Skip to main content

Characterizing T-Cell Autoimmunity

  • Chapter
  • First Online:
  • 885 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Summary

Immunological mechanisms which precipitate autoimmune diabetes involve the influence of a genetic footprint on the phenotype of the T-cell response to self-antigens, and on development of pathological outcomes in immune responses resulting in T1D. For one of the human diabetes antigens, proinsulin, recent findings allow the emergence of a model in which elements of genetically biased T-cell development and peptide epitope-specific T-cell avidity result in expression of autoimmune disease. Understanding such self-reactive T-cell responses is key to implementation of specific immunotherapies for modulating disease risk and progression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arif S, Tree TI, Astill TP, et al. Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest 2004;113(3):451–463.

    PubMed  CAS  Google Scholar 

  2. Durinovic-Belló I, Schlosser M, Riedl M, et al. Pro- and anti-inflammatory cytokine production by autoimmune T cells against preproinsulin in HLA-DRB1*04, DQ8 type 1 diabetes. Diabetologia 2004;47:439–450.

    Article  PubMed  CAS  Google Scholar 

  3. Monti P, Scirpoli M, Rigamonti A, et al. Evidence for in vivo primed and expanded autoreactive T cells as a specific feature of patients with type 1 diabetes. J Immunol 2007;179(9):5785–5792.

    PubMed  CAS  Google Scholar 

  4. Viglietta V, Kent SC, Orban T, Hafler DA. GAD65-reactive T cells are activated in patients with autoimmune type 1a diabetes. J Clin Invest 2002;109(7):895–903.

    PubMed  CAS  Google Scholar 

  5. Yang J, Danke N, Roti M, et al. CD4+ T cells from type 1 diabetic and healthy subjects exhibit different thresholds of activation to a naturally processed proinsulin epitope. J Autoimmun 2008;31:30–41.

    Article  PubMed  CAS  Google Scholar 

  6. Alegre ML, Frauwirth KA, Thompson CB. T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol 2001;1(3):220–228.

    Article  PubMed  CAS  Google Scholar 

  7. Nikolich-Zugich J, Slifka MK, Messaoudi I. The many important facets of T-cell repertoire diversity. Nat Rev Immunol 2004;4(2):123–132.

    Article  PubMed  CAS  Google Scholar 

  8. Friedl P, den Boer AT, Gunzer M. Tuning immune responses: diversity and adaptation of the immunological synapse. Nat Rev Immunol 2005;5(7):532–545.

    Article  PubMed  CAS  Google Scholar 

  9. Huppa JB, Gleimer M, Sumen C, Davis MM. Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nat Immunol 2003;4(8):749–755.

    Article  PubMed  CAS  Google Scholar 

  10. Sebzda E, Wallace VA, Mayer J, Yeung RS, Mak TW, Ohashi PS. Positive and negative thymocyte selection induced by different concentrations of a single peptide. Science 1994;263(5153):1615–1618.

    Article  PubMed  CAS  Google Scholar 

  11. Laurie KL, La Gruta NL, Koch N, van Driel IR, Gleeson PA. Thymic expression of a gastritogenic epitope results in positive selection of self-reactive pathogenic T cells. J Immunol 2004;172(10):5994–6002.

    PubMed  CAS  Google Scholar 

  12. Chentoufi AA, Palumbo M, Polychronakos C. Proinsulin expression by Hassall’s corpuscles in the mouse thymus. Diabetes 2004; 53(2):354–359.

    Article  PubMed  CAS  Google Scholar 

  13. Douek DC, Altmann DM. T-cell apoptosis and differential human leucocyte antigen class II expression in human thymus. Immunology 2000;99(2):249–256.

    Article  PubMed  CAS  Google Scholar 

  14. Derbinski J, Schulte A, Kyewski B, Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2001;2(11):1032–1039.

    Article  PubMed  CAS  Google Scholar 

  15. Kyewski B, Klein L. A central role for central tolerance. Annu Rev Immunol 2006; 24:571–606.

    Article  PubMed  CAS  Google Scholar 

  16. Aschenbrenner K, D’Cruz LM, Vollmann EH, et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol 2007;8(4):351–358.

    Article  PubMed  CAS  Google Scholar 

  17. Zehn D, Bevan MJ. More promiscuity resulting in more tolerance. Nat Immunol 2007;8:120–122.

    Article  PubMed  CAS  Google Scholar 

  18. Lee J. Nat Immunol 2007;8:181–190.

    Article  PubMed  CAS  Google Scholar 

  19. Anderson MS, Venanzi ES, Klein L, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 2002;298(5597):1395–1401.

    Article  PubMed  CAS  Google Scholar 

  20. Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC. Aire regulates negative selection of organ-specific T cells. Nat Immunol 2003;4(4):350–354.

    Article  PubMed  CAS  Google Scholar 

  21. Gardner JM, Devoss JJ, Friedman RS, et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 2008;321(5890):843–847.

    Article  PubMed  CAS  Google Scholar 

  22. Bonasio R, Scimone ML, Schaerli P, Grabie N, Lichtman AH, von Andrian UH. Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nat Immunol 2006;7(10):1092–1100.

    Article  PubMed  CAS  Google Scholar 

  23. Bonasio R, von Andrian UH. Generation, migration and function of circulating ­dendritic cells. Curr Opin Immunol 2006; 18(4):503–511.

    Article  PubMed  CAS  Google Scholar 

  24. Cheng MH, Shum AK, Anderson MS. What’s new in the Aire? Trends Immunol 2007;28(7):321–327.

    Article  PubMed  CAS  Google Scholar 

  25. Eisenbarth GS. Autoimmune polyendocrine syndromes. Adv Exp Med Biol 2004; 552:204–218.

    PubMed  CAS  Google Scholar 

  26. Jiang W, Anderson MS, Bronson R, Mathis D, Benoist C. Modifier loci condition autoimmunity provoked by Aire deficiency. J Exp Med 2005;202(6):805–815.

    Article  PubMed  CAS  Google Scholar 

  27. Chentoufi AA, Polychronakos C. Insulin expression levels in the thymus modulate insulin-specific autoreactive T-cell tolerance: the mechanism by which the IDDM2 locus may predispose to diabetes. Diabetes 2002;51(5):1383–1390.

    Article  PubMed  CAS  Google Scholar 

  28. Faideau B, Lotton C, Lucas B, et al. Tolerance to proinsulin-2 is due to radioresistant thymic cells. J Immunol 2006;177(1):53–60.

    PubMed  CAS  Google Scholar 

  29. Brimnes MK, Jensen T, Jorgensen TN, Michelsen BK, Troelsen J, Werdelin O. Low expression of insulin in the thymus of non-obese diabetic mice. J Autoimmun 2002;19(4):203–213.

    Article  PubMed  Google Scholar 

  30. Thebault-Baumont K, Dubois-Laforgue D, Krief P, et al. Acceleration of type 1 diabetes mellitus in proinsulin 2-deficient NOD mice. J Clin Invest 2003;111(6):851–857.

    PubMed  CAS  Google Scholar 

  31. Nakayama M, Babaya N, Miao D, et al. Long-term prevention of diabetes and marked suppression of insulin autoantibodies and insulitis in mice lacking native insulin B9-23 sequence. Ann N Y Acad Sci 2006;1079:122–129.

    Article  PubMed  CAS  Google Scholar 

  32. Nakayama M, Abiru N, Marlyama H, et al. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 2005;435:220–223.

    Article  PubMed  CAS  Google Scholar 

  33. Every AL, Kramer DR, Mannering SI, Lew AM, Harrison LC. Intranasal vaccination with proinsulin DNA induces regulatory CD4+ T cells that prevent experimental ­autoimmune diabetes. J Immunol 2006; 176(8):4608–4615.

    PubMed  CAS  Google Scholar 

  34. Fernando MM, Stevens CR, Sabeti PC, et al. Identification of two independent risk factors for lupus within the MHC in United Kingdom families. PLoS Genet 2007;3(11):e192.

    Article  PubMed  CAS  Google Scholar 

  35. Steptoe RJ, Ritchie JM, Jones LK, Harrison LC. Autoimmune diabetes is suppressed by transfer of proinsulin-encoding Gr-1+ myeloid progenitor cells that differentiate in vivo into resting dendritic cells. Diabetes 2005;54(2):434–442.

    Article  PubMed  CAS  Google Scholar 

  36. Krishnamurthy B, Dudek NL, McKenzie MD, et al. Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. J Clin Invest 2006;116(12):3258–3265.

    Article  PubMed  CAS  Google Scholar 

  37. Pugliese A, Zeller M, Fernandez A, et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet 1997;15(3):293–297.

    Article  PubMed  CAS  Google Scholar 

  38. Vafiadis P, Bennett ST, Todd JA, et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 1997;15(3):289–292.

    Article  PubMed  CAS  Google Scholar 

  39. Giraud M, Taubert R, Vandiedonck C, et al. An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus. Nature 2007;448(7156):934–937.

    Article  PubMed  CAS  Google Scholar 

  40. Undlien DE, Bennett ST, Todd JA, et al. Insulin gene region-encoded susceptibility to IDDM maps upstream of the insulin gene. Diabetes 1995;44(6):620–625.

    Article  PubMed  CAS  Google Scholar 

  41. Liston A, Lesage S, Gray DH, Boyd RL, Goodnow CC. Genetic lesions in T-cell tolerance and thresholds for autoimmunity. Immunol Rev 2005;204:87–101.

    Article  PubMed  CAS  Google Scholar 

  42. Bennett ST, Lucassen AM, Gough SC, et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet 1995;9(3):284–292.

    Article  PubMed  CAS  Google Scholar 

  43. Lucassen AM, Julier C, Beressi JP, et al. Susceptibility to insulin dependent diabetes mellitus maps to a 4.1 kb segment of DNA spanning the insulin gene and associated VNTR. Nat Genet 1993;4(3):305–310.

    Article  PubMed  CAS  Google Scholar 

  44. Sabater L, Ferrer-Francesch X, Sospedra M, Caro P, Juan M, Pujol-Borrell R. Insulin alleles and autoimmune regulator (AIRE) gene expression both influence insulin expression in the thymus. J Autoimmun 2005;25(4):312–318.

    Article  PubMed  CAS  Google Scholar 

  45. Durinovic-Belló I, Jelinek E, Eiermann T, et al. Class III alleles at the insulin VNTR polymorphism are associated with regulatory T-cell responses to proinsulin epitopes in HLA-DR4, DQ8 individuals. Diabetes 2005;54(Suppl 2):S18–S24.

    Article  PubMed  Google Scholar 

  46. Durinovic-Belló I, Wu R, Gersuk V, Sanda S, Shiling H and Nepom GT, Genetic control of the autoimmune response to proinsulin, Genes and Immunity 2010;11:188–193.

    Google Scholar 

  47. Walter M, Albert E, Conrad M, et al. IDDM2/insulin VNTR modifies risk conferred by IDDM1/HLA for development of type 1 diabetes and associated autoimmunity. Diabetologia 2003;46(5):712–720.

    PubMed  CAS  Google Scholar 

  48. Nielsen LB, Mortensen HB, Chiarelli F, et al. Impact of IDDM2 on disease pathogenesis and progression in children with newly diagnosed type 1 diabetes: reduced insulin antibody titres and preserved beta cell function. Diabetologia 2006;49(1):71–74.

    Article  PubMed  CAS  Google Scholar 

  49. Hermann R, Laine AP, Veijola R, et al. The effect of HLA class II, insulin and CTLA4 gene regions on the development of humoral beta cell autoimmunity. Diabetologia 2005;48(9):1766–1775.

    Article  PubMed  CAS  Google Scholar 

  50. Motzo C, Contu D, Cordell HJ, et al. Heterogeneity in the magnitude of the insulin gene effect on HLA risk in type 1 diabetes. Diabetes 2004;53(12):3286–3291.

    Article  PubMed  CAS  Google Scholar 

  51. Bain SC, Prins JB, Hearne CM, et al. Insulin gene region-encoded susceptibility to type 1 diabetes is not restricted to HLA-DR4-positive individuals. Nat Genet 1992;2(3): 212–215.

    Article  PubMed  CAS  Google Scholar 

  52. Laine AP, Hermann R, Knip M, Simell O, Akerblom HK, Ilonen J. The human leukocyte antigen genotype has a modest effect on the insulin gene polymorphism-associated susceptibility to type 1 diabetes in the Finnish population. Tissue Antigens 2004;63(1):72–74.

    Article  PubMed  CAS  Google Scholar 

  53. Lamb MM, Myers MA, Barriga K, Zimmet PZ, Rewers M, Norris JM. Maternal diet during pregnancy and islet autoimmunity in offspring. Pediatr Diabetes 2008;9(2):135–141.

    Article  PubMed  Google Scholar 

  54. Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004;36(4):337–338.

    Article  PubMed  CAS  Google Scholar 

  55. Bottini N, Vang T, Cucca F, Mustelin T. Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin Immunol 2006;18(4):207–213.

    Article  PubMed  CAS  Google Scholar 

  56. Smyth D, Cooper JD, Collins JE, et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes 2004;53(11):3020–3023.

    Article  PubMed  CAS  Google Scholar 

  57. Begovich AB, Carlton VE, Honigberg LA, et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004;75(2):330–337.

    Article  PubMed  CAS  Google Scholar 

  58. Kyogoku C, Langefeld CD, Ortmann WA, et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet 2004;75(3):504–507.

    Article  PubMed  CAS  Google Scholar 

  59. Velaga MR, Wilson V, Jennings CE, et al. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J Clin Endocrinol Metab 2004;89(11):5862–5865.

    Article  PubMed  CAS  Google Scholar 

  60. Kyewski B, Taubert R. How promiscuity promotes tolerance: the case of myasthenia gravis. Ann N Y Acad Sci 2008;1132: 157–162.

    Article  PubMed  CAS  Google Scholar 

  61. Reijonen H, Novak EJ, Kochik S, et al. Detection of GAD65-specific T-cells by major histocompatibility complex class II tetramers in type 1 diabetic patients and at-risk subjects. Diabetes 2002;51(5):1375–1382.

    Article  PubMed  CAS  Google Scholar 

  62. Zehn D, Bevan MJ. T cells with low avidity for a tissue-restricted antigen routinely evade central and peripheral tolerance and cause autoimmunity. Immunity 2006;25:261–270.

    Article  PubMed  CAS  Google Scholar 

  63. van den Boorn JG, Le Poole IC, Luiten RM. T-cell avidity and tuning: the flexible connection between tolerance and autoimmunity. Int Rev Immunol 2006;25(3–4):235–258.

    Article  PubMed  CAS  Google Scholar 

  64. Durinovic-Belló I, Hummel M, Ziegler AG. Cellular immune response to diverse islet cell antigens in IDDM. Diabetes 1996;45(6): 795–800.

    Article  PubMed  Google Scholar 

  65. Durinovic-Belló I, Boehm BO, Ziegler AG. Predominantly recognized proinsulin T helper cell epitopes in individuals with and without islet cell autoimmunity. J Autoimmun 2002;18(1):55–66.

    Article  PubMed  Google Scholar 

  66. Barker JM, Barriga KJ, Yu L, et al. Prediction of autoantibody positivity and progression to type 1 diabetes: diabetes autoimmunity study in the young (DAISY). J Clin Endocrinol Metab 2004;89(8):3896–3902.

    Article  PubMed  CAS  Google Scholar 

  67. Hummel M, Williams AJ, Norcross A, et al. Proinsulin-specific autoantibodies are relatively infrequent in young offspring with pre-type 1 diabetes. Diabetes Care 2001;24(10): 1843–1844.

    Article  PubMed  CAS  Google Scholar 

  68. Ziegler AG, Hummel M, Schenker M, Bonifacio E. Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB study. Diabetes 1999;48(3):460–468.

    Article  PubMed  CAS  Google Scholar 

  69. Congia M, Patel S, Cope AP, De Virgiliis S, Sonderstrup G. T cell epitopes of insulin defined in HLA-DR4 transgenic mice are derived from preproinsulin and proinsulin. Proc Natl Acad Sci U S A 1998;95(7): 3833–3838.

    Article  PubMed  CAS  Google Scholar 

  70. Semana G, Gausling R, Jackson RA, Hafler DA. T cell autoreactivity to proinsulin epitopes in diabetic patients and healthy subjects. J Autoimmun 1999;12(4):259–267.

    Article  PubMed  CAS  Google Scholar 

  71. Mannering SI, Morris JS, Stone NL, Jensen KP, van Endert PM, Harrison LC. CD4+ T cell proliferation in response to GAD and proinsulin in healthy, pre-diabetic, and diabetic donors. Ann N Y Acad Sci 2004;1037: 16–21.

    Article  PubMed  CAS  Google Scholar 

  72. Mannering SI, Harrison LC, Williamson NA, et al. The insulin A-chain epitope recognized by human T cells is posttranslationally modified. J Exp Med 2005;202(9):1191–1197.

    Article  PubMed  CAS  Google Scholar 

  73. Kent CS, Chen Y, Bregoli L, et al. Expended T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature 2005;435:224–228.

    Article  PubMed  CAS  Google Scholar 

  74. Durinovic-Belló I, Rosinger S, Olson J, et al. DRB1*0401-restricted human T-cell clone, specific for the major proinsulin73–90 epitope expresses a down regulatory T helper 2 phenotype. Proc Natl Acad Sci U S A 2006;103(31):11683–11688.

    Article  PubMed  CAS  Google Scholar 

  75. Acosta-Rodriguez EV, Rivino L, Geginat J, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 2007;8(6):639–646.

    Article  PubMed  CAS  Google Scholar 

  76. Trinchieri G. Interleukin-10 production by effector T cells: Th1 cells show self control. J Exp Med 2007;204(2):239–243.

    Article  PubMed  CAS  Google Scholar 

  77. Collison LW, Workman CJ, Kuo TT, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 2007;450(7169):566–569.

    Article  PubMed  CAS  Google Scholar 

  78. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003;4(4):330–336.

    Article  PubMed  CAS  Google Scholar 

  79. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995;155(3):1151–1164.

    PubMed  CAS  Google Scholar 

  80. Amrani A, Verdaguer J, Serra P, Tafuro S, Tan R, Santamaria P. Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature 2000;406(6797):739–742.

    Article  PubMed  CAS  Google Scholar 

  81. Mallone R, Kochik SA, Laughlin EM, et al. Differential recognition and activation thresholds in human autoreactive GAD-specific T-cells. Diabetes 2004;53(4):971–977.

    Article  PubMed  CAS  Google Scholar 

  82. Mallone R, Kochik SA, Reijonen H, et al. Functional avidity directs T-cell fate in autoreactive CD4+ T cells. Blood 2005;106(8):2798–2805.

    Article  PubMed  CAS  Google Scholar 

  83. Danke NA, Yang J, Greenbaum C, Kwok WW. Comparative study of GAD65-specific CD4+ T cells in healthy and type 1 diabetic subjects. J Autoimmun 2005;25(4):303–311.

    Article  PubMed  CAS  Google Scholar 

  84. Yang J, Danke NA, Berger D, et al. Islet-specific glucose-6-phosphatase catalytic subunit-related protein-reactive CD4+ T cells in human subjects. J Immunol 2006;176(5): 2781–2789.

    PubMed  CAS  Google Scholar 

  85. Backlund J, Carlsen S, Hoger T, et al. Predominant selection of T cells specific for the glycosylated collagen type II epitope (263–270) in humanized transgenic mice and in rheumatoid arthritis. Proc Natl Acad Sci U S A 2002;99(15):9960–9965.

    Article  PubMed  CAS  Google Scholar 

  86. Savage PA, Boniface JJ, Davis MM. A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity 1999;10(4):485–492.

    Article  PubMed  CAS  Google Scholar 

  87. Molberg O, McAdam SN, Korner R, et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 1998;4(6):713–717.

    Article  PubMed  CAS  Google Scholar 

  88. Hill JA, Southwood S, Sette A, Jevnikar AM, Bell DA, Cairns E. Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J Immunol 2003;171(2):538–541.

    PubMed  CAS  Google Scholar 

  89. Holmdahl R. Aire-ing self antigen variability and tolerance. Eur J Immunol 2007;37(3):598–601.

    Article  PubMed  CAS  Google Scholar 

  90. Hua QX, Jia W, Frank BH, Phillips NF, Weiss MA. A protein caught in a kinetic trap: structures and stabilities of insulin disulfide isomers. Biochemistry 2002;41(50):14700–14715.

    Article  PubMed  CAS  Google Scholar 

  91. Solimena M, Dirkx R Jr, Hermel JM, et al. ICA 512, an autoantigen of type I diabetes, is an intrinsic membrane protein of neurosecretory granules. EMBO J 1996;15(9):2102–2114.

    PubMed  CAS  Google Scholar 

  92. Diez J, Park Y, Zeller M, et al. Differential splicing of the IA-2 mRNA in pancreas and lymphoid organs as a permissive genetic mechanism for autoimmunity against the IA-2 type 1 diabetes autoantigen. Diabetes 2001;50(4):895–900.

    Article  PubMed  CAS  Google Scholar 

  93. Lehmann PV, Forsthuber T, Miller A, Sercarz EE. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 1992;358(6382):155–157.

    Article  PubMed  CAS  Google Scholar 

  94. Vanderlugt CL, Miller SD. Epitope ­spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol 2002;2(2):85–95.

    Article  PubMed  CAS  Google Scholar 

  95. DeVoss J, Hou Y, Johannes K, et al. Spontaneous autoimmunity prevented by thymic expression of a single self-antigen. J Exp Med 2006;203(12):2727–2735.

    Article  PubMed  CAS  Google Scholar 

  96. Brusko TM, Putnam AL, Bluestone JA. Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol Rev 2008;223:371–390.

    Article  PubMed  CAS  Google Scholar 

  97. Qin S, Cobbold SP, Pope H, et al. “Infectious” transplantation tolerance. Science 1993;259(5097):974–977.

    Article  PubMed  CAS  Google Scholar 

  98. Cobbold S, Waldmann H. Infectious tolerance. Curr Opin Immunol 1998;10(5):518–524.

    Article  PubMed  CAS  Google Scholar 

  99. Waldmann H, Adams E, Fairchild P, Cobbold S. Regulation and privilege in transplantation tolerance. J Clin Immunol 2008;28(6):716–725.

    Article  PubMed  Google Scholar 

  100. Green DR. Apoptotic pathways: paper wraps stone blunts scissors. Cell 2000;102(1):1–4.

    Article  PubMed  CAS  Google Scholar 

  101. Lenardo M, Chan KM, Hornung F, et al. Mature T lymphocyte apoptosis-immune regulation in a dynamic and unpredictable antigenic environment. Annu Rev Immunol 1999;17: 221–253.

    Article  PubMed  CAS  Google Scholar 

  102. Singh NJ, Schwartz RH. The strength of persistent antigenic stimulation modulates adaptive tolerance in peripheral CD4+ T cells. J Exp Med 2003;198(7):1107–1117.

    Article  PubMed  CAS  Google Scholar 

  103. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T cell lineage specification by the forkhead transcription factor Foxp3. Immunity 2005;22:329–341.

    Article  PubMed  CAS  Google Scholar 

  104. Vieira PL, Christensen JR, Minaee S, et al. IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+ regulatory T cells. J Immunol 2004;172(10):5986–5993.

    PubMed  CAS  Google Scholar 

  105. Anderson PO, Sundstedt A, Yazici Z, et al. IL-2 overcomes the unresponsiveness but fails to reverse the regulatory function of antigen-induced T regulatory cells. J Immunol 2005;174(1):310–319.

    PubMed  CAS  Google Scholar 

  106. Mitchison NA. The dosage requirements for immunological paralysis by soluble proteins. Immunology 1968;15(4):509–530.

    PubMed  CAS  Google Scholar 

  107. Chen Y, Inobe J, Marks R, Gonnella P, Kuchroo VK, Weiner HL. Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 1995;376(6536):177–180.

    Article  PubMed  CAS  Google Scholar 

  108. Liblau RS, Pearson CI, Shokat K, Tisch R, Yang XD, McDevitt HO. High-dose soluble antigen: peripheral T-cell proliferation or apoptosis. Immunol Rev 1994;142:193–208.

    Article  PubMed  CAS  Google Scholar 

  109. Friedman A, Weiner HL. Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc Natl Acad Sci U S A 1994;91(14):6688–6692.

    Article  PubMed  CAS  Google Scholar 

  110. Kearney ER, Pape KA, Loh DY, Jenkins MK. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1994;1(4):327–339.

    Article  PubMed  CAS  Google Scholar 

  111. Maloy KJ, Salaun L, Cahill R, Dougan G, Saunders NJ, Powrie F. CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med 2003;197(1):111–119.

    Article  PubMed  CAS  Google Scholar 

  112. McDevitt H. Specific antigen vaccination to treat autoimmune disease. Proc Natl Acad Sci U S A 2004;101:14627–14630.

    Article  PubMed  CAS  Google Scholar 

  113. Pedotti R, Sanna M, Tsai M, et al. Severe anaphylactic reactions to glutamic acid decarboxylase (GAD) self peptides in NOD mice that spontaneously develop autoimmune type 1 diabetes mellitus. BMC Immunol 2003;4:2.

    Article  PubMed  Google Scholar 

  114. Thrower SL, James L, Hall W, et al. Proinsulin peptide immunotherapy in type 1 diabetes: report of a first-in-man phase I safety study. Clin Exp Immunol 2009;155:156165.

    Article  PubMed  CAS  Google Scholar 

  115. Alleva DG, Maki RA, Putnam AL, et al. Immunomodulation in type 1 diabetes by NBI-6024, an altered peptide ligand of the insulin B epitope. Scand J Immunol 2006;63(1):59–69.

    Article  PubMed  CAS  Google Scholar 

  116. Harrison LC, Honeyman MC, Steele CE, et al. Pancreatic beta-cell function and immune responses to insulin after administration of intranasal insulin to humans at risk for type 1 diabetes. Diabetes Care 2004;27(10):2348–2355.

    Article  PubMed  CAS  Google Scholar 

  117. Agardh CD, Cilio CM, Lethagen A, et al. Clinical evidence for the safety of GAD65 immunomodulation in adult-onset autoimmune diabetes. J Diabetes Complications 2005;19(4):238–246.

    Article  PubMed  Google Scholar 

  118. Ludvigsson J, Faresjo M, Hjorth M, et al. GAD treatment and insulin secretion in recent-onset type 1 diabetes. N Engl J Med 2008;359(18):1909–1920.

    Article  PubMed  CAS  Google Scholar 

  119. Ounissi-Benkalha H, Polychronakos C. The molecular genetics of type 1 diabetes: new genes and emerging mechanisms. Trends Mol Med 2008;14(6):268–275.

    Article  PubMed  CAS  Google Scholar 

  120. Ounissi-Benkalha H, Polychronakos C. Transcriptional effects of the insulin variable number of tandem repeats (VNTR) polymorphism. Diabetes 2005;54(Suppl 2):S159. Ref Type: Generic

    Google Scholar 

  121. Chaparro RJ, Burton AR, Serreze DV, Vignali DA, DiLorenzo TP. Rapid identification of MHC class I-restricted antigens relevant to autoimmune diabetes using retrogenic T cells. J Immunol Methods 2008;335:106–115.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Durinovic-Belló, I., Nepom, G.T. (2011). Characterizing T-Cell Autoimmunity. In: Eisenbarth, G. (eds) Immunoendocrinology: Scientific and Clinical Aspects. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-478-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-478-4_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-477-7

  • Online ISBN: 978-1-60327-478-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics