Skip to main content

Imprinting Errors and IVF

  • Chapter
  • First Online:
Biennial Review of Infertility

Abstract

Imprinting disorders have been reported in children conceived by IVF. There is concern that procedures of IVF may interfere with epigenetic processes responsible for setting imprint marks during gametogenesis. This possibility seems plausible in light of the rarity of these conditions and results of experiments examining imprint marks in model organisms subjected to in vitro manipulations. We quantitatively summarized published human data on this question by meta-analysis, relating IVF to the risk of four model imprinting disorders. Estimates of summary relative risk were 3.7 (95% confidence interval (CI) = 1.7–7.8) for Angelman syndrome, 6.1 (95% CI = 3.8–11) for Beckwith-Wiedemann syndrome, and 5.7 (95% CI = 1.4–22) for Prader-Willi syndrome. Published data were insufficient to conduct meaningful analyses of risk of Silver-Russel syndrome. These results are consistent with the elevated risk of imprinting disorders following IVF, although absolute risk of these outcomes remains low. Elevated risk could in theory arise from either detrimental effects of IVF procedures or increased occurrence of aberrant methylation of imprinted genes in gametes of subfertile parents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.geneimprint.com/site/genes-by-species, 2008. 1. http://www.geneimprint.com/site/genes-by-species, 2008.

  2. Maeda N, Hayashizaki Y. Genome-wide survey of imprinted genes. Cytogenet Genome Res 2006;113 (1–4): 144–52.

    Article  PubMed  CAS  Google Scholar 

  3. Wilkins J. Genomic imprinting and methylation: epigenetic canalization and confl ict. Trends Genet 2005;21 (6): 356–65.

    Article  PubMed  CAS  Google Scholar 

  4. Abu-Amero S, Monk D, Apostolidou S, Stanier P, Moore G. Imprinted genes and their role in human fetal growth. Cytogenet Genome Res 2006;113 (1–4): 262–70.

    Article  PubMed  CAS  Google Scholar 

  5. Tycko B, Morison I. Physiological functions of imprinted genes. J Cell Physiol 2002;192 (3): 245–58.

    Article  PubMed  CAS  Google Scholar 

  6. Surani M, Barton S, Norris M. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 1984;308 (5959): 548–50.

    Article  PubMed  CAS  Google Scholar 

  7. Mutter G. Role of imprinting in abnormal human development. Mutat Res 1997;396 (1–2): 141–7.

    PubMed  CAS  Google Scholar 

  8. Cox G, Bürger J, Lip V, Mau U, Sperling K, Wu B, et al. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet 2002;71 (1): 162–4.

    Article  PubMed  CAS  Google Scholar 

  9. Ørstavik K, Eiklid K, van der Hagen C, Spetalen S, Kierulf K, Skjeldal O, et al. Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection. Am J Hum Genet 2003;72 (1): 218–9.

    Article  PubMed  Google Scholar 

  10. Sinclair K. Assisted reproductive technologies and pregnancy outcomes: mechanistic insights from animal studies. Semin Reprod Med 2008;26 (2): 153–61.

    Article  PubMed  Google Scholar 

  11. Sato A, Otsu E, Negishi H, Utsunomiya T, Arima T. Aberrant DNA methylation of imprinted loci in superovulated oocytes. Hum Reprod 2007;22 (1): 26–35.

    Article  PubMed  CAS  Google Scholar 

  12. Fortier A, Lopes F, Darricarré re N, Martel J, Trasler J. Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum Mol Genet 2008;17 (11): 1653–65.

    Article  PubMed  CAS  Google Scholar 

  13. Li T, Vu T, Ulaner G, Littman E, Ling J, Chen H, et al. IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch. Mol Hum Reprod 2005;11 (9): 631–40.

    Article  PubMed  CAS  Google Scholar 

  14. Rivera R, Stein P, Weaver J, Mager J, Schultz R, Bartolomei M. Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Hum Mol Genet 2008;17 (1): 1–14.

    Article  PubMed  CAS  Google Scholar 

  15. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. [see comment]. BMJ 1997;315 (7109): 629–34.

    PubMed  CAS  Google Scholar 

  16. Koudstaal J, Braat D, Bruinse H, Naaktgeboren N, Vermeiden J, Visser G. Obstetric outcome of singleton pregnancies after IVF: a matched control study in four Dutch university hospitals. Hum Reprod 2000;15 (8): 1819–25.

    Article  PubMed  CAS  Google Scholar 

  17. Sutcliffe A, Peters C, Bowdin S, Temple K, Reardon W, Wilson L, et al. Assisted reproductive therapies and imprinting disorders – a preliminary British survey. Hum Reprod 2006;21 (4): 1009–11.

    Article  PubMed  CAS  Google Scholar 

  18. Doornbos M, Maas S, McDonnell J, Vermeiden J, Hennekam R. Infertility, assisted reproduction technologies and imprinting disturbances: a Dutch study. Hum Reprod 2007;22 (9): 2476–80.

    Article  PubMed  Google Scholar 

  19. DeBaun M, Niemitz E, Feinberg A. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 2003;72 (1): 156–60.

    Article  PubMed  CAS  Google Scholar 

  20. Gicquel C, Gaston V, Mandelbaum J, Siffroi J, Flahault A, Le Bouc Y. In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am J Hum Genet 2003;72 (5): 1338–41.

    Article  PubMed  CAS  Google Scholar 

  21. Maher E, Afnan M, Barratt C. Epigenetic risks related to assisted reproductive technologies: epigenetics, imprinting, ART and icebergs? Hum Reprod 2003;18 (12): 2508–11.

    Article  PubMed  Google Scholar 

  22. Sutcliffe A, D‗Souza S, Cadman J, Richards B, McKinlay I, Lieberman B. Minor congenital anomalies, major congenital malformations and development in children conceived from cryopreserved embryos. Hum Reprod 1995;10 (12): 3332–7.

    PubMed  CAS  Google Scholar 

  23. Halliday J, Oke K, Breheny S, Algar E, J Amor D. Beckwith- Wiedemann syndrome and IVF: a case-control study. Am J Hum Genet 2004;75 (3): 526–8.

    Article  PubMed  CAS  Google Scholar 

  24. Lidegaard O, Pinborg A, Andersen A. Imprinting diseases and IVF: Danish National IVF cohort study. Hum Reprod 2005;20 (4): 950–4.

    Article  PubMed  Google Scholar 

  25. Hartmann S, Bergmann M, Bohle R, Weidner W, Steger K. Genetic imprinting during impaired spermatogenesis. Mol Hum Reprod 2006;12 (6): 407–11.

    Article  PubMed  CAS  Google Scholar 

  26. Marques C, Carvalho F, Sousa M, Barros A. Genomic imprinting in disruptive spermatogenesis. Lancet 2004;363 (9422): 1700–2.

    Article  PubMed  CAS  Google Scholar 

  27. Manning M, Lissens W, Liebaers I, Van Steirteghem A, Weidner W. Imprinting analysis in spermatozoa prepared for intracytoplasmic sperm injection (ICSI). Int J Androl 2001;24 (2): 87–94.

    Article  PubMed  CAS  Google Scholar 

  28. Houshdaran S, Cortessis V, Siegmund K, Yang A, Laird P, Sokol R. Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS ONE 2007;2 (12): e1289.

    Article  PubMed  Google Scholar 

  29. Lalande M, Calciano M. Molecular epigenetics of Angelman syndrome. Cell Mol Life Sci 2007;64 (7–8): 947–60.

    Article  PubMed  CAS  Google Scholar 

  30. Maher E. Imprinting and assisted reproductive technology. Hum Mol Genet 2005;14 Spec No 1: R133–8.

    Article  PubMed  CAS  Google Scholar 

  31. Chen C, Visootsak J, Do;;s S. Graham JM. Proader-Willi Syndrome: an update and review for the primary pediatrician. Clin Pediatr (Phila) 2007;46 (7): 580–591.

    Article  CAS  Google Scholar 

  32. Abu-Amero S, Monk D, Frost J, Preece M, Stanier P, Moore G. The genetic aetiology of Silver-Russell syndrome. J Med Genet 2008; 45 (4): 193–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Southern California Environmental Health Sciences Center (grant # 5P30ES007048) funded by the National Institute of Environmental Health Sciences. The author thanks Carol Davis-Dao and Peter George Cortessis the younger for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria K. Cortessis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cortessis, V.K. (2009). Imprinting Errors and IVF. In: Voorhis, B., Schlegel, P., Racowsky, C., Carrell, D. (eds) Biennial Review of Infertility. Humana Press. https://doi.org/10.1007/978-1-60327-392-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-392-3_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-391-6

  • Online ISBN: 978-1-60327-392-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics