Lee J, Lee K, May A, Bohr VA, Ahn B. Longevity and resistance to stress correlate with DNA repair capacity in Caenorhabditis elegans. Nucleic Acids Res 2008;36:1380–9.

    Article  CAS  PubMed  Google Scholar 

  6. Chen JB, Sun J, Jazwinski SM. Prolongation of the yeast life span by the v-Ha-RAS oncogene. Mol Microbiol 1990;4:2081–6.

    Article  CAS  PubMed  Google Scholar 

  7. Orr WC, Sohal RS. Effects of Cu-Zn superoxide dismutase overexpression of life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch Biochem Biophys 1993;301:34–40.

    Article  CAS  PubMed  Google Scholar 

  8. Davis T, Kipling D. Telomeres and telomerase biology in vertebrates: progress towards a non-human model for replicative senescence and aging. Biogerontology 2005;6:371–85.

    Article  CAS  PubMed  Google Scholar 

  9. Kapahi P, Boulton ME, Kirkwood TB. Positive correlation between mammalian life span and cellular resistance to stress. Free Radic Biol Med 1999;26:495–500.

    Article  CAS  PubMed  Google Scholar 

  10. Kirkwood TL, Kapahi P, Shanley DP. Evolution, stress, and longevity. J Anat 2000;197(Pt 4):587–90.

    Article  PubMed  Google Scholar 

  11. Holmes DJ, Ottinger MA. Birds as long-lived animal models for the study of aging. Exp Gerontol 2003;38:1365–75.

    Article  CAS  PubMed  Google Scholar 

  12. Martin GM, Bergman A, Barzilai N. Genetic determinants of human health span and life span: Progress and new opportunities. PLoS Genet 2007;3:e125.

    Article  CAS  Google Scholar 

  13. Pollard KS, Salama SR, Lambert N, et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature 2006;443:167–72.

    Article  CAS  PubMed  Google Scholar 

  14. Pollard KS, Salama SR, King B, et al Forces shaping the fastest evolving regions in the human genome. PLoS Genet 2006;2:e168.

    Article  Google Scholar 

  15. Jeune B, Skytthe A, Cournil A. Handgrip strength among nonagenarians and centenarians in three European regions. J Gerontol A Biol Sci Med Sci 2006;61:707–12.

    PubMed  Google Scholar 

  16. De Benedictis G, Franceschi C. The unusual genetics of human longevity. Sci Aging Knowledge Environ. 2006;2006:pe20.

    Google Scholar 

  17. Martin GM. Constitutional genetic markers of aging. Exp Gerontol 1988;23:257–70.

    Article  CAS  PubMed  Google Scholar 

  18. Martin GM, Austad SN, Johnson TE. Genetic analysis of aging: Role of oxidative damage and environmental stresses. Nat Genet 1996;13:25–34.

    Article  CAS  PubMed  Google Scholar 

  19. Partridge L, Gems D. Mechanisms of aging: Public or private? Nat Rev Genet 2002;3:165–75.

    Article  CAS  PubMed  Google Scholar 

  20. Franceschi C, Capri M, Monti D, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 2007;128:92–105.

    Article  CAS  PubMed  Google Scholar 

  21. Barker DJ. The developmental origins of chronic adult disease. Acta Paediatr Suppl 2004;93:26–33.

    Article  CAS  PubMed  Google Scholar 

  22. Reyes L, Mañalich R. Long-term consequences of low birth weight. Kidney Int Suppl 2005;97:S107–11.

    Article  Google Scholar 

  23. Elovitz MA, Mrinalini C, Sammel MD. Elucidating the early signal transduction pathways leading to fetal brain injury in preterm birth. Pediatr Res 2006;59:50–5.

    Article  PubMed  Google Scholar 

  24. De Magalhaes JP. Open-minded scepticism: inferring the causal mechanisms of human aging from genetic perturbations. Ageing Res Rev 2005;4:1–22.

    Article  PubMed  Google Scholar 

  25. Williams GC, Knipp GT, Sinko PJ. The effect of cell culture conditions on saquinavir transport through, and interactions with, MDCKII cells overexpressing hMDR1. J Pharm Sci 2003;92:1957–67.

    Article  CAS  PubMed  Google Scholar 

  26. Hawkes K. Grandmothers and the evolution of human longevity. Am J Hum Biol 2003;15:380–400.

    Article  PubMed  Google Scholar 

  27. Kim S, Benguria A, Lai CY, Jazwinski SM. Modulation of life-span by histone deacetylase genes in Saccharomyces cerevisiae. Mol Biol Cell 1999;10:3125–36.

    CAS  PubMed  Google Scholar 

  28. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 20018;410:227–30.

    Article  CAS  Google Scholar 

  29. Rose G, Dato S, Altomare K, et al. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol 2003;38:1065–70.

    Article  CAS  PubMed  Google Scholar 

  30. Bellizzi D, Rose G, Cavalcante P, et al. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 2005;85:258–63.

    Article  CAS  PubMed  Google Scholar 

  31. Longo VD, Finch CE. Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 2003;299:1342–6.

    Article  PubMed  Google Scholar 

  32. Kenyon C. A conserved regulatory system for aging. Cell 2001;105:165–8.

    Article  CAS  PubMed  Google Scholar 

  33. Hsieh CC, DeFord JH, Flurkey K, Harrison DE, Papaconstantinou J. Effects of the Pit1 mutation on the insulin signaling pathway: Implications on the longevity of the longlived Snell dwarf mouse. Mech Ageing Dev 2002;123:1245–55.

    Article  CAS  PubMed  Google Scholar 

  34. Dozmorov I, Bartke A, Miller RA. Array-based expression analysis of mouse liver genes: Effect of age and of the longevity mutant Prop1df. J Gerontol A Biol Sci Med Sci 2001;56:B72–80.

    Google Scholar 

  35. Bonafè M, Barbieri M, Marchegiani F, et al. Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. J Clin Endocrinol Metab 2003;88:3299–304.

    Article  PubMed  Google Scholar 

  36. Franceschi C, Olivieri F, Marchegiani F, et al. Genes involved in immune response/inflammation, IGF-I/insulin pathway and response to oxidative stress play a major role in the genetics of human longevity: the lesson of centenarians. Mech Ageing Dev 2005;126:351–61.

    Article  CAS  PubMed  Google Scholar 

  37. Heemst D, Beekman M, Mooijaart SP, et al Reduced insulin/IGF-I signalling and human longevity. Aging Cell 2005;4:79–85.

    Article  PubMed  Google Scholar 

  38. Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 199219;356:215–21.

    Article  CAS  Google Scholar 

  39. Tyner SD, Venkatachalam S, Choi J, et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 20023;415:45–53.

    Article  CAS  Google Scholar 

  40. García-Cao I, García-Cao M, Martín-Caballero J, et al. ‘Super p53’ mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J 2002;21:6225–35.

    Article  PubMed  Google Scholar 

  41. Ko LJ, Prives C. p53: Puzzle and paradigm. Genes Dev 1996;10:1054–72.

    Article  CAS  PubMed  Google Scholar 

  42. Bonafe M, Salvioli S, Barbi C, et al. The different apoptotic potential of the p53 codon 72 alleles increases with age and modulates in vivo ischaemia-induced cell death. Cell Death Differ 2004;11:962–73.

    Article  CAS  PubMed  Google Scholar 

  43. Sullivan A, Syed N, Gasco M, et al. Polymorphism in wild-type p53 modulates response to chemotherapy in vitro and in vivo. Oncogene 2004;23:3328–37.

    Article  CAS  PubMed  Google Scholar 

  44. Salvioli S, Bonafé M, Barbi C, et al. p53 codon 72 alleles influence the response to anticancer drugs in cells from aged people by regulating the cell cycle inhibitor p21WAF1. Cell Cycle 2005;4:1264–71.

    Article  CAS  PubMed  Google Scholar 

  45. Den Reijer PM, Maier AB, Westendorp RG, van Heemst D. Influence of the TP53 codon 72 polymorphism on the cellular responses to X-irradiation in fibroblasts from nonagenarians. Mech Ageing Dev 2008;129:175–82.

    Article  CAS  PubMed  Google Scholar 

  46. Bonafè M, Barbi C, Storci G, et al. What studies on human longevity tell us about the risk for cancer in the oldest old: Data and hypotheses on the genetics and immunology of centenarians. Exp Gerontol 2002;37:1263–71.

    Article  PubMed  Google Scholar 

  47. Van Heemst D, Mooijaart SP, Beekman M, et al Long Life Study Group. Variation in the human TP53 gene affects old age survival and cancer mortality. Exp Gerontol 2005;40:11–5.

    Article  PubMed  Google Scholar 

  48. Ørsted DD, Bojesen SE, Tybjaerg-Hansen A, Nordestgaard BG. Tumor suppressor p53 Arg72Pro polymorphism and longevity, cancer survival, and risk of cancer in the general population. J Exp Med 2007;204:1295–301.

    Article  PubMed  Google Scholar 

  49. Wasserman SA. Toll signaling: The enigma variations. Curr Opin Genet Dev 2000;10:497–502.

    Article  CAS  PubMed  Google Scholar 

  50. Hoffmann JA. The immune response of Drosophila. Nature 2003;426:33–8.

    Article  CAS  PubMed  Google Scholar 

  51. Waterhouse RM, Kriventseva EV, Meister S, et al. Evolutionary Dynamics of Immune-Related Genes and Pathways in Disease-Vector Mosquitoes. Science 2007;316:1738–43.

    CAS  Google Scholar 

  52. Wang XW, Tan NS, Ho B, Ding JL. Evidence for the ancient origin of the NF-kappaB/IkappaB cascade: its archaic role in pathogen infection and immunity. Proc Natl Acad Sci U S A 2006;103:4204–9.

    Article  CAS  PubMed  Google Scholar 

  53. Pujol N, Link EM, Liu LX, et al. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr Biol 2001;11:809–21.

    Article  CAS  PubMed  Google Scholar 

  54. Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Activation of innate immunity system during aging: NF-κB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev, 2008;7:83-–105.

    Article  CAS  PubMed  Google Scholar 

  55. Guarente L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 2000;14:1021–6.

    CAS  PubMed  Google Scholar 

  56. Sinclair DA. Paradigms and pitfalls of yeast longevity research. Mech Ageing Dev 2002;123:857–67.

    Article  CAS  PubMed  Google Scholar 

  57. Henderson ST, Bonafe M, Johnson TE. daf-16 protects the nematode Caenorhabditis elegansduring food deprivation. J Gerontol A Biol Sci Med Sci 2006;61:444–60.

    PubMed  Google Scholar 

  58. Kurosu H, Yamamoto M, Clark JD, et al. Suppression of aging in mice by the hormone Klotho. Science 2005;309:1829–33.

    Article  CAS  PubMed  Google Scholar 

  59. Migliaccio E, Giorgio M, Mele S, et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 1999;402:309–13.

    Article  CAS  PubMed  Google Scholar 

  60. Purdom S, Chen QM. p66(Shc): At the crossroad of oxidative stress and the genetics of aging. Trends Mol Med 2003;9:206–10.

    Article  CAS  PubMed  Google Scholar 

  61. Pandolfi S, Bonafè M, Di Tella L, et al. p66(shc) is highly expressed in fibroblasts from centenarians. Mech Ageing Dev 2005;126:839–44.

    Article  CAS  PubMed  Google Scholar 

  62. Rea IM, McKeown PP, McMaster D, et al Paraoxonase polymorphisms PON1 192 and 55 and longevity in Italian centenarians and Irish nonagenarians. A pooled analysis. Exp Gerontol 2004;39:629–35.

    Article  CAS  PubMed  Google Scholar 

  63. Marchegiani F, Marra M, Olivieri F, et al. Paraoxonase 1: Genetics and activities during aging. Rejuvenation Res 2008;11:113–27.

    Article  CAS  PubMed  Google Scholar 

  64. Lescai L, Marchegiani F, Franceschi C. PON1 is a longevity gene: the results of a meta-analysis. Ageing Res Rev 2009; in press.

    Google Scholar 

  65. Shanley DR, Kirkwood TBL. Caloric restriction does not enhance longevity in all species and is unlikely to do so in humans. Biogerontology 2006;7:165–8.

    Article  PubMed  Google Scholar 

  66. Demetrius L. Aging in mouse and human systems: a comparative study. Ann N Y Acad Sci 2006;1067:66–82.

    Article  CAS  PubMed  Google Scholar 

  67. McCay C, Crowell M, Maynard L. The effect of retarded growth upon the length of the life span and upon the ultimate body size. J Nutr 1935;10:63–79.

    CAS  Google Scholar 

  68. Weindruch R, Walford RL. The retardation of aging and disease by dietary restriction. Springfield, IL: Charles C. Thomas Publisher Ltd, 1988.

    Google Scholar 

  69. Sprott RL. Diet and calorie restriction. Exp Gerontol 1997;32:205–14.

    Article  CAS  PubMed  Google Scholar 

  70. Means LW, Higgins JL, Fernandez TJ. Midlife onset of dietary restriction extends life and prolongs cognitive-functioning. Physiol Behav 1993;54:503–8.

    Article  CAS  PubMed  Google Scholar 

  71. Chapman T, Partridge L. Female fitness in Drosophila melanogaster: an interaction between the effect of nutrition and of encounter rate with males. Proc R Soc Lond B Biol Sci 1996;263:755–9.

    Article  CAS  Google Scholar 

  72. Houthoofd K, Braeckman BP, Lenaerts I, et al. Axenic growth up-regulates mass specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Exp Gerontol 2002;37:1371–8.

    Article  PubMed  Google Scholar 

  73. Jiang JC, Jaruga E, Repnevskaya MV, Jazwinski SM. An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J 2000;14:2135–7.

    CAS  PubMed  Google Scholar 

  74. Ramsey JJ, Colman RJ, Binkley NC, et al. Dietary restriction and aging in rhesus monkeys: The University of Wisconsin study. Exp Gerontol 2000;35:1131–49.

    Article  CAS  PubMed  Google Scholar 

  75. Lane MA, Mattison JA, Roth GS, Brant LJ, Ingram DK. Effects of long-term diet restriction on aging and longevity in primates remain uncertain. J Gerontol Ser A Biol Sci Med Sci 2004;59:405–7.

    Google Scholar 

  76. Demetrius L. Caloric restriction, metabolic rate, and entropy. J Gerontol Ser A Biol Sci Med Sci 2004;59:B902–15.

    Google Scholar 

  77. Le Bourg E, Rattan SI. Can dietary restriction increase longevity in all species, particularly in human beings? Introduction to a debate among experts. Biogerontology 2006;7:123–5.

    Google Scholar 

  78. Chen D, Guarente L. SIR2: A potential target for calorie restriction mimetics. Trends Mol Med 2007;13:64–71.

    Article  CAS  PubMed  Google Scholar 

  79. Holloszy JO, Fontana L. Caloric restriction in humans. Exp Gerontol 2007;42:709–12.

    Article  CAS  PubMed  Google Scholar 

  80. Morgan TE, Wong AM, Finch CE. Anti-inflammatory mechanisms of dietary restriction in slowing aging processes. Interdiscip Top Gerontol 2007;35:83–97.

    CAS  PubMed  Google Scholar 

  81. Guarente L. Sirtuins as potential targets for metabolic syndrome. Nature 2006;444:868–74.

    Article  CAS  PubMed  Google Scholar 

  82. Capri M, Monti D, Salvioli S, et al. Complexity of anti-immunosenescence strategies in humans. Artif Organs 2006;30:730–42.

    Article  CAS  PubMed  Google Scholar 

  83. Martin LJ, Mahaney MC, Bronikowski AM, Dee Carey K, Dyke B, Comuzzie AG. Lifespan in captive baboons is heritable. Mech Ageing Dev 2002;123:1461–7.

    Article  PubMed  Google Scholar 

  84. Bronikowski AM, Alberts SC, Altmann J, Packer C, Carey KD, Tatar M. The aging baboon: Comparative demography in a non-human primate. Proc Natl Acad Sci U S A 2002;99:9591–5.

    Article  CAS  PubMed  Google Scholar 

  85. Silk JB, Brosnan SF, Vonk J, et al. Chimpanzees are indifferent to the welfare of unrelated group members. Nature 2005;437:1357–9.

    Article  CAS  PubMed  Google Scholar 

  86. Bellavista E, Mishto M, Santoro A, Bertoni-Freddari C, Sessions RB, Franceschi C. Immunoproteasome in Macaca fascicularis: No age-dependent modification of abundance and activity in the brain and insight into an in silico structural model. Rejuvenation Res 2008;11:73–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by EU (European Union) Grant “PROTEOMAGE” Contract n. FP6–518230; the PRRIITT program of the Emilia-Romagna Region (and Fondi Strutturali Obiettivo 2); Italian Ministry of Health Grant “Progetto Finalizzato Studio delle differenze uomo-donna nei meccanismi patogenetici delle malattie cardiovascolari” to CF; Italian Ministry of University and Research (MiUR) PRIN 2006 Project to CF and DM (# 2006061707), SS (# 2006063387); University of Bologna Grant “Ricerca Fondamentale Orientata (RFO ex 60%) 2007” to CF, SS and MC; Roberto and Cornelia Pallotti Legacy for Cancer Research Grants to CF, SS and MC. University of Bologna Progetti Strategici 2006 grant “p53 e patologie non neoplastiche nell’anziano: uno studio multidisciplinare sul ruolo del polimorfismo al codone 72 del gene TP53” to SS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Franceschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Capri, M. et al. (2009). Aging and Longevity in Animal Models and Humans. In: Sell, C., Lorenzini, A., Brown-Borg, H. (eds) Life-Span Extension. Aging Medicine. Humana Press. https://doi.org/10.1007/978-1-60327-507-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-507-1_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-506-4

  • Online ISBN: 978-1-60327-507-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics