Skip to main content

Metabolic Syndrome and Inflammation

  • Chapter
  • First Online:
Immunoendocrinology: Scientific and Clinical Aspects

Part of the book series: Contemporary Endocrinology ((COE))

Summary

The “metabolic syndrome” is a cluster of cardiovascular disease (CVD) risk factors including abdominal obesity, hyperlipidemia, hypertension, insulin resistance, and hyperglycemia. These components reflecting overnutrition, sedentary lifestyles, and resultant excess adiposity may associate with various conditions and therefore multiple definitions were developed over time. The prevalence of metabolic syndrome is increasing at rates paralleling the epidemic prevalence of type 2 diabetes in the USA as well as in the rest of the world including the developing nations. Unlike autoimmune diabetes, accumulating evidence suggests that metabolic syndrome is strongly linked to chronic systemic inflammation. The presence of metabolic syndrome is associated with an approximate doubling of cardiovascular disease risk and a fivefold increased risk for incident type 2 diabetes. Although it is unclear whether a unifying pathophysiological mechanism results in the presence of the specific clinical clusters of the metabolic syndrome, abdominal adiposity with subsequent chronic inflammation and increased oxidative stress and insulin resistance appear to play a central role. Landmark investigations of the inflammasome activity provide great potential for insights into the molecular basis for the inflammatory nature of metabolic syndrome beginning a story that continues to unfold. The evolving concept of insulin resistance, type 2 diabetes and hypertension as having common inflammatory components provides new opportunities for developing strategies, currently underway, to correct the metabolic consequences of metabolic syndrome and chronic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reaven GM. Banting lecture. Role of insulin resistance in human disease. Diabetes 1988;37:1595–1607.

    Article  PubMed  CAS  Google Scholar 

  2. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002;106:3143–3421.

    Google Scholar 

  3. Grundy SM, Brewer HB, Jr, Cleeman JI, Smith SC, Jr, Lenfant C. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 2004;109:433–438.

    Article  PubMed  Google Scholar 

  4. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998;339:229–234.

    Article  PubMed  CAS  Google Scholar 

  5. Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr ­cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 1993;16:434–444.

    Article  PubMed  CAS  Google Scholar 

  6. Diabetes mellitus. Report of a WHO Study Group. World Health Organ Tech Rep Ser 1985;727:1–113.

    Google Scholar 

  7. Unwin N, Shaw J, Zimmet P, Alberti KG. Impaired glucose tolerance and impaired fasting glycaemia: the current status on definition and intervention. Diabet Med 2002;19:708–723.

    Article  PubMed  CAS  Google Scholar 

  8. Gabir MM, Hanson RL, Dabelea D, Imperatore G, Roumain J, Bennett PH, Knowler WC. Plasma glucose and prediction of microvascular disease and mortality: evaluation of 1997 American Diabetes Association and 1999 World Health Organization criteria for diagnosis of diabetes. Diabetes Care 2000;23:1113–1118.

    Article  PubMed  CAS  Google Scholar 

  9. Dandona P, Aljada A. A rational approach to pathogenesis and treatment of type 2 diabetes mellitus, insulin resistance, inflammation, and atherosclerosis. Am J Cardiol 2002;90:27G–33G.

    Article  PubMed  CAS  Google Scholar 

  10. Alberti KG, Zimmet P, Shaw J. The metabolic syndrome – a new worldwide definition. Lancet 2005;366:1059–1062.

    Article  PubMed  Google Scholar 

  11. Balkau B, Charles MA, Drivsholm T, Borch-Johnsen K, Wareham N, Yudkin JS, Morris R, Zavaroni I, van Dam R, Feskins E, Gabriel R, Diet M, Nilsson P, Hedblad B. Frequency of the WHO metabolic syndrome in European cohorts, and an alternative definition of an insulin resistance syndrome. Diabetes Metab 2002;28:364–376.

    PubMed  Google Scholar 

  12. Cameron AJ, Shaw JE, Zimmet PZ. The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin North Am 2004;33:351–375, table of contents.

    Article  PubMed  Google Scholar 

  13. Baynes JW, Thorpe SR. Glycoxidation and lipoxidation in atherogenesis. Free Radic Biol Med 2000;28:1708–1716.

    Article  PubMed  CAS  Google Scholar 

  14. Pop-Busui R, Sima A, Stevens M. Diabetic neuropathy and oxidative stress. Diabetes Metab Res Rev 2006;22:257–273.

    Article  PubMed  CAS  Google Scholar 

  15. Pennathur S, Heinecke, JW. Mechanisms of oxidative stress in diabetes: implications for the pathogenesis of vascular disease and antioxidant therapy. Front Biosci 2004;9:565–574.

    Article  PubMed  CAS  Google Scholar 

  16. Ridker PM, Stampfer MJ, Rifai N. Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA 2001;285:2481–2485.

    Article  PubMed  CAS  Google Scholar 

  17. Schonbeck U, Varo N, Libby P, Buring J, Ridker PM. Soluble CD40L and cardiovascular risk in women. Circulation 2001;104:2266–2268.

    Article  PubMed  CAS  Google Scholar 

  18. Lobbes,MB, Lutgens E, Heeneman S, Cleutjens KB, Kooi ME, van Engelshoven JM, Daemen MJ, Nelemans PJ. Is there more than C-reactive protein and fibrinogen? The prognostic value of soluble CD40 ligand, interleukin-6 and oxidized low-density lipoprotein with respect to coronary and cerebral vascular disease. Atherosclerosis 2006;187:18–25.

    Article  PubMed  CAS  Google Scholar 

  19. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993;259:87–91.

    Article  PubMed  CAS  Google Scholar 

  20. Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest 1995;95:2111–2119.

    Article  PubMed  CAS  Google Scholar 

  21. Mantzoros CS, Moschos S, Avramopoulos I, Kaklamani V, Liolios A, Doulgerakis DE, Griveas I, Katsilambros N, Flier JS. Leptin concentrations in relation to body mass index and the tumor necrosis factor-alpha system in humans. J Clin Endocrinol Metab 1997;82:3408–3413.

    Article  PubMed  CAS  Google Scholar 

  22. Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue. Arterioscler Thromb Vasc Biol 1999;19:972–978.

    Article  PubMed  CAS  Google Scholar 

  23. Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, Klein S, Coppack SW. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 1997;82:4196–4200.

    Article  PubMed  CAS  Google Scholar 

  24. Lundgren CH, Brown SL, Nordt TK, Sobel BE, Fujii S. Elaboration of type-1 plasminogen activator inhibitor from adipocytes. A potential pathogenetic link between obesity and cardiovascular disease. Circulation 1996;93:106–110.

    Article  PubMed  CAS  Google Scholar 

  25. Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 2004;25:4–7.

    Article  PubMed  CAS  Google Scholar 

  26. Pickup JC, Crook MA. Is type II diabetes mellitus a disease of the innate immune system. Diabetologia 1998;41:1241–1248.

    Article  PubMed  CAS  Google Scholar 

  27. Barzilay JI, Abraham L, Heckbert SR, Cushman M, Kuller LH, Resnick HE, Tracy RP. The relation of markers of inflammation to the development of glucose disorders in the elderly: the Cardiovascular Health Study. Diabetes 2001;50:2384–2389.

    Article  PubMed  CAS  Google Scholar 

  28. Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, Hoogeveen R, Folsom AR, Heiss G. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 2003;52:1799–1805.

    Article  PubMed  CAS  Google Scholar 

  29. Festa A, D’Agostino R, Jr, Tracy RP, Haffner SM. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 2002;51:1131–1137.

    Article  PubMed  CAS  Google Scholar 

  30. Freeman DJ, Norrie J, Caslake MJ, Gaw A, Ford I, Lowe GD, O’Reilly DS, Packard CJ, Sattar N. C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study. Diabetes 2002;51:1596–1600.

    Article  PubMed  CAS  Google Scholar 

  31. Fernandez-Real JM, Vayreda M, Richart C, Gutierrez C, Broch M, Vendrell J, Ricart W. Circulating interleukin 6 levels, blood pressure, and insulin sensitivity in apparently healthy men and women. J Clin Endocrinol Metab 2001;86:1154–1159.

    Article  PubMed  CAS  Google Scholar 

  32. Hu FB, Meigs JB, Li, TY, Rifai N, Manson JE. Inflammatory markers and risk of developing type 2 diabetes in women. Diabetes 2004;53:693–700.

    Article  PubMed  CAS  Google Scholar 

  33. Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann MM, Ristow M, Boeing H, Pfeiffer AF. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 2003;52:812–817.

    Article  PubMed  CAS  Google Scholar 

  34. Pop-Busui R, Kirkwood I, Schmid H, Marinescu V, Schroeder J, Larkin D, Yamada E, Raffel DM, Stevens MJ. Sympathetic dysfunction in type 1 diabetes: association with impaired myocardial blood flow reserve and diastolic dysfunction. J Am Coll Cardiol 2004;44:2368–2374.

    Article  PubMed  CAS  Google Scholar 

  35. Gerstein HC, Capes SE. Dysglycemia: a key cardiovascular risk factor. Semin Vasc Med 2002;2:165–174.

    Article  PubMed  Google Scholar 

  36. DECODE Study Group, European Diabetes Epidemiology Group. Is the current definition for diabetes relevant to mortality risk from all causes and cardiovascular and noncardiovascular diseases. Diabetes Care 2003;26:688–696.

    Article  Google Scholar 

  37. McNeill AM, Rosamond WD, Girman CJ, Golden SH, Schmidt MI, East HE, Ballantyne CM, Heiss G. The metabolic syndrome and 11-year risk of incident cardiovascular disease in the atherosclerosis risk in communities study. Diabetes Care 2005;28:385–390.

    Article  PubMed  Google Scholar 

  38. Lehtinen JM, Uusitupa M, Siitonen O, Pyorala K. Prevalence of neuropathy in newly diagnosed NIDDM and nondiabetic control subjects. Diabetes 1989;38:1307–1313.

    Article  PubMed  CAS  Google Scholar 

  39. Pfeifer MA, Weinberg CR, Cook DL, Reenan A, Halter JB, Ensinck JW, Jr, Porte D. Autonomic neural dysfunction in recently diagnosed diabetic subjects. Diabetes Care 1984;7:447–453.

    Article  PubMed  CAS  Google Scholar 

  40. Singh JP, Larson MG, O’Donnell CJ, Wilson PF, Tsuji H, Lloyd-Jones DM, Levy D. Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study). Am J Cardiol 2000;86:309–312.

    Article  PubMed  CAS  Google Scholar 

  41. Liao D, Cai J, Brancati FL, Folsom A, Barnes RW, Tyroler HA, Heiss G. Association of vagal tone with serum insulin, glucose, and diabetes mellitus – The ARIC Study. Diabetes Res Clin Pract 1995;30:211–221.

    Article  PubMed  CAS  Google Scholar 

  42. Panzer C, Lauer MS, Brieke A, Blackstone E, Hoogwerf B. Association of fasting plasma glucose with heart rate recovery in healthy adults: a population-based study. Diabetes 2002;51:803–807.

    Article  PubMed  CAS  Google Scholar 

  43. Festa A, D’Agostino R, Jr, Hales CN, Mykkanen L, Haffner SM. Heart rate in relation to insulin sensitivity and insulin secretion in nondiabetic subjects. Diabetes Care 2000;23:624–628.

    Article  PubMed  CAS  Google Scholar 

  44. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 1999;48:1–9.

    Article  PubMed  CAS  Google Scholar 

  45. Baynes JW. Role of oxidative stress in development of complications of diabetes. Diabetes 1991;40:405–412.

    Article  PubMed  CAS  Google Scholar 

  46. Shindo H, Thomas TP, Larkin DD, Karihaloo AK, Inada H, Onaya T, Stevens MJ, Greene DA. Modulation of basal nitric oxide-dependent cyclic-GMP production by ambient glucose, myo-inositol, and protein kinase C in SH-SY5Y human neuroblastoma cells. J Clin Invest 1996;97:736–745.

    Article  PubMed  CAS  Google Scholar 

  47. Baumgartner-Parzer SM, Wagner L, Pettermann M, Grillari J, Gessl A, Waldhausl W. High-glucose – triggered apoptosis in cultured endothelial cells. Diabetes 1995;44:1323–1327.

    Article  PubMed  CAS  Google Scholar 

  48. Wu QD, Wang JH, Fennessy F, Redmond HP, Bouchier-Hayes D. Taurine prevents high-glucose-induced human vascular endothelial cell apoptosis. Am J Physiol 1999;277:C1229–C1238.

    PubMed  CAS  Google Scholar 

  49. Tesfamariam B, Cohen RA. Role of superoxide anion and endothelium in vasoconstrictor action of prostaglandin endoperoxide. Am J Physiol 1992;262:H1915–H1919.

    PubMed  CAS  Google Scholar 

  50. Gryglewski RJ, Palmer RM, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 1986;320:454–456.

    Article  PubMed  CAS  Google Scholar 

  51. Ward KK, Low PA, Schmelzer JD, Zochodne DW. Prostacyclin and noradrenaline in peripheral nerve of chronic experimental diabetes in rats. Brain 1989;112(Pt 1): 197–208.

    Article  PubMed  Google Scholar 

  52. Vanhoutte PM, Shimokawa H. Endothelium-derived relaxing factor and coronary vasospasm. Circulation 1989;80:1–9.

    Article  PubMed  CAS  Google Scholar 

  53. Haefeli WE, Srivastava N, Kongpatanakul S, Blaschke TF, Hoffman BB. Lack of role of endothelium-derived relaxing factor in effects of alpha-adrenergic agonists in cutaneous veins in humans. Am J Physiol 1993;264:H364–H369.

    PubMed  CAS  Google Scholar 

  54. Cipolla MJ, Harker CT, Porter JM. Endothelial function and adrenergic reactivity in human type-II diabetic resistance arteries. J Vasc Surg 1996;23:940–949.

    Article  PubMed  CAS  Google Scholar 

  55. Tesfamariam B, Cohen RA. Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Am J Physiol 1992;263:H321–H326.

    PubMed  CAS  Google Scholar 

  56. Tesfamariam B. Free radicals in diabetic endothelial cell dysfunction. Free Radic Biol Med 1994;16:383–391.

    Article  PubMed  CAS  Google Scholar 

  57. Greene DA, Stevens MJ, Obrosova I, Feldman EL. Glucose-induced oxidative stress and programmed cell death in diabetic neuropathy. Eur J Pharmacol 1999;375:217–223.

    Article  PubMed  CAS  Google Scholar 

  58. Hogikyan RV, Galecki AT, Halter JB, Supiano MA. Heightened norepinephrine-mediated vasoconstriction in type 2 diabetes. Metabolism 1999;48:1536–1541.

    Article  PubMed  CAS  Google Scholar 

  59. Stevens MJ, Dananberg J, Feldman EL, Lattimer SA, Kamijo M, Thomas TP, Shindo H, Sima AA, Greene DA. The linked roles of nitric oxide, aldose reductase and, (Na+,K+)-ATPase in the slowing of nerve conduction in the streptozotocin diabetic rat. J Clin Invest 1994;94:853–859.

    Article  PubMed  CAS  Google Scholar 

  60. Nitenberg A. Endothelial dysfunction in patients with diabetes: identification, pathogenesis and treatment. Presse Med 2005;34:1654–1661.

    Article  PubMed  CAS  Google Scholar 

  61. Bloomgarden ZT. Adiposity and diabetes. Diabetes Care 2002;25:2342–2349.

    Article  PubMed  CAS  Google Scholar 

  62. Lazar MA. How obesity causes diabetes: not a tall tale. Science 2005;307:373–375.

    Article  PubMed  CAS  Google Scholar 

  63. Lehrke M, Lazar MA. Inflamed about obesity. Nat Med 2004;10(2):126–127.

    Article  PubMed  CAS  Google Scholar 

  64. Pickup JC. Inflammation and activated innate immunity in the pathogenesis of Type 2 diabetes. Diabetes Care 2004;27:813–823.

    Article  PubMed  Google Scholar 

  65. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005;115:1111–1119.

    PubMed  CAS  Google Scholar 

  66. Kuller LH, Tracy RP, Shaten J, Meilahn EN, for the Multiple Risk Factor Intervention Trial Research Group. Relation of C-reactive protein and coronary heart disease in the MRFIT nested case-control study. Am J Epidemiol 1996;144:537–547.

    Article  PubMed  CAS  Google Scholar 

  67. Tracy RP, Lemaitre RN, Diane P, Evans RW, Cushman M, Meilahn EN, et al. Relationship of C-reactive proteins to risk of cardiovascular disease in the elderly. Results from the cardiovascular health study and the rural health promotion project. Arterioscler Thromb Vasc Biol 1997;17:1121–1127.

    Article  PubMed  CAS  Google Scholar 

  68. Schmidt MI, Duncan BB, Sharret AR, Lindberg G, Savage PJ, Offenbacher S, et al. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort study. Lancet 1999;353:1649–1652.

    Article  PubMed  CAS  Google Scholar 

  69. Haffner SM, William K, Tracy RP. C-reactive protein: an independent risk factor for type 2 diabetes in the Mexico City diabetes study. Circulation 2000;102: II–871.

    Article  Google Scholar 

  70. Ebstein W. Zur therapie des diabetes mellitus, insbesondere über die Anwendung des salicylsauren natron bei demselben. Berliner Klin Wochenschr 1876;24:337–340.

    Google Scholar 

  71. Kopp E, Ghosh S. Inhibition of NF-kB by sodium salicylate and aspirin. Science 1994;265:956–959.

    Article  PubMed  CAS  Google Scholar 

  72. Schoelson S. Invited comment on W. Ebstein: on the therapy of diabetes mellitus, in particular on the application of sodium salicylate. J Mol Med 2002;80:618–619.

    Article  Google Scholar 

  73. Peraldi P, Spiegelman B. TNF-alpha and insulin resistance: summary and future prospects. Mol Cell Biochem 1998;182(1–2):169–175.

    Article  PubMed  CAS  Google Scholar 

  74. Fernàndez-Real JM, Broch M, Casamitjana R, Gutirrez C, Vendrell J, Richart C. Plasma levels of the soluble fraction of tumor necrosis factor receptor 2 and insulin resistance. Diabetes 1998;47:1757–1762.

    Article  PubMed  Google Scholar 

  75. Theuma P, Fonseca VA. Inflammation, insulin resistance, and atherosclerosis. Metab Syndr Relat Disord 2004;2:105–113.

    Article  PubMed  CAS  Google Scholar 

  76. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest 2006;116(7):1793–1801.

    Article  PubMed  CAS  Google Scholar 

  77. Fried LP, Borhani NO, Enright P, Furberg D, Gardin JM, Kronmal RA, et al. The cardiovascular health study: design and rationale. Ann Epidemiol 1991;1:263–276.

    Article  PubMed  CAS  Google Scholar 

  78. Barinas-Mitchell E, Cushman M, Meilahn EN, Tracy RP, Kuller LH. Serum levels of C-reactive protein are associated with obesity, weight gain, and hormone replacement therapy in healthy postmenopausal women. Am J Epidemiol 2001;153(11):1094–1101.

    Article  PubMed  CAS  Google Scholar 

  79. Harris MI, Flegal KM, Cowie CC, Eberhardt MS, Goldstein DE, Little RR, et al. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988–1994 Diabetes Care 1998;21(4):518–525.

    Article  PubMed  CAS  Google Scholar 

  80. Snijder MB, Dekker JM, Visser M, Stehouwer CDA, van Hinsbetrg VWM, Bouter LM, et al. C-reactive protein and diabetes mellitus type 2. Diabetologia 2001;44(Suppl 1): 115A.

    Google Scholar 

  81. Han TS, Sattar N, Williams K, Gonzalez-Villapado C, Lean MEJ, Haffner SM. Prospective study of C-reactive protein in relation to the development of diabetes and metabolic syndrome in the Mexico City Diabetes Study. Diabetes Care 2002;25:2016–2021.

    Article  PubMed  CAS  Google Scholar 

  82. Willerson JT, Ridker PM. Inflammation as a cardiovascular risk factor. Circulation 2004;109(Suppl II): II-2–II-10.

    Article  Google Scholar 

  83. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002;105:1135–1143.

    Article  PubMed  CAS  Google Scholar 

  84. Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science 1996;272:50–54.

    Article  PubMed  CAS  Google Scholar 

  85. Medzhitov R, Janeway CA. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 1997;9:4–9.

    Article  PubMed  CAS  Google Scholar 

  86. Ganda OP, Arkin CF. Hyperfibrinogenemia. An important risk factor for vascular complications in diabetes. Diabetes Care 1992;15:1245–1250.

    Article  PubMed  CAS  Google Scholar 

  87. Kuller LH, Eichner JE, Orchard TJ, Grandits GA, McCallum L, Tracy RP, et al. The relation between serum albumin levels and risk of coronary heart disease in the Multiple Risk Factor Intervention Trial. Am J Epidemiol 1991;134(11):1266–1277.

    PubMed  CAS  Google Scholar 

  88. Bruno G, Cavallo-Perin P, Bargero G, Borra M, D’Errico N, Pagano G. Association of fibrinogen with glycemic control and albumin excretion rate in patients with non-insulin-dependent diabetes mellitus. Ann Int Med 1996;125:653–657.

    PubMed  CAS  Google Scholar 

  89. Corti MC, Salive ME, Guralnik JM. Serum albumin and physical function as predictors of coronary heart disease mortality and incidence in older persons. J Clin Epidemiol 1996;49(5):519–526.

    Article  PubMed  CAS  Google Scholar 

  90. Luoma PV, Näyhä S, Sikkilä K, Hassi J. High serum alpha-tocopherol, albumin, selenium and cholesterol, and low mortality from coronary heart disease in northern Finland. J Int Med 1994;237:49–54.

    Article  Google Scholar 

  91. Macy E, Hayes T, Tracy RP. Variability in the measurement of C-reactive protein in healthy subjects: implications for reference interval and epidemiological applications. Clin Chem 1997;43:52–58.

    PubMed  CAS  Google Scholar 

  92. Mantovani A, Bussolino F, Intrano M. Cytokine regulation of endothelial cell function: from molecular level to the bedside. Immunol Today 1997;18:231–240.

    Article  PubMed  CAS  Google Scholar 

  93. Cushman M, Cornell ES, Howard PR, Bovill EG, Tracy RP. Laboratory methods and quality assurance in the Cardiovascular Health Study. Clin Chem 1995;41:264–270.

    PubMed  CAS  Google Scholar 

  94. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000;342(12):836–843.

    Article  PubMed  CAS  Google Scholar 

  95. Kuller LH, Borhani NO, Furberg CD, Gardin JM, Manolio TA, O’Leary, DH, et al. Prevalence of subclinical atherosclerosis and cardiovascular disease and association with risk factors in the Cardiovascular Health Study. Am J Epidemiol 1994;139:1164–1179.

    PubMed  CAS  Google Scholar 

  96. Kuller LH, Shemanski BM, Psaty BM, Borhani NO, Gardin J, Haan MN, et al. Subclinical disease as an independent risk factor for cardiovascular disease. Circulation 1995;92:720–726.

    Article  PubMed  CAS  Google Scholar 

  97. Perry IJ, Wannamethee SG, Shaper AG. Prospective study of serum g-glutamyltransferase and risk of NIDDM. Diabetes Care 1998;21(2):732–737.

    Article  PubMed  CAS  Google Scholar 

  98. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001;286(3):327–334.

    Article  PubMed  CAS  Google Scholar 

  99. Fineberg SE. Glycaemic control and hormone replacement therapy: implications of the Postmenopausal Estrogen/Progestogen Intervention (PEPI) study. Drugs Aging 2000;17(6):453–461.

    Article  PubMed  CAS  Google Scholar 

  100. Cushman M, Psaty BM, Kuller LH, Dobs AS, Tracy RP. Hormone replacement therapy, inflammation, and homeostasis in elderly women. Arterioscler Thromb Vasc Biol 1999;19:893–899.

    Article  PubMed  CAS  Google Scholar 

  101. Cushman M, Arnold AM, Psaty BM, Manolio TA, Kuller LH, Burke GL, et al. C-reactive protein and the 10-year incidence of coronary heart disease in older men and women: the cardiovascular health study. Circulation 2005;112:25–31.

    Article  PubMed  CAS  Google Scholar 

  102. Pietropaolo M, Barinas-Mitchell E, Kuller LH. The heterogeneity of diabetes: unraveling a dispute: is systemic inflammation related to islet autoimmunity. Diabetes 2007;56(5):1189–1197.

    Article  PubMed  CAS  Google Scholar 

  103. Zinman B, Kahn SE, Haffner SM, O’Neill MC, Heise MA, Freed MI. Phenotypic characteristics of GAD antibody-positive recently diagnosed patients with type 2 diabetes in North America and Europe. Diabetes 2004;53(12):3193–3200.

    Article  PubMed  CAS  Google Scholar 

  104. Hawa MI, Thivolet C, Mauricio D, Alemanno I, Cipponeri E, Collier D, Hunter S, Buzzetti R, de Leiva A, Pozzilli P, Leslie RD; Action LADA Group. Metabolic syndrome and autoimmune diabetes: action LADA 3. Diabetes Care 2009;32(1):160–164.

    Article  PubMed  Google Scholar 

  105. Kwon G, Xu G, Marshall CA, McDaniel ML. Tumor necrosis factor a-induced pancreatic b-cell insulin resistance is mediated by nitric oxide and prevented by 15-deoxy-D12,14-prostaglandin J2 and aminoguanidine. J Biol Chem 1999;274(26):18702–18708.

    Article  PubMed  CAS  Google Scholar 

  106. Pakala SV, Chivetta M, Kelly CB, Katz JD. In autoimmune diabetes the transition from benign to pernicious insulitis requires an islet cell response to tumor necrosis factor alpha. J Exp Med 1999;189:1053–1062.

    Article  PubMed  CAS  Google Scholar 

  107. Saghizadeh M, Ong GM, Garvey WT, Henry RR, Kern PA. The expression of TNF-alpha by human muscle: relationship to insulin resistance. J Clin Invest 2001;97:1111–1116.

    Article  Google Scholar 

  108. Winkler G, Salamon F, Salamon D, Speer G, Simon K, Cseh K. Elevated serum tumor necrosis factor-alpha levels contribute to the insulin resistance in type 2 (non-insulin-dependent) diabetes and in obesity. Diabetologia 1998;41:860–861.

    Article  PubMed  CAS  Google Scholar 

  109. Kellerer M, Rett K, Renn W, Groop L, Haring HU. Circulating TNF-alpha and leptin levels in offspring of NIDDM patients do not correlate to individual insulin sensitivity. Horm Metab Res 1996;28:737–743.

    Article  PubMed  CAS  Google Scholar 

  110. Ehl S, Hombach J, Aichele P, Odermatt B, Hengartner H, Zinkernagel RM, et al. Viral and bacterial infections interfere with peripheral tolerance induction and activate CD8+ T cells to cause immunopathology. J Exp Med 1998;5:763–774.

    Article  Google Scholar 

  111. Berliner J, Navab M, Fogelman A, Frank J, Demer L, Edwards P, et al. Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation 1995;91:2488–2496.

    Article  PubMed  CAS  Google Scholar 

  112. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001;104:487–501.

    Article  PubMed  CAS  Google Scholar 

  113. Meade T, Brozovic M, Chakrabarti R, Haines A, Imerson J, Mellows S, et al. Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet 1986;ii(533):537.

    Google Scholar 

  114. Green EA, Flavell RA. The temporal importance of TNFa expression in the development of diabetes. Immunity 2000;12:459–469.

    Article  PubMed  CAS  Google Scholar 

  115. Yang X-D, Tisch R, Singer SM, Cao ZA, Liblau R, Schreiber RD, et al. Effect of tumor necrosis factor a on insulin-dependent diabetes mellitus in NOD mice. I. The early development of autoimmunity and the diabetogenic process. J Exp Med 1994;180:995–1004.

    Article  PubMed  CAS  Google Scholar 

  116. Augustine KA, Rossi RM, Van G, Housman J, Stark K, Danilenko D, et al. Noninsulin-dependent diabetes mellitus occurs in mice ectopically expressing the human Axl tyrosine kinase receptor. J Cell Physiol 1999;181(433):447.

    Google Scholar 

  117. Wu AJ, Hua H, Munson SH, McDevitt HO. Tumor necrosis factor-alpha regulation of CD4+CD25+ T cell levels in NOD mice. Proc Natl Acad Sci USA 2002;99(19):12287–12292.

    Article  PubMed  CAS  Google Scholar 

  118. Stassi G, De Maria R, Trucco G, Rudert W, Testi R, Galluzzo A, et al. Nitric oxide primes pancreatic beta cell destruction for Fas-mediated destruction in IDDM. J Exp Med 1997;186(8):1193–1200.

    Article  PubMed  CAS  Google Scholar 

  119. Mandrup-Poulsen T, Egeberg J, Nerup J, Bendtzen K, Nielsen JH, Dinarello C. Interleukin-1 effects on isolated islets: kinetics and specificity of ultrastructural changes. Acta Endocrinol Suppl 1986;275:29A.

    Google Scholar 

  120. Arnush M, Heitmeier MR, Scarim AL, Marino MH, Manning PT, Corbett J. A. IL-1 produced and released endogenously within human islets inhibits b cell function. J Clin Invest 1998;102:516–526.

    Article  PubMed  CAS  Google Scholar 

  121. Kulkarni RN, Winnay JN, Postic C, Magnuson MA, Kahn CR. Tissue-specific knockout of the insulin receptor in pancreatic b cells creates an insulin secretory defect similar to that in Type 2 diabetes. Cell 1999;96:329–339.

    Article  PubMed  CAS  Google Scholar 

  122. Papanicolaou DA, Wilder RL, Manolagas SC, Chrousos GP. The pathophysiologic roles of interleukin-6 in human disease. Ann Int Med 1998;128:127–137.

    PubMed  CAS  Google Scholar 

  123. Mohamed-Ali V, Goodrick S, Rowesh A. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 1997;82:4196–4200.

    Article  PubMed  CAS  Google Scholar 

  124. Yudkin J, Yajnik C, Mohamed-Ali V, Bulmer K. High levels of circulating proinflammatory cytokines and leptin in urban, but not rural, Indians: a potential explanation for increased risk of diabetes and coronary heart disease. Diabetes Care 1999;22:363–364.

    Article  PubMed  CAS  Google Scholar 

  125. Sandler S, Bentzen K, Eizirik DL, Welsh M. Interleukin-6 affects insulin secretion and glucose metabolism of rat pancreatic islets in vitro. Endocrinology 1990;126:1288–1294.

    Article  PubMed  CAS  Google Scholar 

  126. Kanemaki T, Kitade H, Kaibori M. Interleukin 1 beta and interleukin 6, but not tumor necrosis factor alpha, inhibit insulin-stimulated glycogen synthesis in rat hepatocytes. Hepatology 1998;27:1296–1303.

    Article  PubMed  CAS  Google Scholar 

  127. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi, K, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 2006;116(1):115–124.

    Article  PubMed  CAS  Google Scholar 

  128. Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP, et al. (2007) Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 2007;117(4):902–909.

    Article  PubMed  CAS  Google Scholar 

  129. Schernthaner GH, Kopp HP, Krzyzanowska K, Kriwanek S, Koppensteiner R, Schernthaner G. Soluble CD40L in patients with morbid obesity: significant reduction after bariatric surgery. Eur J Clin Invest 2006;36(6):395–401.

    Article  PubMed  CAS  Google Scholar 

  130. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006;116(6):1494–1505.

    Article  PubMed  CAS  Google Scholar 

  131. Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T, Kubota N, et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 2006;281(36):26602–26614.

    Article  PubMed  CAS  Google Scholar 

  132. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, et al. The hormone resistin links obesity to diabetes. Nature 2001;409(6818):307–312.

    Article  PubMed  CAS  Google Scholar 

  133. Kaser S, Kaser A, Sandhofer A, Ebenbichler CF, Tilg H, Patsch JR. Resistin messenger-RNA expression is increased by proinflammatory cytokines in vitro. Biochem Biophys Res Commun 2003;309(2):286–290.

    Article  PubMed  CAS  Google Scholar 

  134. Verma S, Li SH, Wang CH, Fedak PW, Li RK, Weisel RD, et al. Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction. Circula­tion 2003;108(6):736–740.

    Article  PubMed  CAS  Google Scholar 

  135. Reilly MP, Lehrke M, Wolfe ML, Rohatgi A, Lazar MA, Rader DJ. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation 2005;111(7):932–939.

    Article  PubMed  CAS  Google Scholar 

  136. Janeway CA, Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002;20:197–216.

    Article  PubMed  CAS  Google Scholar 

  137. Wen L, Wong FS. How can the innate immune system influence autoimmunity in type 1 diabetes and other autoimmune disorders. Crit Rev Immunol 2005;25(3):225–250.

    Article  PubMed  CAS  Google Scholar 

  138. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003;21:335–376.

    Article  PubMed  CAS  Google Scholar 

  139. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006;124(4):783–801.

    Article  PubMed  CAS  Google Scholar 

  140. Kabelitz D. Expression and function of Toll-like receptors in T lymphocytes. Curr Opin Immunol 2007;19(1):39–45.

    Article  PubMed  CAS  Google Scholar 

  141. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006;116(11):3015–3025.

    Article  PubMed  CAS  Google Scholar 

  142. Suganami T, Tanimoto-Koyama K, Nishida J, Itoh M, Yuan X, Mizuarai S, et al. Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol 2007;27(1):84–91.

    Article  PubMed  CAS  Google Scholar 

  143. Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM, Schenka AA, et al. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 2007;56(8):1986–1998.

    Article  PubMed  CAS  Google Scholar 

  144. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002;10(2):417–426.

    Article  PubMed  CAS  Google Scholar 

  145. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, et al. (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 2004;430(6996):213–218.

    Article  PubMed  CAS  Google Scholar 

  146. Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005;73(4):1907–1916.

    Article  PubMed  CAS  Google Scholar 

  147. Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 2008;453(7198):1122–1126.

    Article  PubMed  CAS  Google Scholar 

  148. Cassel SL, Eisenbarth SC, Iyer SS, Sadler JJ, Colegio OR, Tephly LA, et al. The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci USA 2008;105(26):9035–9040.

    Article  PubMed  CAS  Google Scholar 

  149. Larsen CM, Faulenbach M, Vaag A, Volund A, Ehses JA, Seifert, B, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 2007;356(15):1517–1526.

    Article  PubMed  CAS  Google Scholar 

  150. Maedler K, Sergeev P, Ris F, Oberholzer J, Joller-Jemelka HI, Spinas GA, et al. Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 2002;110(6):851–860.

    PubMed  CAS  Google Scholar 

  151. Welsh N, Cnop M, Kharroubi I, Bugliani M, Lupi R, Marchetti P, et al. Is there a role for locally produced interleukin-1 in the deleterious effects of high glucose or the type 2 diabetes milieu to human pancreatic islets. Diabetes 2005;54(11):3238–3244.

    Article  PubMed  CAS  Google Scholar 

  152. Omi T, Kumada M, Kamesaki T, Okuda H, Munkhtulga L, Yanagisawa Y, et al. An intronic variable number of tandem repeat polymorphisms of the cold-induced autoinflammatory syndrome 1 (CIAS1) gene modifies gene expression and is associated with essential hypertension. Eur J Hum Genet 2006;14(12):1295–1305.

    Article  PubMed  CAS  Google Scholar 

  153. Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998;391(6662):82–86.

    Article  PubMed  CAS  Google Scholar 

  154. Murphy GJ, Holder JC. PPAR-g agonists: therapeutic role in diabetes, inflammation and cancer. Trends Pharmacol Sci 2000;21:469–474.

    Article  PubMed  CAS  Google Scholar 

  155. Yuan M, Konstanopoulos N, Lee J, Hansen L, Li Z-W, Karin M, et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikk-β. Science 2001;293:1673–1677.

    Article  PubMed  CAS  Google Scholar 

  156. Mohanty P, Aljada A, Ghanim H, Hofmeyer D, Tripathy D, Syed T, et al. Evidence for a potent antiinflammatory effect of rosiglitazone. J Clin Endocrinol Metab 2004;89(6):2728–2735.

    Article  PubMed  CAS  Google Scholar 

  157. Yki-Jarvinen H. Thiazolidinediones. N Engl J Med 2004;351(11):1106–1118.

    Article  PubMed  Google Scholar 

  158. Ialenti A, Grassia G, Di Meglio P, Maffia P, Di Rosa M, Ianaro, A. Mechanism of the anti-inflammatory effect of thiazolidinediones: relationship with the glucocorticoid pathway. Mol Pharmacol 2005;67(5):1620–1628.

    Article  PubMed  CAS  Google Scholar 

  159. Weitz-Schmidt G. Statins as anti-inflammatory agents. Trends Pharmacol Sci 2002;23(10):482–486.

    Article  PubMed  CAS  Google Scholar 

  160. Kimura T, Mogi C, Tomura H, Kuwabara A, Im DS, Sato K, et al. Induction of scavenger receptor class B type I is critical for simvastatin enhancement of high-density lipoprotein-induced anti-inflammatory actions in endothelial cells. J Immunol 2008;181(10):7332–7340.

    PubMed  CAS  Google Scholar 

  161. Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology 2007;132(6):2169–2180.

    Article  PubMed  CAS  Google Scholar 

  162. Fleischman A, Shoelson SE, Bernier R, Goldfine AB. Salsalate improves glycemia and inflammatory parameters in obese young adults. Diabetes Care 2008;31(2):289–294.

    Article  PubMed  CAS  Google Scholar 

  163. Yin MJ, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 1998;396(6706):77–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pop-Busui, R., Pietropaolo, M. (2011). Metabolic Syndrome and Inflammation. In: Eisenbarth, G. (eds) Immunoendocrinology: Scientific and Clinical Aspects. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-478-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-478-4_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-477-7

  • Online ISBN: 978-1-60327-478-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics