Skip to main content

Central Integration of Environmental and Endogenous Signals Important in the Regulation of Food Intake and Energy Expenditure

  • Chapter
  • First Online:
  • 2399 Accesses

Part of the book series: Nutrition and Health ((NH))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372(6505):425–432.

    PubMed  CAS  Google Scholar 

  2. Barsh GS, Schwartz MW. Genetic approaches to studying energy balance: perception and integration. Nat Rev Genet 2002; 3(8):589–600.

    PubMed  CAS  Google Scholar 

  3. Horvath TL, Diano S, Tschop M. Brain circuits regulating energy homeostasis. Neuroscientist 2004; 10(3):235–246.

    PubMed  CAS  Google Scholar 

  4. Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 1999; 20(1):68–100.

    PubMed  CAS  Google Scholar 

  5. Saper CB, Chou TC, Elmquist JK. The need to feed: homeostatic and hedonic control of eating. Neuron 2002; 36(2):199–211.

    PubMed  CAS  Google Scholar 

  6. Berthoud HR. Multiple neural systems controlling food intake and body weight. Neurosci Biobehav Rev 2002; 26(4):393–428.

    PubMed  Google Scholar 

  7. Schwartz MW, Seeley RJ, Woods SC, Weigle DS, Campfield LA, Burn P et al. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 1997; 46(12):2119–2123.

    PubMed  CAS  Google Scholar 

  8. Benoit SC, Air EL, Coolen LM, Strauss R, Jackman A, Clegg DJ et al. The catabolic action of insulin in the brain is mediated by melanocortins. J Neurosci 2002; 22(20):9048–9052.

    PubMed  CAS  Google Scholar 

  9. Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 1997; 385(6612):165–168.

    PubMed  CAS  Google Scholar 

  10. Hahn TM, Breininger JF, Baskin DG, Schwartz MW. Coexpression of AgRP and NPY in fasting-activated hypothalamic neurons. Nat Neurosci 1998; 1(4):271–272.

    PubMed  CAS  Google Scholar 

  11. Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 2001; 411(6836):480–484.

    PubMed  CAS  Google Scholar 

  12. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999; 402(6762):656–660.

    PubMed  CAS  Google Scholar 

  13. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL et al. Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 2002; 4186898.:650–654.

    PubMed  CAS  Google Scholar 

  14. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K et al. A role for ghrelin in the central regulation of feeding. Nature 2001; 409(6817):194–198.

    PubMed  CAS  Google Scholar 

  15. Stanley BG, Magdalin W, Seirafi A, Thomas WJ, Leibowitz SF. The perifornical area: the major focus of (a) patchily distributed hypothalamic neuropeptide Y-sensitive feeding system(s). Brain Res 1993; 604(1/2):304–317.

    PubMed  CAS  Google Scholar 

  16. Marsh DJ, Weingarth DT, Novi DE, Chen HY, Trumbauer ME, Chen AS et al. Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc Natl Acad Sci USA 2002; 99(5):3240–3245.

    PubMed  CAS  Google Scholar 

  17. Giraudo SQ, Billington CJ, Levine AS. Feeding effects of hypothalamic injection of melanocortin 4 receptor ligands. Brain Res 1998; 809(2):302–306.

    PubMed  CAS  Google Scholar 

  18. Fekete C, Legradi G, Mihaly E, Huang QH, Tatro JB, Rand WM et al. α-Melanocyte-stimulating hormone is contained in nerve terminals innervating thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and prevents fasting-induced suppression of prothyrotropin-releasing hormone gene expression. J Neurosci 2000; 20(4):1550–1558.

    PubMed  CAS  Google Scholar 

  19. Sarkar S, Lechan RM. Central administration of neuropeptide Y reduces alpha-melanocyte-stimulating hormone-induced cyclic adenosine 5′-monophosphate response element binding protein (CREB) phosphorylation in pro-thyrotropin-releasing hormone neurons and increases CREB phosphorylation in corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Endocrinology 2003; 144(1):281–291.

    PubMed  CAS  Google Scholar 

  20. Tokunaga K, Fukushima M, Kemnitz JW, Bray GA. Comparison of ventromedial and paraventricular lesions in rats that become obese. Am J Physiol 1986; 251(6 Pt 2):R1221–R1227.

    PubMed  CAS  Google Scholar 

  21. Stanley BG, Daniel DR, Chin AS, Leibowitz SF. Paraventricular nucleus injections of peptide YY and neuropeptide Y preferentially enhance carbohydrate ingestion. Peptides 1985; 6(6):1205–1211.

    PubMed  CAS  Google Scholar 

  22. Chen P, Williams SM, Grove KL, Smith MS. Melanocortin 4 receptor-mediated hyperphagia and activation of neuropeptide Y expression in the dorsomedial hypothalamus during lactation. J Neurosci 2004; 24(22):5091–5100.

    PubMed  CAS  Google Scholar 

  23. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998; 92(5):1.

    PubMed  Google Scholar 

  24. Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 1996; 380(6571):243–247.

    PubMed  CAS  Google Scholar 

  25. Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 1998; 396(6712):670–674.

    PubMed  CAS  Google Scholar 

  26. Chen Y, Hu C, Hsu CK, Zhang Q, Bi C, Asnicar M et al. Targeted disruption of the melanin-concentrating hormone receptor-1 results in hyperphagia and resistance to diet-induced obesity. Endocrinology 2002; 143(7):2469–2477.

    PubMed  CAS  Google Scholar 

  27. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 1998; 95(1):322–327.

    PubMed  CAS  Google Scholar 

  28. Williams CJ, Hu FB, Patel SR, Mantzoros CS. Sleep duration and snoring in relation to biomarkers of cardiovascular disease risk among women with type 2 diabetes. Diabetes Care 2007; 30(5):1233–1240.

    PubMed  Google Scholar 

  29. Xu B, Goulding EH, Zang K, Cepoi D, Cone RD, Jones KR et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci 2003; 6(7):736–742.

    PubMed  CAS  Google Scholar 

  30. Bariohay B, Lebrun B, Moyse E, Jean A. Brain-derived neurotrophic factor plays a role as an anorexigenic factor in the dorsal vagal complex. Endocrinology 2005; 146(12):5612–5620.

    PubMed  CAS  Google Scholar 

  31. Kalia M, Sullivan JM. Brainstem projections of sensory and motor components of the vagus nerve in the rat. J Comp Neurol 1982; 211(3):248–265.

    PubMed  CAS  Google Scholar 

  32. Dumont Y, Fournier A, Quirion R. Expression and characterization of the neuropeptide Y Y5 receptor subtype in the rat brain. J Neurosci 1998; 18(15):5565–5574.

    PubMed  CAS  Google Scholar 

  33. Grauerholz BL, Jacobson JD, Handler MS, Millington WR. Detection of pro-opiomelanocortin mRNA in human and rat caudal medulla by RT-PCR. Peptides 1998; 19(5):939–948.

    PubMed  CAS  Google Scholar 

  34. Horvath TL. Synaptic plasticity in energy balance regulation. Obesity (Silver Spring) 2006; 14Suppl 5):228S–233S.

    CAS  Google Scholar 

  35. Yoshihara T, Honma S, Honma K. Effects of restricted daily feeding on neuropeptide Y release in the rat paraventricular nucleus. Am J Physiol 1996; 2704 Pt 1):E589–E595.

    PubMed  CAS  Google Scholar 

  36. Si EC, Bryant HU, Yim GK. Opioid and non-opioid components of insulin-induced feeding. Pharmacol Biochem Behav 1986; 244):899–903.

    PubMed  CAS  Google Scholar 

  37. Zhang M, Balmadrid C, Kelley AE. Nucleus accumbens opioid, GABaergic, and dopaminergic modulation of palatable food motivation: contrasting effects revealed by a progressive ratio study in the rat. Behav Neurosci 2003; 117(2):202–211.

    PubMed  CAS  Google Scholar 

  38. Mercer ME, Holder MD. Food cravings, endogenous opioid peptides, and food intake: a review. Appetite 1997; 29(3):325–352.

    PubMed  CAS  Google Scholar 

  39. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990; 346(6284):561–564.

    PubMed  CAS  Google Scholar 

  40. Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 2006; 27(1):73–100.

    PubMed  CAS  Google Scholar 

  41. Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rossner S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 2005; 365(9468):1389–1397.

    PubMed  CAS  Google Scholar 

  42. Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J. Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 2006; 295(7):761–775.

    PubMed  CAS  Google Scholar 

  43. Despres JP, Golay A, Sjostrom L. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 2005; 353(20):2121–2134.

    PubMed  CAS  Google Scholar 

  44. Friedman JM. A war on obesity, not the obese. Science 2003; 299(5608):856–858.

    PubMed  CAS  Google Scholar 

  45. Rosenbaum M, Leibel RL, Hirsch J. Obesity. N Engl J Med 1997; 337(6):396–407.

    PubMed  CAS  Google Scholar 

  46. O’Rahilly S, Farooqi IS, Yeo GS, Challis BG. Minireview: human obesity-lessons from monogenic disorders. Endocrinology 2003; 144(9):3757–3764.

    PubMed  Google Scholar 

  47. Halaas JL, Boozer C, Blair-West J, Fidahusein N, Denton DA, Friedman JM. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci USA 1997; 94(16):8878–8883.

    PubMed  CAS  Google Scholar 

  48. Bachman ES, Dhillon H, Zhang CY, Cinti S, Bianco AC, Kobilka BK et al. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 2002; 297(5582):843–845.

    PubMed  CAS  Google Scholar 

  49. Glick Z, Teague RJ, Bray GA. Brown adipose tissue: thermic response increased by a single low protein, high carbohydrate meal. Science 1981; 213(4512):1125–1127.

    PubMed  CAS  Google Scholar 

  50. Rothwell NJ, Stock MJ. A role for brown adipose tissue in diet-induced thermogenesis. Nature 1979; 281(5726):31–35.

    PubMed  CAS  Google Scholar 

  51. Stock MJ. Gluttony and thermogenesis revisited. Int J Obes Relat Metab Disord 1999; 23(11):1105–1117.

    PubMed  CAS  Google Scholar 

  52. Bouchard C, Tremblay A, Despres JP, Nadeau A, Lupien PJ, Theriault G et al. The response to long-term overfeeding in identical twins. N Engl J Med 1990; 322(21):1477–1482.

    PubMed  CAS  Google Scholar 

  53. Stunkard AJ, Harris JR, Pedersen NL, McClearn GE. The body-mass index of twins who have been reared apart. N Engl J Med 1990; 322(21):1483–1487.

    PubMed  CAS  Google Scholar 

  54. Saad MF, Alger SA, Zurlo F, Young JB, Bogardus C, Ravussin E. Ethnic differences in sympathetic nervous system-mediated energy expenditure. Am J Physiol 1991; 261(6 Pt 1):E789–E794.

    PubMed  CAS  Google Scholar 

  55. Levine JA, Eberhardt NL, Jensen MD. Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science 1999; 283(5399):212–214.

    PubMed  CAS  Google Scholar 

  56. de Jesus LA, Carvalho SD, Ribeiro MO, Schneider M, Kim SW, Harney JW et al. The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J Clin Invest 2001; 108(9):1379–1385.

    PubMed  CAS  Google Scholar 

  57. Speakman JR, Selman C. Physical activity and resting metabolic rate. Proc Nutr Soc 2003; 62(3):621–634.

    PubMed  Google Scholar 

  58. Ravussin E, Swinburn BA. Pathophysiology of obesity. Lancet 1992; 340(8816):404–408.

    PubMed  CAS  Google Scholar 

  59. Hill JO, Wyatt HR, Reed GW, Peters JC. Obesity and the environment: where do we go from here. Science 2003; 299(5608):853–855.

    PubMed  CAS  Google Scholar 

  60. Ravussin E, Lillioja S, Knowler WC, Christin L, Freymond D, Abbott WG et al. Reduced rate of energy expenditure as a risk factor for body-weight gain. N Engl J Med 1988; 318(8):467–472.

    PubMed  CAS  Google Scholar 

  61. Bogardus C, Lillioja S, Ravussin E, Abbott W, Zawadzki JK, Young A et al. Familial dependence of the resting metabolic rate. N Engl J Med 1986; 315(2):96–100.

    PubMed  CAS  Google Scholar 

  62. Weyer C, Pratley RE, Salbe AD, Bogardus C, Ravussin E, Tataranni PA. Energy expenditure, fat oxidation, and body weight regulation: a study of metabolic adaptation to long-term weight change. J Clin Endocrinol Metab 2000; 85(3):1087–1094.

    PubMed  CAS  Google Scholar 

  63. Scherrer U, Randin D, Tappy L, Vollenweider P, Jequier E, Nicod P. Body fat and sympathetic nerve activity in healthy subjects. Circulation 1994; 89(6):2634–2640.

    PubMed  CAS  Google Scholar 

  64. Rumantir MS, Vaz M, Jennings GL, Collier G, Kaye DM, Seals DR et al. Neural mechanisms in human obesity-related hypertension. J Hypertens 1999; 17(8):1125–1133.

    PubMed  CAS  Google Scholar 

  65. Jansson PA, Larsson A, Smith U, Lonnroth P. Glycerol production in subcutaneous adipose tissue in lean and obese humans. J Clin Invest 1992; 89(5):1610–1617.

    PubMed  CAS  Google Scholar 

  66. Kokkoris P, Pi-Sunyer FX. Obesity and endocrine disease. Endocrinol Metab Clin North Am 2003; 32(4):895–914.

    PubMed  CAS  Google Scholar 

  67. Irrcher I, Adhihetty PJ, Joseph AM, Ljubicic V, Hood DA. Regulation of mitochondrial biogenesis in muscle by endurance exercise. Sports Med 2003; 33(11):783–793.

    PubMed  Google Scholar 

  68. Jakicic JM. Exercise in the treatment of obesity. Endocrinol Metab Clin North Am 2003; 32(4):967–980.

    PubMed  Google Scholar 

  69. Levine J, Baukol P, Pavlidis I. The energy expended in chewing gum. N Engl J Med 1999; 341(27):2100.

    PubMed  CAS  Google Scholar 

  70. Brown WJ, Williams L, Ford JH, Ball K, Dobson AJ. Identifying the energy gap: magnitude and determinants of 5-year weight gain in midage women. Obes Res 2005; 13(8):1431–1441.

    PubMed  Google Scholar 

  71. Klem ML, Wing RR, McGuire MT, Seagle HM, Hill JO. A descriptive study of individuals successful at long-term maintenance of substantial weight loss. Am J Clin Nutr 1997; 66(2):239–246.

    PubMed  CAS  Google Scholar 

  72. Astrup A, Ryan L, Grunwald GK, Storgaard M, Saris W, Melanson E et al. The role of dietary fat in body fatness: evidence from a preliminary meta-analysis of ad libitum low-fat dietary intervention studies. Br J Nutr 2000; 83(Suppl 1):S25–S32.

    PubMed  CAS  Google Scholar 

  73. Thomas CD, Peters JC, Reed GW, Abumrad NN, Sun M, Hill JO. Nutrient balance and energy expenditure during ad libitum feeding of high-fat and high-carbohydrate diets in humans. Am J Clin Nutr 1992; 55(5):934–942.

    PubMed  CAS  Google Scholar 

  74. Hill JO, Drougas H, Peters JC. Obesity treatment: can diet composition play a role. Ann Intern Med 1993; 119(7 Pt 2):694–697.

    PubMed  CAS  Google Scholar 

  75. Due A, Toubro S, Skov AR, Astrup A. Effect of normal-fat diets, either medium or high in protein, on body weight in overweight subjects: a randomised 1-year trial. Int J Obes Relat Metab Disord 2004; 28(10):1283–1290.

    PubMed  CAS  Google Scholar 

  76. Ludwig DS. Dietary glycemic index and obesity. J Nutr 2000; 130(2S Suppl):280S–283S.

    PubMed  CAS  Google Scholar 

  77. Golay A, Allaz AF, Morel Y, de Tonnac N, Tankova S, Reaven G. Similar weight loss with low- or high-carbohydrate diets. Am J Clin Nutr 1996; 63(2):174–178.

    PubMed  CAS  Google Scholar 

  78. Stern L, Iqbal N, Seshadri P, Chicano KL, Daily DA, McGrory J et al. The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: one-year follow-up of a randomized trial. Ann Intern Med 2004; 140(10):778–785.

    PubMed  Google Scholar 

  79. Samaha FF, Iqbal N, Seshadri P, Chicano KL, Daily DA, McGrory J et al. A low-carbohydrate as compared with a low-fat diet in severe obesity. N Engl J Med 2003; 348(21):2074–2081.

    PubMed  CAS  Google Scholar 

  80. Nordmann AJ, Nordmann A, Briel M, Keller U, Yancy WS, Jr, Brehm BJ et al. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Arch Intern Med 2006; 166(3):285–293.

    PubMed  CAS  Google Scholar 

  81. Horton TJ, Drougas H, Brachey A, Reed GW, Peters JC, Hill JO. Fat and carbohydrate overfeeding in humans: different effects on energy storage. Am J Clin Nutr 1995; 62(1):19–29.

    PubMed  CAS  Google Scholar 

  82. Silva JE. The thermogenic effect of thyroid hormone and its clinical implications. Ann Intern Med 2003; 139(3):205–213.

    PubMed  CAS  Google Scholar 

  83. Rosenbaum M, Hirsch J, Murphy E, Leibel RL. Effects of changes in body weight on carbohydrate metabolism, catecholamine excretion, and thyroid function. Am J Clin Nutr 2000; 71(6):1421–1432.

    PubMed  CAS  Google Scholar 

  84. Snitker S, Macdonald I, Ravussin E, Astrup A. The sympathetic nervous system and obesity: role in aetiology and treatment. Obes Rev 2000; 1(1):5–15.

    PubMed  CAS  Google Scholar 

  85. Lowell BB, Bachman ES. Beta-adrenergic receptors, diet-induced thermogenesis, and obesity. J Biol Chem 2003; 278(32):29385–29388.

    PubMed  CAS  Google Scholar 

  86. Tataranni PA, Young JB, Bogardus C, Ravussin E. A low sympathoadrenal activity is associated with body weight gain and development of central adiposity in Pima Indian men. Obes Res 1997; 5(4):341–347.

    PubMed  CAS  Google Scholar 

  87. Arch JR, Ainsworth AT, Cawthorne MA, Piercy V, Sennitt MV, Thody VE et al. Atypical beta-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature 1984; 309(5964):163–165.

    PubMed  CAS  Google Scholar 

  88. Himms-Hagen J, Cui J, Danforth E, Jr, Taatjes DJ, Lang SS, Waters BL et al. Effect of CL-316,243, a thermogenic beta 3-agonist, on energy balance and brown and white adipose tissues in rats. Am J Physiol 1994; 266(4 Pt 2):R1371–R1382.

    PubMed  CAS  Google Scholar 

  89. Levin BE, Triscari J, Marquet E, Sullivan AC. Dietary obesity and neonatal sympathectomy. I. Effects on body composition and brown adipose. Am J Physiol 1984; 247(6 Pt 2):R979–R987.

    PubMed  CAS  Google Scholar 

  90. Rohrer DK, Chruscinski A, Schauble EH, Bernstein D, Kobilka BK. Cardiovascular and metabolic alterations in mice lacking both beta1- and beta2-adrenergic receptors. J Biol Chem 1999; 274(24):16701–16708.

    PubMed  CAS  Google Scholar 

  91. Susulic VS, Frederich RC, Lawitts J, Tozzo E, Kahn BB, Harper ME et al. Targeted disruption of the beta 3-adrenergic receptor gene. J Biol Chem 1995; 270(49):29483–29492.

    PubMed  CAS  Google Scholar 

  92. Bachman ES, Hampton TG, Dhillon H, Amende I, Wang J, Morgan JP et al. The metabolic and cardiovascular effects of hyperthyroidism are largely independent of beta-adrenergic stimulation. Endocrinology 2004; 145(6):2767–2774.

    PubMed  CAS  Google Scholar 

  93. Leite A, Neto JA, Leyton JF, Crivellaro O, el Dorry HA. Phosphofructokinase from bumblebee flight muscle. Molecular and catalytic properties and role of the enzyme in regulation of the fructose 6-phosphate/fructose 1,6-bisphosphate cycle. J Biol Chem 1988; 263(33):17527–17533.

    PubMed  CAS  Google Scholar 

  94. Block BA, O’Brien J, Meissner G. Characterization of the sarcoplasmic reticulum proteins in the thermogenic muscles of fish. J Cell Biol 1994; 127(5):1275–1287.

    PubMed  CAS  Google Scholar 

  95. Denborough M. Malignant hyperthermia. Lancet 1998; 352(9134):1131–1136.

    PubMed  CAS  Google Scholar 

  96. Ducreux S, Zorzato F, Muller C, Sewry C, Muntoni F, Quinlivan R et al. Effect of ryanodine receptor mutations on interleukin-6 release and intracellular calcium homeostasis in human myotubes from malignant hyperthermia-susceptible individuals and patients affected by central core disease. J Biol Chem 2004; 279(42):43838–43846.

    PubMed  CAS  Google Scholar 

  97. Guan HP, Li Y, Jensen MV, Newgard CB, Steppan CM, Lazar MA. A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat Med 2002; 8(10):1122–1128.

    PubMed  CAS  Google Scholar 

  98. Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski CM, Yandell BS et al. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci USA 2002; 99(17):11482–11486.

    PubMed  CAS  Google Scholar 

  99. Smith SJ, Cases S, Jensen DR, Chen HC, Sande E, Tow B et al. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat Genet 2000; 25(1):87–90.

    PubMed  CAS  Google Scholar 

  100. Stone SJ, Myers HM, Watkins SM, Brown BE, Feingold KR, Elias PM et al. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J Biol Chem 2004; 279(12):11767–11776.

    PubMed  CAS  Google Scholar 

  101. Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 2001; 291(5513):2613–2616.

    PubMed  CAS  Google Scholar 

  102. Ludwig EH, Mahley RW, Palaoglu E, Ozbayrakci S, Balestra ME, Borecki IB et al. DGAT1 promoter polymorphism associated with alterations in body mass index, high density lipoprotein levels and blood pressure in Turkish women. Clin Genet 2002; 62(1):68–73.

    PubMed  Google Scholar 

  103. Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002; 415(6869):339–343.

    PubMed  CAS  Google Scholar 

  104. Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004; 428(6982):569–574.

    PubMed  CAS  Google Scholar 

  105. Lowell BB, Susulic V, Hamann A, Lawitts JA, Himms-Hagen J, Boyer BB et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 1993; 366(6457):740–742.

    PubMed  CAS  Google Scholar 

  106. Robidoux J, Martin TL, Collins S. Beta-adrenergic receptors and regulation of energy expenditure: a family affair. Annu Rev Pharmacol Toxicol 2004; 44:297–323.

    PubMed  CAS  Google Scholar 

  107. Weyer C, Gautier JF, Danforth E, Jr. Development of beta 3-adrenoceptor agonists for the treatment of obesity and diabetes – an update. Diabetes Metab 1999; 251):11–21.

    PubMed  CAS  Google Scholar 

  108. Nicholls DG. A history of UCP1. Biochem Soc Trans 2001; 29Pt 6):751–755.

    PubMed  CAS  Google Scholar 

  109. Zhang CY, Baffy G, Perret P, Krauss S, Peroni O, Grujic D et al. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell 2001; 1056):745–755.

    PubMed  CAS  Google Scholar 

  110. Arsenijevic D, Onuma H, Pecqueur C, Raimbault S, Manning BS, Miroux B et al. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet 2000; 26(4):435–439.

    PubMed  CAS  Google Scholar 

  111. Clapham JC, Arch JR, Chapman H, Haynes A, Lister C, Moore GB et al. Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature 2000; 406(6794):415–418.

    PubMed  CAS  Google Scholar 

  112. Havel PJ. Update on adipocyte hormones: regulation of energy balance and carbohydrate/lipid metabolism. Diabetes 2004; 53(Suppl 1):S143–S151.

    PubMed  CAS  Google Scholar 

  113. Klaus S. Adipose tissue as a regulator of energy balance. Curr Drug Targets 2004; 5(3):241–250.

    PubMed  CAS  Google Scholar 

  114. Goran MI, Kaskoun M, Johnson R. Determinants of resting energy expenditure in young children. J Pediatr 1994; 125(3):362–367.

    PubMed  CAS  Google Scholar 

  115. Campfield LA, Smith FJ, Burn P. Strategies and potential molecular targets for obesity treatment. Science 1998; 280(5368):1383–1387.

    PubMed  CAS  Google Scholar 

  116. Harper JA, Dickinson K, Brand MD. Mitochondrial uncoupling as a target for drug development for the treatment of obesity. Obes Rev 2001; 2(4):255–265.

    PubMed  CAS  Google Scholar 

  117. Gura T. Obesity drug pipeline not so fat. Science 2003; 299(5608):849–852.

    PubMed  CAS  Google Scholar 

  118. O’Rahilly S. Leptin: defining its role in humans by the clinical study of genetic disorders. Nutr Rev 2002; 60(10 Pt 2):S30–S34.

    PubMed  Google Scholar 

  119. Farooqi IS, Keogh JM, Kamath S, Jones S, Gibson WT, Trussell R et al. Partial leptin deficiency and human adiposity. Nature 2001; 414(6859):34–35.

    PubMed  CAS  Google Scholar 

  120. Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 1999; 282(16):1568–1575.

    PubMed  CAS  Google Scholar 

  121. Grover GJ, Mellstrom K, Ye L, Malm J, Li YL, Bladh LG et al. Selective thyroid hormone receptor-beta activation: a strategy for reduction of weight, cholesterol, and lipoprotein (a) with reduced cardiovascular liability. Proc Natl Acad Sci USA 2003; 100(17):10067–10072.

    PubMed  CAS  Google Scholar 

  122. Wagner RL, Huber BR, Shiau AK, Kelly A, Cunha Lima ST, Scanlan TS et al. Hormone selectivity in thyroid hormone receptors. Mol Endocrinol 2001; 15(3):398–410.

    PubMed  CAS  Google Scholar 

  123. Daly PA, Krieger DR, Dulloo AG, Young JB, Landsberg L. Ephedrine, caffeine and aspirin: safety and efficacy for treatment of human obesity. Int J Obes Relat Metab Disord 1993; 17(Suppl 1):S73–S78.

    PubMed  Google Scholar 

  124. Yanovski SZ, Yanovski JA. Obesity. N Engl J Med 2002; 346(8):591–602.

    PubMed  CAS  Google Scholar 

  125. Connoley IP, Liu YL, Frost I, Reckless IP, Heal DJ, Stock MJ. Thermogenic effects of sibutramine and its metabolites. Br J Pharmacol 1999; 126(6):1487–1495.

    PubMed  CAS  Google Scholar 

  126. Thearle M, Aronne LJ. Obesity and pharmacologic therapy. Endocrinol Metab Clin North Am 2003; 32(4):1005–1024.

    PubMed  CAS  Google Scholar 

  127. Jessen AB, Toubro S, Astrup A. Effect of chewing gum containing nicotine and caffeine on energy expenditure and substrate utilization in men. Am J Clin Nutr 2003; 77(6):1442–1447.

    PubMed  CAS  Google Scholar 

  128. Hofstetter A, Schutz Y, Jequier E, Wahren J. Increased 24-hour energy expenditure in cigarette smokers. N Engl J Med 1986; 314(2):79–82.

    PubMed  CAS  Google Scholar 

  129. Astrup A, Toubro S, Christensen NJ, Quaade F. Pharmacology of thermogenic drugs. Am J Clin Nutr 1992; 55(1 Suppl):246S–248S.

    PubMed  CAS  Google Scholar 

  130. Arch JR. Beta(3)-adrenoceptor agonists: potential, pitfalls and progress. Eur J Pharmacol 2002; 440(2/3):99–107.

    PubMed  CAS  Google Scholar 

  131. Hu B, Jennings LL. Orally bioavailable beta 3-adrenergic receptor agonists as potential therapeutic agents for obesity and type-II diabetes. Prog Med Chem 2003; 41:167–194.

    PubMed  CAS  Google Scholar 

  132. Wing RR. Physical activity in the treatment of the adulthood overweight and obesity: current evidence and research issues. Med Sci Sports Exerc 1999; 31(11 Suppl):S547–S552.

    PubMed  CAS  Google Scholar 

  133. Ross R, Dagnone D, Jones PJ, Smith H, Paddags A, Hudson R et al. Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men. A randomized, controlled trial. Ann Intern Med 2000; 133(2):92–103.

    PubMed  CAS  Google Scholar 

  134. McGuire MT, Wing RR, Hill JO. The prevalence of weight loss maintenance among American adults. Int J Obes Relat Metab Disord 1999; 23(12):1314–1319.

    PubMed  CAS  Google Scholar 

  135. Boutelle KN, Kirschenbaum DS. Further support for consistent self-monitoring as a vital component of successful weight control. Obes Res 1998; 6(3):219–224.

    PubMed  CAS  Google Scholar 

  136. Rampersaud GC, Pereira MA, Girard BL, Adams J, Metzl JD. Breakfast habits, nutritional status, body weight, and academic performance in children and adolescents. J Am Diet Assoc 2005; 105(5):743–760.

    PubMed  Google Scholar 

  137. Allen YS, Adrian TE, Allen JM, Tatemoto K, Crow TJ, Bloom SR et al. Neuropeptide Y distribution in the rat brain. Science 1983; 221(4613):877–879.

    PubMed  CAS  Google Scholar 

  138. Hillebrand JJ, de Wied D, Adan RA. Neuropeptides, food intake and body weight regulation: a hypothalamic focus. Peptides 2002; 23(12):2283–2306.

    Google Scholar 

  139. Sawchenko PE, Pfeiffer SW. Ultrastructural localization of neuropeptide Y and galanin immuno-reactivity in the paraventricular nucleus of the hypothalamus in the rat. Brain Res 1988; 474(2):231–245.

    PubMed  CAS  Google Scholar 

  140. Hu Y, Bloomquist BT, Cornfield LJ, DeCarr LB, Flores-Riveros JR, Friedman L et al. Identification of a novel hypothalamic neuropeptide Y receptor associated with feeding behavior. J Biol Chem 1996; 271(42):26315–26319.

    PubMed  CAS  Google Scholar 

  141. Shiraishi T, Oomura Y, Sasaki K, Wayner MJ. Effects of leptin and orexin-A on food intake and feeding related hypothalamic neurons. Physiol Behav 2000; 71(3/4):251–261.

    PubMed  CAS  Google Scholar 

  142. Akabayashi A, Watanabe Y, Wahlestedt C, McEwen BS, Paez X, Leibowitz SF. Hypothalamic neuropeptide Y, its gene expression and receptor activity: relation to circulating corticosterone in adrenalectomized rats. Brain Res 1994; 665(2):201–212.

    PubMed  CAS  Google Scholar 

  143. McKibbin PE, Cotton SJ, McCarthy HD, Williams G. The effect of dexamethasone on neuropeptide Y concentrations in specific hypothalamic regions. Life Sci 1992; 51(16):1301–1307.

    PubMed  CAS  Google Scholar 

  144. Stanley BG, Lanthier D, Chin AS, Leibowitz SF. Suppression of neuropeptide Y-elicited eating by adrenalectomy or hypophysectomy: reversal with corticosterone. Brain Res 1989; 501(1):32–36.

    PubMed  CAS  Google Scholar 

  145. Tempel DL, Leibowitz SF. Adrenal steroid receptors: interactions with brain neuropeptide systems in relation to nutrient intake and metabolism. J Neuroendocrinol 1994; 6(5):479–501.

    PubMed  CAS  Google Scholar 

  146. Giraudo SQ, Kotz CM, Grace MK, Levine AS, Billington CJ. Rat hypothalamic NPY mRNA and brown fat uncoupling protein mRNA after high-carbohydrate or high-fat diets. Am J Physiol 1994; 266(5 Pt 2):R1578–R1583.

    PubMed  CAS  Google Scholar 

  147. Wang J, Akabayashi A, Dourmashkin J, Yu HJ, Alexander JT, Chae HJ et al. Neuropeptide Y in relation to carbohydrate intake, corticosterone and dietary obesity. Brain Res 1998; 802(1/2):75–88.

    PubMed  CAS  Google Scholar 

  148. Welch CC, Kim EM, Grace MK, Billington CJ, Levine AS. Palatability-induced hyperphagia increases hypothalamic dynorphin peptide and mRNA levels. Brain Res 1996; 721(1/2):126–131.

    PubMed  CAS  Google Scholar 

  149. Campfield LA, Smith FJ. Blood glucose dynamics and control of meal initiation: a pattern detection and recognition theory. Physiol Rev 2003; 83(1):25–58.

    PubMed  CAS  Google Scholar 

  150. Campfield LA, Smith FJ, Rosenbaum M, Hirsch J. Human eating: evidence for a physiological basis using a modified paradigm. Neurosci Biobehav Rev 1996; 20(1):133–137.

    PubMed  CAS  Google Scholar 

  151. Krysiak R, Obuchowicz E, Herman ZS. Interactions between the neuropeptide Y system and the hypothalamic-pituitary-adrenal axis. Eur J Endocrinol 1999; 140(2):130–136.

    PubMed  CAS  Google Scholar 

  152. Billington CJ, Briggs JE, Grace M, Levine AS. Effects of intracerebroventricular injection of neuropeptide Y on energy metabolism. Am J Physiol 1991; 260(2 Pt 2):R321–R327.

    PubMed  CAS  Google Scholar 

  153. Baskin DG, Hahn TM, Schwartz MW. Leptin sensitive neurons in the hypothalamus. Horm Metab Res 1999; 31(5):345–350.

    PubMed  CAS  Google Scholar 

  154. Broberger C, Johansen J, Johansson C, Schalling M, Hokfelt T. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci USA 1998; 95(25):15043–15048.

    PubMed  CAS  Google Scholar 

  155. Chen P, Li C, Haskell-Luevano C, Cone RD, Smith MS. Altered expression of agouti-related protein and its colocalization with neuropeptide Y in the arcuate nucleus of the hypothalamus during lactation. Endocrinology 1999; 140(6):2645–2650.

    PubMed  CAS  Google Scholar 

  156. Mizuno TM, Mobbs CV. Hypothalamic agouti-related protein messenger ribonucleic acid is inhibited by leptin and stimulated by fasting. Endocrinology 1999; 140(2):814–817.

    PubMed  CAS  Google Scholar 

  157. Wirth MM, Giraudo SQ. Agouti-related protein in the hypothalamic paraventricular nucleus: effect on feeding. Peptides 2000; 21(9):1369–1375.

    PubMed  CAS  Google Scholar 

  158. Small CJ, Kim MS, Stanley SA, Mitchell JR, Murphy K, Morgan DG et al. Effects of chronic central nervous system administration of agouti-related protein in pair-fed animals. Diabetes 2001; 50(2):248–254.

    PubMed  CAS  Google Scholar 

  159. Ghilardi N, Ziegler S, Wiestner A, Stoffel R, Heim MH, Skoda RC. Defective STAT signaling by the leptin receptor in diabetic mice. Proc Natl Acad Sci USA 1996; 93(13):6231–6235.

    PubMed  CAS  Google Scholar 

  160. Kim MS, Small CJ, Stanley SA, Morgan DG, Seal LJ, Kong WM et al. The central melanocortin system affects the hypothalamo-pituitary thyroid axis and may mediate the effect of leptin. J Clin Invest 2000; 105(7):1005–1011.

    PubMed  CAS  Google Scholar 

  161. Tritos NA, Maratos-Flier E. Two important systems in energy homeostasis: melanocortins and melanin-concentrating hormone. Neuropeptides 1999; 33(5):339–349.

    PubMed  CAS  Google Scholar 

  162. Bahjaoui-Bouhaddi M, Fellmann D, Griffond B, Bugnon C. Insulin treatment stimulates the rat melanin-concentrating hormone-producing neurons. Neuropeptides 1994; 27(4):251–258.

    PubMed  CAS  Google Scholar 

  163. Sergeev VG, Akmaev IG. Effects of blockers of carbohydrate and lipid metabolism on expression of mRNA of some hypothalamic neuropeptides. Bull Exp Biol Med 2000; 130(8):766–768.

    PubMed  CAS  Google Scholar 

  164. Sergeyev V, Broberger C, Gorbatyuk O, Hokfelt T. Effect of 2-mercaptoacetate and 2-deoxy-d-glucose administration on the expression of NPY, AGRP, POMC, MCH and hypocretin/orexin in the rat hypothalamus. NeuroReport 2000; 11(1):117–121.

    PubMed  CAS  Google Scholar 

  165. Toshinai K, Mondal MS, Nakazato M, Date Y, Murakami N, Kojima M et al. Upregulation of ghrelin expression in the stomach upon fasting, insulin-induced hypoglycemia, and leptin administration. Biochem Biophys Res Commun 2001; 281(5):1220–1225.

    PubMed  CAS  Google Scholar 

  166. Cai XJ, Widdowson PS, Harrold J, Wilson S, Buckingham RE, Arch JR et al. Hypothalamic orexin expression: modulation by blood glucose and feeding. Diabetes 1999; 48(11):2132–2137.

    PubMed  CAS  Google Scholar 

  167. Mondal MS, Nakazato M, Date Y, Murakami N, Yanagisawa M, Matsukura S. Widespread distribution of orexin in rat brain and its regulation upon fasting. Biochem Biophys Res Commun 1999; 256(3):495–499.

    PubMed  CAS  Google Scholar 

  168. Stricker-Krongrad A, Beck B. Modulation of hypothalamic hypocretin/orexin mRNA expression by glucocorticoids. Biochem Biophys Res Commun 2002; 296(1):129–133.

    PubMed  CAS  Google Scholar 

  169. Lawrence CB, Snape AC, Baudoin FM, Luckman SM. Acute central ghrelin and GH secretagogues induce feeding and activate brain appetite centers. Endocrinology 2002; 143(1):155–162.

    PubMed  CAS  Google Scholar 

  170. Olszewski PK, Li D, Grace MK, Billington CJ, Kotz CM, Levine AS. Neural basis of orexigenic effects of ghrelin acting within lateral hypothalamus. Peptides 2003; 24(4):597–602.

    PubMed  CAS  Google Scholar 

  171. Griffond B, Risold PY, Jacquemard C, Colard C, Fellmann D. Insulin-induced hypoglycemia increases preprohypocretin (orexin) mRNA in the rat lateral hypothalamic area. Neurosci Lett 1999; 262(2):77–80.

    PubMed  CAS  Google Scholar 

  172. Moriguchi T, Sakurai T, Nambu T, Yanagisawa M, Goto K. Neurons containing orexin in the lateral hypothalamic area of the adult rat brain are activated by insulin-induced acute hypoglycemia. Neurosci Lett 1999; 264(1/3):101–104.

    PubMed  CAS  Google Scholar 

  173. Beck B, Richy S. Hypothalamic hypocretin/orexin and neuropeptide Y: divergent interaction with energy depletion and leptin. Biochem Biophys Res Commun 1999; 258(1):119–122.

    PubMed  CAS  Google Scholar 

  174. Taheri S, Mahmoodi M, Opacka-Juffry J, Ghatei MA, Bloom SR. Distribution and quantification of immunoreactive orexin A in rat tissues. FEBS Lett 1999; 457(1):157–161.

    PubMed  CAS  Google Scholar 

  175. Wortley KE, Chang GQ, Davydova Z, Leibowitz SF. Peptides that regulate food intake: orexin gene expression is increased during states of hypertriglyceridemia. Am J Physiol Regul Integr Comp Physiol 2003; 284(6):R1454–R1465.

    PubMed  CAS  Google Scholar 

  176. Yamamoto Y, Ueta Y, Date Y, Nakazato M, Hara Y, Serino R et al. Down regulation of the prepro-orexin gene expression in genetically obese mice. Brain Res Mol Brain Res 1999; 65(1):14–22.

    PubMed  CAS  Google Scholar 

  177. Briski KP, Sylvester PW. Hypothalamic orexin-A-immunpositive neurons express Fos in response to central glucopenia. NeuroReport 2001; 12(3):531–534.

    PubMed  CAS  Google Scholar 

  178. Cai XJ, Evans ML, Lister CA, Leslie RA, Arch JR, Wilson S et al. Hypoglycemia activates orexin neurons and selectively increases hypothalamic orexin-B levels: responses inhibited by feeding and possibly mediated by the nucleus of the solitary tract. Diabetes 2001; 50(1):105–112.

    PubMed  CAS  Google Scholar 

  179. Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N, Mieda M et al. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 2003; 38(5):701–713.

    PubMed  CAS  Google Scholar 

  180. Gundlach AL, Burazin TC, Larm JA. Distribution, regulation and role of hypothalamic galanin systems: renewed interest in a pleiotropic peptide family. Clin Exp Pharmacol Physiol 2001; 28(1/2):100–105.

    PubMed  CAS  Google Scholar 

  181. Leibowitz SF. Brain peptides and obesity: pharmacologic treatment. Obes Res 1995; 3(Suppl 4):573S–589S.

    PubMed  CAS  Google Scholar 

  182. Tempel DL, Leibowitz SF. Diurnal variations in the feeding responses to norepinephrine, neuropeptide Y and galanin in the PVN. Brain Res Bull 1990; 25(6):821–825.

    PubMed  CAS  Google Scholar 

  183. Wynick D, Bacon A. Targeted disruption of galanin: new insights from knock-out studies. Neuropeptides 2002; 36(2/3):132–144.

    PubMed  CAS  Google Scholar 

  184. Akabayashi A, Koenig JI, Watanabe Y, Alexander JT, Leibowitz SF. Galanin-containing neurons in the paraventricular nucleus: a neurochemical marker for fat ingestion and body weight gain. Proc Natl Acad Sci USA 1994; 91(22):10375–10379.

    PubMed  CAS  Google Scholar 

  185. Leibowitz SF, Akabayashi A, Wang J. Obesity on a high-fat diet: role of hypothalamic galanin in neurons of the anterior paraventricular nucleus projecting to the median eminence. J Neurosci 1998; 18(7):2709–2719.

    PubMed  CAS  Google Scholar 

  186. Odorizzi M, Max JP, Tankosic P, Burlet C, Burlet A. Dietary preferences of Brattleboro rats correlated with an overexpression of galanin in the hypothalamus. Eur J Neurosci 1999; 11(9):3005–3014.

    PubMed  CAS  Google Scholar 

  187. Wang J, Akabayashi A, Yu HJ, Dourmashkin J, Alexander JT, Silva I et al. Hypothalamic galanin: control by signals of fat metabolism. Brain Res 1998; 804(1):7–20.

    PubMed  CAS  Google Scholar 

  188. Kyrkouli SE, Stanley BG, Leibowitz SF. Galanin: stimulation of feeding induced by medial hypothalamic injection of this novel peptide. Eur J Pharmacol 1986; 122(1):159–160.

    PubMed  CAS  Google Scholar 

  189. Nemeth PM, Rosser BW, Choksi RM, Norris BJ, Baker KM. Metabolic response to a high-fat diet in neonatal and adult rat muscle. Am J Physiol 1992; 262(2 Pt 1):C282–C286.

    PubMed  CAS  Google Scholar 

  190. MacNeil DJ, Howard AD, Guan X, Fong TM, Nargund RP, Bednarek MA et al. The role of melanocortins in body weight regulation: opportunities for the treatment of obesity. Eur J Pharmacol 2002; 450(1):93–109.

    PubMed  CAS  Google Scholar 

  191. Gantz I, Fong TM. The melanocortin system. Am J Physiol Endocrinol Metab 2003; 284(3):E468–E474.

    PubMed  CAS  Google Scholar 

  192. Kieffer TJ, Habener JF. The adipoinsular axis: effects of leptin on pancreatic beta-cells. Am J Physiol Endocrinol Metab 2000; 278(1):E1–E14.

    PubMed  CAS  Google Scholar 

  193. Clegg DJ, Benoit SC, Air EL, Jackman A, Tso P, D’Alessio D et al. Increased dietary fat attenuates the anorexic effects of intracerebroventricular injections of MTII. Endocrinology 2003; 144(7):2941–2946.

    PubMed  CAS  Google Scholar 

  194. Harrold JA, Williams G, Widdowson PS. Changes in hypothalamic agouti-related protein (AGRP), but not alpha-MSH or pro-opiomelanocortin concentrations in dietary-obese and food-restricted rats. Biochem Biophys Res Commun 1999; 258(3):574–577.

    PubMed  CAS  Google Scholar 

  195. Torri C, Pedrazzi P, Leo G, Muller EE, Cocchi D, Agnati LF et al. Diet-induced changes in hypothalamic pro-opio-melanocortin mRNA in the rat hypothalamus. Peptides 2002; 23(6):1063–1068.

    PubMed  CAS  Google Scholar 

  196. Pierroz DD, Ziotopoulou M, Ungsunan L, Moschos S, Flier JS, Mantzoros CS. Effects of acute and chronic administration of the melanocortin agonist MTII in mice with diet-induced obesity. Diabetes 2002; 51(5):1337–1345.

    PubMed  CAS  Google Scholar 

  197. Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan XM, Yu H et al. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet 2000; 26(1):97–102.

    PubMed  CAS  Google Scholar 

  198. Yeo GS, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG, O’Rahilly S. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet 1998; 20(2):111–112.

    PubMed  CAS  Google Scholar 

  199. Vaisse C, Clement K, Guy-Grand B, Froguel P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 1998; 20(2):113–114.

    PubMed  CAS  Google Scholar 

  200. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 2003; 348(12):1085–1095.

    PubMed  CAS  Google Scholar 

  201. Bluher S, Ziotopoulou M, Bullen JW, Jr, Moschos SJ, Ungsunan L, Kokkotou E et al. Responsiveness to peripherally administered melanocortins in lean and obese mice. Diabetes 2004; 53(1):82–90.

    PubMed  Google Scholar 

  202. Hurd YL, Fagergren P. Human cocaine- and amphetamine-regulated transcript (CART) mRNA is highly expressed in limbic- and sensory-related brain regions. J Comp Neurol 2000; 425(4):583–598.

    PubMed  CAS  Google Scholar 

  203. Kristensen P, Judge ME, Thim L, Ribel U, Christjansen KN, Wulff BS et al. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 1998; 393(6680):72–76.

    PubMed  CAS  Google Scholar 

  204. Elias CF, Lee C, Kelly J, Aschkenasi C, Ahima RS, Couceyro PR et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 1998; 21(6):1375–1385.

    PubMed  CAS  Google Scholar 

  205. Savontaus E, Conwell IM, Wardlaw SL. Effects of adrenalectomy on AGRP, POMC, NPY and CART gene expression in the basal hypothalamus of fed and fasted rats. Brain Res 2002; 958(1):130–138.

    PubMed  CAS  Google Scholar 

  206. Vrang N, Larsen PJ, Tang-Christensen M, Larsen LK, Kristensen P. Hypothalamic cocaine-amphetamine regulated transcript (CART) is regulated by glucocorticoids. Brain Res 2003; 965(1/2):45–50.

    PubMed  CAS  Google Scholar 

  207. Larm JA, Gundlach AL. Galanin-like peptide (GALP) mRNA expression is restricted to arcuate nucleus of hypothalamus in adult male rat brain. Neuroendocrinology 2000; 72(2):67–71.

    PubMed  CAS  Google Scholar 

  208. Jureus A, Cunningham MJ, McClain ME, Clifton DK, Steiner RA. Galanin-like peptide (GALP) is a target for regulation by leptin in the hypothalamus of the rat. Endocrinology 2000; 141(7):2703–2706.

    PubMed  CAS  Google Scholar 

  209. Kastin AJ, Akerstrom V, Hackler L. Food deprivation decreases blood galanin-like peptide and its rapid entry into the brain. Neuroendocrinology 2001; 74(6):423–432.

    PubMed  CAS  Google Scholar 

  210. Krasnow SM, Fraley GS, Schuh SM, Baumgartner JW, Clifton DK, Steiner RA. A role for galanin-like peptide in the integration of feeding, body weight regulation, and reproduction in the mouse. Endocrinology 2003; 144(3):813–822.

    PubMed  CAS  Google Scholar 

  211. Lawrence CB, Baudoin FM, Luckman SM. Centrally administered galanin-like peptide modifies food intake in the rat: a comparison with galanin. J Neuroendocrinol 2002; 14(11):853–860.

    PubMed  CAS  Google Scholar 

  212. Richard D, Lin Q, Timofeeva E. The corticotropin-releasing factor family of peptides and CRF receptors: their roles in the regulation of energy balance. Eur J Pharmacol 2002; 440(2/3):189–197.

    PubMed  CAS  Google Scholar 

  213. Cai A, Wise PM. Age-related changes in the diurnal rhythm of CRH gene expression in the paraventricular nuclei. Am J Physiol 1996; 270(2 Pt 1):E238–E243.

    PubMed  CAS  Google Scholar 

  214. Moldow RL, Fischman AJ. Circadian rhythm of corticotropin releasing factor-like immunoreactivity in rat hypothalamus. Peptides 1984; 5(6):1213–1215.

    PubMed  CAS  Google Scholar 

  215. Arase K, York DA, Shimizu H, Shargill N, Bray GA. Effects of corticotropin-releasing factor on food intake and brown adipose tissue thermogenesis in rats. Am J Physiol 1988; 255(3 Pt 1):E255–E259.

    PubMed  CAS  Google Scholar 

  216. Egawa M, Yoshimatsu H, Bray GA. Effect of corticotropin releasing hormone and neuropeptide Y on electrophysiological activity of sympathetic nerves to interscapular brown adipose tissue. Neuroscience 1990; 34(3):771–775.

    PubMed  CAS  Google Scholar 

  217. Glowa JR, Barrett JE, Russell J, Gold PW. Effects of corticotropin releasing hormone on appetitive behaviors. Peptides 1992; 13(3):609–621.

    PubMed  CAS  Google Scholar 

  218. Inui A. Transgenic approach to the study of body weight regulation. Pharmacol Rev 2000; 52(1):35–61.

    PubMed  CAS  Google Scholar 

  219. Richard D, Huang Q, Timofeeva E. The corticotropin-releasing hormone system in the regulation of energy balance in obesity. Int J Obes Relat Metab Disord 2000; 24 Suppl 2:S36–S39.

    PubMed  CAS  Google Scholar 

  220. Rothwell NJ. Central effects of CRF on metabolism and energy balance. Neurosci Biobehav Rev 1990; 14(3):263–271.

    PubMed  CAS  Google Scholar 

  221. Whitnall MH. Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog Neurobiol 1993; 40(5):573–629.

    PubMed  CAS  Google Scholar 

  222. Schwartz MW, Woods SC, Porte D, Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000; 404(6778):661–671.

    PubMed  CAS  Google Scholar 

  223. Heisler LK, Cowley MA, Kishi T, Tecott LH, Fan W, Low MJ et al. Central serotonin and melanocortin pathways regulating energy homeostasis. Ann NY Acad Sci 2003; 994:169–174.

    PubMed  CAS  Google Scholar 

  224. Wang GJ, Volkow ND, Fowler JS. The role of dopamine in motivation for food in humans: implications for obesity. Expert Opin Ther Targets 2002; 6(5):601–609.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kelesidis, I., Kelesidis, T., Mantzoros, C.S. (2009). Central Integration of Environmental and Endogenous Signals Important in the Regulation of Food Intake and Energy Expenditure. In: Mantzoros, C. (eds) Nutrition and Metabolism. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-60327-453-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-453-1_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-452-4

  • Online ISBN: 978-1-60327-453-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics