Skip to main content

Protein Oxidation Triggers the Unfolded Protein Response and Neuronal Injury in Chemically Induced Parkinson Disease

  • Chapter
  • First Online:
  • 564 Accesses

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

The recent identification of genetic mutations linked to Parkinson’s disease (PD), such as α-synuclein, parkin, and LRRK2, has highlighted the role of aberrant protein handling and degradation in this disorder. Moreover, a growing body of data suggests that environmental toxins that mimic PD also exhibit faulty protein handling, providing a mechanistic link between toxicity and the identified PD mutations. In particular, toxin-mediated cell stress and/or some PD mutations can trigger unfolded protein response, a cell-protective mechanism intended for surviving short-term cellular perturbations. If this process cannot overcome the insult, it is thought that apoptosis is rapidly activated. Although the toxicity of several parkinsonian mimetics is thought to stem from the production of reactive oxygen species, whether oxidative stress and other forms of cell stress are subsequent or parallel events is not well established. Emerging data collected using molecular, biochemical, and cellular techniques suggest that oxidative stress precedes the appearance of unfolded protein response which, in turn, precedes apoptosis. Knowledge of the signaling pathways utilized by parkinsonian mimetics as well as their temporal induction may aid in designing more effective interventions in models of PD and ultimately to treat PD in humans.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Blum D, Torch S, Lambeng N, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol 2001;65(2):135–72.

    Article  PubMed  CAS  Google Scholar 

  2. Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron 2003;39(6):889–909.

    Article  PubMed  CAS  Google Scholar 

  3. Jenner P. Oxidative stress in Parkinson's disease. Ann Neurol 2003;53 Suppl 3:S26–36; discussion S-8.

    Article  Google Scholar 

  4. McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P. Failure of the ubiquitin-proteasome system in Parkinson's disease. Nat Rev Neurosci 2001;2(8):589–94.

    Article  PubMed  CAS  Google Scholar 

  5. Giasson BI, Duda JE, Murray IV, et al. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 2000;290(5493):985–9.

    Article  PubMed  CAS  Google Scholar 

  6. Choi J, Levey AI, Weintraub ST, et al. Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson's and Alzheimer's diseases. J Biol Chem 2004;279(13):13256–64.

    Article  PubMed  CAS  Google Scholar 

  7. Choi J, Sullards MC, Olzmann JA, et al. Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J Biol Chem 2006;281(16):10816–24.

    Article  PubMed  CAS  Google Scholar 

  8. LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ. Dopamine covalently modifies and functionally inactivates parkin. Nat Med 2005;11(11):1214–21.

    Article  PubMed  CAS  Google Scholar 

  9. Forman MS, Lee VM, Trojanowski JQ. ‘Unfolding' pathways in neurodegenerative disease. Trends Neurosci 2003;26(8):407–10.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang K, Kaufman RJ. Signaling the unfolded protein response from the endoplasmic reticulum. J Biol Chem 2004;279(25):25935–8.

    Article  PubMed  CAS  Google Scholar 

  11. Betarbet R, Sherer TB, Greenamyre JT. Ubiquitin-proteasome system and Parkinson's diseases. Exp Neurol 2005;191 Suppl 1:S17–27.

    Article  PubMed  CAS  Google Scholar 

  12. Polymeropoulos MH, Higgins JJ, Golbe LI, et al. Mapping of a gene for Parkinson's disease to chromosome 4q21-q23. Science 1996;274(5290):1197–9.

    Article  PubMed  CAS  Google Scholar 

  13. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 1997;276(5321):2045–7.

    Article  PubMed  CAS  Google Scholar 

  14. Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998;392(6676):605–8.

    Article  PubMed  CAS  Google Scholar 

  15. Imai Y, Soda M, Takahashi R. Parkin suppresses unfolded protein stress-induced cell death through Its E3 ubiquitin-protein ligase activity. J Biol Chem 2000;275(46):35661–4.

    Article  PubMed  CAS  Google Scholar 

  16. Goldberg MS, Fleming SM, Palacino JJ, et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 2003;278(44):43628–35.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM. Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A 2000;97(24):13354–9.

    Article  PubMed  CAS  Google Scholar 

  18. Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 2001;105(7):891–902.

    Article  PubMed  CAS  Google Scholar 

  19. Dawson TM, Dawson VL. Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J Clin Invest 2003;111(2):145–51.

    PubMed  CAS  Google Scholar 

  20. Chung KK, Zhang Y, Lim KL, et al. Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 2001;7(10):1144–50.

    Article  PubMed  CAS  Google Scholar 

  21. Leroy E, Boyer R, Auburger G, et al. The ubiquitin pathway in Parkinson's disease. Nature 1998;395(6701):451–2.

    Article  PubMed  CAS  Google Scholar 

  22. Pickart CM. Ubiquitin in chains. Trends Biochem Sci 2000;25(11):544–8.

    Article  PubMed  CAS  Google Scholar 

  23. Saigoh K, Wang YL, Suh JG, et al. Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat Genet 1999;23(1):47–51.

    Article  PubMed  CAS  Google Scholar 

  24. McNaught KS, Jenner P. Proteasomal function is impaired in substantia nigra in Parkinson's disease. Neurosci Lett 2001;297(3):191–4.

    Article  PubMed  CAS  Google Scholar 

  25. McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW. Altered proteasomal function in sporadic Parkinson's disease. Exp Neurol 2003;179(1):38–46.

    Article  PubMed  CAS  Google Scholar 

  26. Beal MF. Experimental models of Parkinson's disease. Nat Rev Neurosci 2001;2(5):325–34.

    Article  PubMed  CAS  Google Scholar 

  27. Speciale SG. MPTP: insights into parkinsonian neurodegeneration. Neurotoxicol Teratol 2002;24(5):607–20.

    Article  PubMed  CAS  Google Scholar 

  28. Lotharius J, Dugan LL, O'Malley KL. Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J Neurosci 1999;19(4):1284–93.

    PubMed  CAS  Google Scholar 

  29. Choi WS, Yoon SY, Oh TH, Choi EJ, O'Malley KL, Oh YJ. Two distinct mechanisms are involved in 6-hydroxydopamine- and MPP+-induced dopaminergic neuronal cell death: role of caspases, ROS, and JNK. J Neurosci Res 1999;57(1):86–94.

    Article  PubMed  CAS  Google Scholar 

  30. Davis GC, Williams AC, Markey SP, et al. Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1979;1(3):249–54.

    Article  PubMed  CAS  Google Scholar 

  31. Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983;219(4587):979–80.

    Article  PubMed  CAS  Google Scholar 

  32. Kopin IJ, Schoenberg DG. MPTP in animal models of Parkinson's disease. Mt Sinai J Med 1988;55(1):43–9.

    PubMed  CAS  Google Scholar 

  33. Coelln RV, Kugler S, Bahr M, Weller M, Dichgans J, Schulz JB. Rescue from death but not from functional impairment: caspase inhibition protects dopaminergic cells against 6-hydroxydopamine-induced apoptosis but not against the loss of their terminals. J Neurochem 2001;77(1):263–73.

    Article  Google Scholar 

  34. Holtz WA, O'Malley KL. Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J Biol Chem 2003;278(21):19367–77.

    Article  PubMed  CAS  Google Scholar 

  35. Jeon BS, Kholodilov NG, Oo TF, et al. Activation of caspase-3 in developmental models of programmed cell death in neurons of the substantia nigra. J Neurochem 1999;73(1):322–33.

    Article  PubMed  CAS  Google Scholar 

  36. Oh YJ, Wong SC, Moffat M, O'Malley KL. Overexpression of Bcl-2 attenuates MPP+, but not 6-ODHA, induced cell death in a dopaminergic neuronal cell line. Neurobiol Dis 1995;2(3):157–67.

    Article  PubMed  CAS  Google Scholar 

  37. O'Malley KL, Liu J, Lotharius J, Holtz W. Targeted expression of BCL-2 attenuates MPP+ but not 6-OHDA induced cell death in dopaminergic neurons. Neurobiol Dis 2003;14(1):43–51.

    Article  PubMed  Google Scholar 

  38. Lotharius J, O'Malley KL. The parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation. A novel mechanism of toxicity. J Biol Chem 2000;275(49):38581–8.

    CAS  Google Scholar 

  39. Han BS, Hong HS, Choi WS, Markelonis GJ, Oh TH, Oh YJ. Caspase-dependent and -independent cell death pathways in primary cultures of mesencephalic dopaminergic neurons after neurotoxin treatment. J Neurosci 2003;23(12):5069–78.

    PubMed  CAS  Google Scholar 

  40. Holtz WA, Turetzky JM, Jong YJ, O'Malley KL. Oxidative stress-triggered unfolded protein response is upstream of intrinsic cell death evoked by parkinsonian mimetics. J Neurochem 2006;99(1):54–69.

    Article  PubMed  CAS  Google Scholar 

  41. Kim-Han JS, O'Malley KL. Cell stress induced by the parkinsonian mimetic, 6-hydroxydopamine, is concurrent with oxidation of the chaperone, ERp57, and aggresome formation. Antioxid Redox Signa 2007;9(12):2255–64.

    Article  CAS  Google Scholar 

  42. Lee YM, Park SH, Shin DI, et al. Oxidative modification of peroxiredoxin is associated with drug-induced apoptotic signaling in experimental models of Parkinson disease. J Biol Chem 2008;283(15):9986–98.

    Article  PubMed  CAS  Google Scholar 

  43. Saito Y, Nishio K, Ogawa Y, et al. Molecular mechanisms of 6-hydroxydopamine-induced cytotoxicity in PC12 cells: involvement of hydrogen peroxide-dependent and -independent action. Free Radic Biol Med 2007;42(5):675–85.

    Article  PubMed  CAS  Google Scholar 

  44. Martin LJ. DNA damage and repair: relevance to mechanisms of neurodegeneration. J Neuropathol Exp Neurol 2008;67(5):377–87.

    Article  PubMed  CAS  Google Scholar 

  45. Takai N, Nakanishi H, Tanabe K, et al. Involvement of caspase-like proteinases in apoptosis of neuronal PC12 cells and primary cultured microglia induced by 6-hydroxydopamine. J Neurosci Res 1998;54(2):214–22.

    Article  PubMed  CAS  Google Scholar 

  46. Li H, Ding JH, Hu G. Group I mGluR ligands fail to affect 6-hydroxydopamine- induced death and glutamate release of PC12 cells. Acta Pharmacol Sin 2003;24(7):641–5.

    PubMed  CAS  Google Scholar 

  47. Jiang H, Ren Y, Zhao J, Feng J. Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet 2004;13(16):1745–54.

    Article  PubMed  CAS  Google Scholar 

  48. Stark G. Functional consequences of oxidative membrane damage. J Membr Biol 2005;205(1):1–16.

    Article  PubMed  CAS  Google Scholar 

  49. Zarkovic K. 4-hydroxynonenal and neurodegenerative diseases. Mol Aspects Med 2003;24(4–5):293–303.

    Article  PubMed  CAS  Google Scholar 

  50. Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D, Greene LA. Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. J Neurosci 2002;22(24):10690–8.

    PubMed  CAS  Google Scholar 

  51. Ryu EJ, Angelastro JM, Greene LA. Analysis of gene expression changes in a cellular model of Parkinson disease. Neurobiol Dis 2005;18(1):54–74.

    Article  PubMed  CAS  Google Scholar 

  52. Holtz WA, Turetzky JM, O'Malley KL. Microarray expression profiling identifies early signaling transcripts associated with 6-OHDA-induced dopaminergic cell death. Antioxid Redox Signal 2005;7(5–6):639–48.

    Article  PubMed  CAS  Google Scholar 

  53. Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 2000;150(4):887–94.

    Article  PubMed  CAS  Google Scholar 

  54. Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000;403(6765):98–103.

    Article  PubMed  CAS  Google Scholar 

  55. Nutt LK, Pataer A, Pahler J, et al. Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J Biol Chem 2002;277(11):9219–25.

    Article  PubMed  CAS  Google Scholar 

  56. Scorrano L, Oakes SA, Opferman JT, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 2003;300(5616):135–9.

    Article  PubMed  CAS  Google Scholar 

  57. Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 2003;5(12):1051–61.

    Article  PubMed  CAS  Google Scholar 

  58. Darios F, Lambeng N, Troadec JD, Michel PP, Ruberg M. Ceramide increases mitochondrial free calcium levels via caspase 8 and Bid: role in initiation of cell death. J Neurochem 2003;84(4):643–54.

    Article  PubMed  CAS  Google Scholar 

  59. Oakes SA, Scorrano L, Opferman JT, et al. Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci U S A 2005;102(1):105–10.

    Article  PubMed  CAS  Google Scholar 

  60. Tu BP, Weissman JS. Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol 2004;164(3):341–6.

    Article  PubMed  CAS  Google Scholar 

  61. Harding HP, Zhang Y, Zeng H, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 2003;11(3):619–33.

    Article  PubMed  CAS  Google Scholar 

  62. Haynes CM, Titus EA, Cooper AA. Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell 2004;15(5):767–76.

    Article  PubMed  CAS  Google Scholar 

  63. Huang DC, Strasser A. BH3-Only proteins-essential initiators of apoptotic cell death. Cell 2000;103(6):839–42.

    Article  PubMed  CAS  Google Scholar 

  64. Yu J, Zhang L, Hwang PM, Rago C, Kinzler KW, Vogelstein B. Identification and classification of p53-regulated genes. Proc Natl Acad Sci U S A 1999;96(25):14517–22.

    Article  PubMed  CAS  Google Scholar 

  65. Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 2001;7(3):683–94.

    Article  PubMed  CAS  Google Scholar 

  66. Sun YF, Yu LY, Saarma M, Timmusk T, Arumae U. Neuron-specific Bcl-2 homology 3 domain-only splice variant of Bak is anti-apoptotic in neurons, but pro-apoptotic in non-neuronal cells. J Biol Chem 2001;276(19):16240–7.

    Article  PubMed  CAS  Google Scholar 

  67. Han J, Flemington C, Houghton AB, et al. Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci U S A 2001;98(20):11318–23.

    Article  PubMed  CAS  Google Scholar 

  68. Reimertz C, Kogel D, Rami A, Chittenden T, Prehn JH. Gene expression during ER stress-induced apoptosis in neurons: induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. J Cell Biol 2003;162(4):587–97.

    Article  PubMed  CAS  Google Scholar 

  69. Villunger A, Michalak EM, Coultas L, et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 2003;302(5647):1036–8.

    Article  PubMed  CAS  Google Scholar 

  70. Jeffers JR, Parganas E, Lee Y, et al. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 2003;4(4):321–8.

    Article  PubMed  CAS  Google Scholar 

  71. Melino G, Bernassola F, Ranalli M, et al. p73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem 2004;279(9):8076–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen L. O’Malley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bernstein, A.I., O’Malley, K.L. (2009). Protein Oxidation Triggers the Unfolded Protein Response and Neuronal Injury in Chemically Induced Parkinson Disease. In: Veasey, S. (eds) Oxidative Neural Injury. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60327-342-8_11

Download citation

Publish with us

Policies and ethics