Skip to main content

Reactive Oxygen Species, Synaptic Plasticity, and Memory

  • Chapter
  • First Online:
Book cover Oxidative Neural Injury

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Increasing evidence suggests that reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, act as signaling molecules necessary for neuronal processes underlying cognition. Specifically, ROS have been shown to be necessary in molecular processes underlying signal transduction, synaptic plasticity, and memory formation. Research from several laboratories suggests that NADPH oxidase is an important source of superoxide in the brain. Herein we review evidence showing that ROS are important signaling molecules involved in synaptic plasticity and memory formation. Moreover, we will discuss the evidence that a neuronal NADPH oxidase complex is a key regulator of ROS generation in synaptic plasticity and memory formation. Understanding redox signaling in the brain, including the sources and molecular targets of ROS, is important for a full understanding of the signaling pathways that underlie synaptic plasticity and memory. Moreover, knowledge of ROS function in the brain is critical for understanding aging and neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease that may be exacerbated by the unregulated generation of ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CaM –:

calmodulin

CaMKII –:

calmodulin dependent kinase II

CnA –:

calcineurin

DCF –:

dichlorofluorescein

DHR –:

dihydrorhodamine

DPI –:

diphenylene iodonium

EC-SOD –:

extracellular-superoxide dismutase

E-LTP –:

early long-term potentiation

ERK –:

extracellular signal-regulated kinase

FCCP –:

carbonylcyanide p-trifluoromethoxyphenylhydrazone

fEPSPs –:

field excitatory postsynaptic potentials

H2O2 –:

hydrogen peroxide

HFS –:

high-frequency stimulation

HFS-LTP –:

high-frequency stimulation induced long-term potentiation

IFN-γ –:

interferon gamma

KA –:

kainic acid

L-NAME –:

N-nitro-l-arginine methyl ester

L-NMMA –:

N-methyl-l-arginine acetate

L-NNA –:

nitro-l-arginine

LPS –:

lipopolysacharide

LTP –:

long-term potentiation

NG –:

neurogranin

NMDA –:

N-methyl-d-aspartate

NO –:

nitric oxide

NOS –:

nitric oxide synthatse

PKC –:

protein kinase C

PLA2 –:

phospholipase A2

PMA –:

phorbol-12-myristate-13-acetate

PP2B –:

protein phosphase 2B

PrPc –:

prion protein

PTP –:

post-tetanic potentiation

ROS –:

reactive oxygen species

SOD –:

superoxide dismutase

TPEN –:

N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine

X/XO –:

xanthine/xanthine oxidase

References

  1. Smythies J. Redox aspects of signaling by catecholamines and their metabolites. Antioxid Redox Signal. 2000 Fall;2(3):575–583.

    Article  PubMed  CAS  Google Scholar 

  2. Mattson MP, Liu D. Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders. Neuromolecular Med. 2002;2(2):215–231.

    Article  PubMed  CAS  Google Scholar 

  3. Zekry D, Epperson TK, Krause KH. A role for NOX NADPH oxidases in Alzheimer's disease and other types of dementia? IUBMB Life. 2003 Jun;55(6):307–313.

    Google Scholar 

  4. Abramov AY, Canevari L, Duchen MR. Calcium signals induced by amyloid beta peptide and their consequences in neurons and astrocytes in culture. Biochim Biophys Acta. 2004 Dec 6;1742(1–3):81–87.

    Google Scholar 

  5. Hu D, Serrano F, Oury TD, Klann E. Aging-dependent alterations in synaptic plasticity and memory in mice that overexpress extracellular superoxide dismutase. J Neurosci. 2006 Apr 12;26(15):3933–3941.

    Google Scholar 

  6. Serrano F, Klann E. Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res Rev. 2004 Nov;3(4):431–443.

    Google Scholar 

  7. Brewer GJ. Neuronal plasticity and stressor toxicity during aging. Exp Gerontol. 2000 Dec;35(9–10):1165–1183.

    Google Scholar 

  8. Tsien JZ, Huerta PT, Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell. 1996 Dec 27;87(7):1327–1338.

    Google Scholar 

  9. Banko JL, Poulin F, Hou L, DeMaria CT, Sonenberg N, Klann E. The translation repressor 4E-BP2 is critical for eIF4F complex formation, synaptic plasticity, and memory in the hippocampus. J Neurosci. 2005 Oct 19;25(42):9581–9590.

    Google Scholar 

  10. Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD. The MAPK cascade is required for mammalian associative learning. Nat Neurosci. 1998 Nov;1(7):602–609.

    Google Scholar 

  11. Miyakawa T, Yared E, Pak JH, Huang FL, Huang KP, Crawley JN. Neurogranin null mutant mice display performance deficits on spatial learning tasks with anxiety related components. Hippocampus. 2001;11(6):763–775.

    Article  PubMed  CAS  Google Scholar 

  12. Pak JH, Huang FL, Li J, Balschun D, Reymann KG, Chiang C, Westphal H, Huang KP. Involvement of neurogranin in the modulation of calcium/calmodulin-dependent protein kinase II, synaptic plasticity, and spatial learning: a study with knockout mice. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11232–11237.

    Google Scholar 

  13. Sweatt JD. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem. 2001 Jan;76(1):1–10.

    Google Scholar 

  14. Winder DG, Sweatt JD. Roles of serine/threonine phosphatases in hippocampal synaptic plasticity. Nat Rev Neurosci. 2001 Jul;2(7):461–474.

    Google Scholar 

  15. Sweatt JD. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol. 2004 Jun;14(3):311–317.

    Google Scholar 

  16. Xia Z, Storm DR. The role of calmodulin as a signal integrator for synaptic plasticity. Nat Rev Neurosci. 2005 Apr;6(4):267–276.

    Google Scholar 

  17. Gunasekar PG, Kanthasamy AG, Borowitz JL, Isom GE. NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: implication for cell death. J Neurochem. 1995 Nov;65(5):2016–2021.

    Google Scholar 

  18. Lynch MA. Long-term potentiation and memory. Physiol Rev. 2004 Jan;84(1):87–136.

    Google Scholar 

  19. Knapp LT, Klann E. Role of reactive oxygen species in hippocampal long-term potentiation: contributory or inhibitory? J Neurosci Res. 2002 Oct 1;70(1):1–7.

    Google Scholar 

  20. Thiels E, Urban NN, Gonzalez-Burgos GR, Kanterewicz BI, Barrionuevo G, Chu CT, Oury TD, Klann E. Impairment of long-term potentiation and associative memory in mice that overexpress extracellular superoxide dismutase. J Neurosci. 2000 Oct 15;20(20):7631–7639.

    Google Scholar 

  21. Medina JH, Izquierdo I. Retrograde messengers, long-term potentiation and memory. Brain Res Brain Res Rev. 1995 Sep;21(2):185–194.

    Google Scholar 

  22. Quinn MT, Gauss KA. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol. 2004 Oct;76(4):760–781.

    Google Scholar 

  23. Nauseef WM. Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol. 2004 Oct;122(4):277–291.

    Google Scholar 

  24. Jackson SH, Devadas S, Kwon J, Pinto LA, Williams MS. T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation. Nat Immunol. 2004 Aug;5(8):818–827.

    Google Scholar 

  25. Segal BH, Kuhns DB, Ding L, Gallin JI, Holland SM. Thioglycollate peritonitis in mice lacking C5, 5-lipoxygenase, or p47(phox): complement, leukotrienes, and reactive oxidants in acute inflammation. J Leukoc Biol. 2002 Mar;71(3):410–416.

    Google Scholar 

  26. Lambeth JD. Nox/Duox family of nicotinamide adenine dinucleotide (phosphate) oxidases. Curr Opin Hematol. 2002 Jan;9(1):11–17.

    Google Scholar 

  27. Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK. Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res. 2002 Sep 6;91(5):406–413.

    Google Scholar 

  28. Schneider B, Mutel V, Pietri M, Ermonval M, Mouillet-Richard S, Kellermann O. NADPH oxidase and extracellular regulated kinases 1/2 are targets of prion protein signaling in neuronal and nonneuronal cells. Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13326–13331.

    Google Scholar 

  29. Shapiro M. Plasticity, hippocampal place cells, and cognitive maps. Arch Neurol. 2001 Jun;58(6):874–881.

    Google Scholar 

  30. Kamsler A, Segal M. Hydrogen peroxide as a diffusible signal molecule in synaptic plasticity. Mol Neurobiol. 2004 Apr;29(2):167–178.

    Google Scholar 

  31. Kamsler A, Segal M. Paradoxical actions of hydrogen peroxide on long-term potentiation in transgenic superoxide dismutase-1 mice. J Neurosci. 2003 Nov 12;23(32):10359–10367.

    Google Scholar 

  32. Kamsler A, Segal M. Hydrogen peroxide modulation of synaptic plasticity. J Neurosci. 2003 Jan 1;23(1):269–276.

    Google Scholar 

  33. Klann E. Cell-permeable scavengers of superoxide prevent long-term potentiation in hippocampal area CA1. J Neurophysiol. 1998 Jul;80(1):452–457.

    Google Scholar 

  34. Klann E, Roberson ED, Knapp LT, Sweatt JD. A role for superoxide in protein kinase C activation and induction of long-term potentiation. J Biol Chem. 1998 Feb 20;273(8):4516–4522.

    Google Scholar 

  35. Gahtan E, Auerbach JM, Groner Y, Segal M. Reversible impairment of long-term potentiation in transgenic Cu/Zn-SOD mice. Eur J Neurosci. 1998 Feb;10(2):538–544.

    Google Scholar 

  36. Knapp LT, Klann E. Potentiation of hippocampal synaptic transmission by superoxide requires the oxidative activation of protein kinase C. J Neurosci. 2002 Feb 1;22(3):674–683.

    Google Scholar 

  37. Li A, Segui J, Heinemann SH, Hoshi T. Oxidation regulates cloned neuronal voltage-dependent Ca2+ channels expressed in Xenopus oocytes. J Neurosci. 1998 Sep 1;18(17):6740–6747.

    Google Scholar 

  38. Yermolaieva O, Brot N, Weissbach H, Heinemann SH, Hoshi T. Reactive oxygen species and nitric oxide mediate plasticity of neuronal calcium signaling. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):448–453.

    Google Scholar 

  39. Hu D, Klann E, Thiels E. Superoxide dismutase and hippocampal function: age and isozyme matter. Antioxid Redox Signal. 2007 Feb;9(2):201–210.

    Google Scholar 

  40. Logue SF, Paylor R, Wehner JM. Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task. Behav Neurosci. 1997 Feb;111(1):104–113.

    Google Scholar 

  41. Levin ED, Brady TC, Hochrein EC, Oury TD, Jonsson LM, Marklund SL, Crapo JD. Molecular manipulations of extracellular superoxide dismutase: functional importance for learning. Behav Genet. 1998 Sep;28(5):381–390.

    Google Scholar 

  42. Packard MG, Hirsh R, White NM. Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: evidence for multiple memory systems. J Neurosci. 1989 May;9(5):1465–1472.

    Google Scholar 

  43. Phillips RG, LeDoux JE. Lesions of the fornix but not the entorhinal or perirhinal cortex interfere with contextual fear conditioning. J Neurosci. 1995 Jul;15(7 Pt 2):5308–5315.

    Google Scholar 

  44. Phillips RG, LeDoux JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. 1992 Apr;106(2):274–285.

    Google Scholar 

  45. Levin ED, Christopher NC, Lateef S, Elamir BM, Patel M, Liang LP, Crapo JD. Extracellular superoxide dismutase overexpression protects against aging-induced cognitive impairment in mice. Behav Genet. 2002 Mar;32(2):119–125.

    Google Scholar 

  46. Klann E, Thiels E. Modulation of protein kinases and protein phosphatases by reactive oxygen species: implications for hippocampal synaptic plasticity. Prog Neuropsychopharmacol Biol Psychiatry. 1999 Apr;23(3):359–376.

    Google Scholar 

  47. Rusnak F, Reiter T. Sensing electrons: protein phosphatase redox regulation. Trends Biochem Sci. 2000 Nov;25(11):527–529.

    Google Scholar 

  48. Kabe Y, Ando K, Hirao S, Yoshida M, Handa H. Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal. 2005 Mar–Apr;7(3–4):395–403.

    Google Scholar 

  49. Klann E, Dever TE. Biochemical mechanisms for translational regulation in synaptic plasticity. Nat Rev Neurosci. 2004 Dec;5(12):931–942.

    Google Scholar 

  50. Werner E. GTPases and reactive oxygen species: switches for killing and signaling. J Cell Sci. 2004 Jan 15;117(Pt 2):143–153.

    Google Scholar 

  51. Poser S, Storm DR. Role of Ca2+-stimulated adenylyl cyclases in LTP and memory formation. Int J Dev Neurosci. 2001 Jul;19(4):387–394.

    Google Scholar 

  52. Klann E, Chen SJ, Sweatt JD. Mechanism of protein kinase C activation during the induction and maintenance of long-term potentiation probed using a selective peptide substrate. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8337–8341.

    Google Scholar 

  53. English JD, Sweatt JD. A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J Biol Chem. 1997 Aug 1;272(31):19103–19106.

    Google Scholar 

  54. English JD, Sweatt JD. Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J Biol Chem. 1996 Oct 4;271(40):24329–24332.

    Google Scholar 

  55. Malleret G, Haditsch U, Genoux D, Jones MW, Bliss TV, Vanhoose AM, Weitlauf C, Kandel ER, Winder DG, Mansuy IM. Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell. 2001 Mar 9;104(5):675–686.

    Google Scholar 

  56. Onuma H, Lu YF, Tomizawa K, Moriwaki A, Tokuda M, Hatase O, Matsui H. A calcineurin inhibitor, FK506, blocks voltage-gated calcium channel-dependent LTP in the hippocampus. Neurosci Res. 1998 Apr;30(4):313–319.

    Google Scholar 

  57. Atkins CM, Davare MA, Oh MC, Derkach V, Soderling TR. Bidirectional regulation of cytoplasmic polyadenylation element-binding protein phosphorylation by Ca2+/calmodulin-dependent protein kinase II and protein phosphatase 1 during hippocampal long-term potentiation. J Neurosci. 2005 Jun 8;25(23):5604–5610.

    Google Scholar 

  58. Woo NH, Abel T, Nguyen PV. Genetic and pharmacological demonstration of a role for cyclic AMP-dependent protein kinase-mediated suppression of protein phosphatases in gating the expression of late LTP. Eur J Neurosci. 2002 Nov;16(10):1871–1876.

    Google Scholar 

  59. Bindokas VP, Jordan J, Lee CC, Miller RJ. Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci. 1996 Feb 15;16(4):1324–1336.

    Google Scholar 

  60. Li J, Pak JH, Huang FL, Huang KP. N-methyl-D-aspartate induces neurogranin/RC3 oxidation in rat brain slices. J Biol Chem. 1999 Jan 15;274(3):1294–1300.

    Google Scholar 

  61. Huang KP, Huang FL, Li J, Schuck P, McPhie P. Calcium-sensitive interaction between calmodulin and modified forms of rat brain neurogranin/RC3. Biochemistry. 2000 Jun 20;39(24):7291–7299.

    Google Scholar 

  62. Wu J, Huang KP, Huang FL. Participation of NMDA-mediated phosphorylation and oxidation of neurogranin in the regulation of Ca2+- and Ca2+/calmodulin-dependent neuronal signaling in the hippocampus. J Neurochem. 2003 Sep;86(6):1524–1533.

    Google Scholar 

  63. Wu J, Li J, Huang KP, Huang FL. Attenuation of protein kinase C and cAMP-dependent protein kinase signal transduction in the neurogranin knockout mouse. J Biol Chem. 2002 May 31;277(22):19498–19505.

    Google Scholar 

  64. Thiels E, Kanterewicz BI, Knapp LT, Barrionuevo G, Klann E. Protein phosphatase-mediated regulation of protein kinase C during long-term depression in the adult hippocampus in vivo. J Neurosci. 2000 Oct 1;20(19):7199–7207.

    Google Scholar 

  65. Knapp LT, Klann E. Superoxide-induced stimulation of protein kinase C via thiol modification and modulation of zinc content. J Biol Chem. 2000 Aug 4;275(31):24136–24145.

    Google Scholar 

  66. Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A. Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med. 2001 Mar 1;30(5):463–488.

    Google Scholar 

  67. Knapp LT, Kanterewicz BI, Hayes EL, Klann E. Peroxynitrite-induced tyrosine nitration and inhibition of protein kinase C. Biochem Biophys Res Commun. 2001 Aug 31;286(4):764–770.

    Google Scholar 

  68. Kishida KT, Pao M, Holland SM, Klann E. NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1. J Neurochem. 2005 Jul;94(2):299–306.

    Google Scholar 

  69. Selcher JC, Weeber EJ, Christian J, Nekrasova T, Landreth GE, Sweatt JD. A role for ERK MAP kinase in physiologic temporal integration in hippocampal area CA1. Learn Mem. 2003 Jan–Feb;10(1):26–39.

    Google Scholar 

  70. Llansola M, Saez R, Felipo V. NMDA-induced phosphorylation of the microtubule-associated protein MAP-2 is mediated by activation of nitric oxide synthase and MAP kinase. Eur J Neurosci. 2001 Apr;13(7):1283–1291.

    Google Scholar 

  71. Kanterewicz BI, Knapp LT, Klann E. Stimulation of p42 and p44 mitogen-activated protein kinases by reactive oxygen species and nitric oxide in hippocampus. J Neurochem. 1998 Mar;70(3):1009–1016.

    Google Scholar 

  72. Namgaladze D, Hofer HW, Ullrich V. Redox control of calcineurin by targeting the binuclear Fe(2+)-Zn(2+) center at the enzyme active site. J Biol Chem. 2002 Feb 22;277(8):5962–5969.

    Google Scholar 

  73. Freudenthal R, Romano A, Routtenberg A. Transcription factor NF-kappaB activation after in vivo perforant path LTP in mouse hippocampus. Hippocampus. 2004;14(6):677–683.

    Article  PubMed  CAS  Google Scholar 

  74. Albensi BC, Mattson MP. Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse. 2000 Feb;35(2):151–159.

    Google Scholar 

  75. Haddad JJ. Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal. 2002 Nov;14(11):879–897.

    Google Scholar 

  76. Ginn-Pease ME, Whisler RL. Redox signals and NF-kappaB activation in T cells. Free Radic Biol Med. 1998 Aug;25(3):346–361.

    Google Scholar 

  77. Yeh SH, Lin CH, Lee CF, Gean PW. A requirement of nuclear factor-kappaB activation in fear-potentiated startle. J Biol Chem. 2002 Nov 29;277(48):46720–46729.

    Google Scholar 

  78. Freudenthal R, Romano A. Participation of Rel/NF-kappaB transcription factors in long-term memory in the crab Chasmagnathus. Brain Res. 2000 Feb 14;855(2):274–281.

    Google Scholar 

  79. Hidalgo C, Donoso P, Carrasco MA. The ryanodine receptors Ca2+ release channels: cellular redox sensors? IUBMB Life. 2005 Apr–May;57(4–5):315–322.

    Google Scholar 

  80. Futatsugi A, Kato K, Ogura H, Li ST, Nagata E, Kuwajima G, Tanaka K, Itohara S, Mikoshiba K. Facilitation of NMDAR-independent LTP and spatial learning in mutant mice lacking ryanodine receptor type 3. Neuron. 1999 Nov;24(3):701–713.

    Google Scholar 

  81. Balschun D, Wolfer DP, Bertocchini F, Barone V, Conti A, Zuschratter W, Missiaen L, Lipp HP, Frey JU, Sorrentino V. Deletion of the ryanodine receptor type 3 (RyR3) impairs forms of synaptic plasticity and spatial learning. Embo J. 1999 Oct 1;18(19):5264–5273.

    Google Scholar 

  82. Huddleston AT, Tang W, Takeshima H, Hamilton SL, Klann E. Superoxide-induced potentiation in the hippocampus requires activation of ryanodine receptor type 3 and ERK. J Neurophysiol. 2008 Mar;99(3):1565–1571.

    Google Scholar 

  83. Huddleston AT, Tang W, Takeshima H, Hamilton SL, Klann E. Superoxide-induced potentiation in the hippocampus requires activation of ryanodine receptor type 3 and ERK. J Neurophysiol. 2008 Mar;99(3):1565–1571.

    Google Scholar 

  84. Dykens JA. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and Na+: implications for neurodegeneration. J Neurochem. 1994 Aug;63(2):584–591.

    Google Scholar 

  85. Reynolds IJ, Hastings TG. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci. 1995 May;15(5 Pt 1):3318–3327.

    Google Scholar 

  86. Heinzel B, John M, Klatt P, Bohme E, Mayer B. Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem J. 1992 Feb 1;281 (Pt 3):627–630.

    Google Scholar 

  87. Abramov AY, Jacobson J, Wientjes F, Hothersall J, Canevari L, Duchen MR. Expression and modulation of an NADPH oxidase in mammalian astrocytes. J Neurosci. 2005 Oct 5;25(40):9176–9184.

    Google Scholar 

  88. Dugan LL, Sensi SL, Canzoniero LM, Handran SD, Rothman SM, Lin TS, Goldberg MP, Choi DW. Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J Neurosci. 1995 Oct;15(10):6377–6388.

    Google Scholar 

  89. Swerdlow RH. Treating neurodegeneration by modifying mitochondria: potential solutions to a “complex” problem. Antioxid Redox Signal. 2007 Oct;9(10):1591–1603.

    Google Scholar 

  90. Boldyrev AA, Carpenter DO, Huentelman MJ, Peters CM, Johnson P. Sources of reactive oxygen species production in excitotoxin-stimulated cerebellar granule cells. Biochem Biophys Res Commun. 1999 Mar 16;256(2):320–324.

    Google Scholar 

  91. Pare CM. New pharmacological developments in antidepressants. Psychopathology. 1986;19 Suppl 2:103–107.

    Article  Google Scholar 

  92. Schuman EM, Madison DV. A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science. 1991 Dec 6;254(5037):1503–1506.

    Google Scholar 

  93. Zorumski CF, Izumi Y. Nitric oxide and hippocampal synaptic plasticity. Biochem Pharmacol. 1993 Sep 1;46(5):777–785.

    Google Scholar 

  94. Pou S, Pou WS, Bredt DS, Snyder SH, Rosen GM. Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem. 1992 Dec 5;267(34):24173–24176.

    Google Scholar 

  95. Pou S, Keaton L, Surichamorn W, Rosen GM. Mechanism of superoxide generation by neuronal nitric-oxide synthase. J Biol Chem. 1999 Apr 2;274(14):9573–9580.

    Google Scholar 

  96. Culcasi M, Lafon-Cazal M, Pietri S, Bockaert J. Glutamate receptors induce a burst of superoxide via activation of nitric oxide synthase in arginine-depleted neurons. J Biol Chem. 1994 Apr 29;269(17):12589–12593.

    Google Scholar 

  97. Wang W, Wang S, Nishanian EV, Del Pilar Cintron A, Wesley RA, Danner RL. Signaling by eNOS through a superoxide-dependent p42/44 mitogen-activated protein kinase pathway. Am J Physiol Cell Physiol. 2001 Aug;281(2):C544–554.

    Google Scholar 

  98. O'Donnell BV, Tew DG, Jones OT, England PJ. Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. Biochem J. 1993 Feb 15;290 ( Pt 1):41–49.

    Google Scholar 

  99. Dringen R. Oxidative and antioxidative potential of brain microglial cells. Antioxid Redox Signal. 2005 Sep–Oct;7(9–10):1223–1233.

    Google Scholar 

  100. Hwang J, Saha A, Boo YC, Sorescu GP, McNally JS, Holland SM, Dikalov S, Giddens DP, Griendling KK, Harrison DG, Jo H. Oscillatory shear stress stimulates endothelial production of O2- from p47phox-dependent NAD(P)H oxidases, leading to monocyte adhesion. J Biol Chem. 2003 Nov 21;278(47):47291–47298.

    Google Scholar 

  101. Pao M, Wiggs EA, Anastacio MM, Hyun J, DeCarlo ES, Miller JT, Anderson VL, Malech HL, Gallin JI, Holland SM. Cognitive function in patients with chronic granulomatous disease: a preliminary report. Psychosomatics. 2004 May–Jun;45(3):230–234.

    Google Scholar 

  102. Sumimoto H, Miyano K, Takeya R. Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun. 2005 Dec 9;338(1):677–686.

    Google Scholar 

  103. Anrather J, Racchumi G, Iadecola C. NF-kappaB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J Biol Chem. 2006 Mar 3;281(9):5657–5667.

    Google Scholar 

  104. Dang PM, Fontayne A, Hakim J, El Benna J, Perianin A. Protein kinase C zeta phosphorylates a subset of selective sites of the NADPH oxidase component p47phox and participates in formyl peptide-mediated neutrophil respiratory burst. J Immunol. 2001 Jan 15;166(2):1206–1213.

    Google Scholar 

  105. Maridonneau-Parini I, Tauber AI. Activation of NADPH-oxidase by arachidonic acid involves phospholipase A2 in intact human neutrophils but not in the cell-free system. Biochem Biophys Res Commun. 1986 Aug 14;138(3):1099–1105.

    Google Scholar 

  106. Odell EW, Segal AW. Killing of pathogens associated with chronic granulomatous disease by the non-oxidative microbicidal mechanisms of human neutrophils. J Med Microbiol. 1991 Mar;34(3):129–135.

    Google Scholar 

  107. Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J. NMDA-dependent superoxide production and neurotoxicity. Nature. 1993 Aug 5;364(6437):535–537.

    Google Scholar 

  108. Karpova A, Sanna PP, Behnisch T. Involvement of multiple phosphatidylinositol 3-kinase-dependent pathways in the persistence of late-phase long term potentiation expression. Neuroscience. 2006 Feb;137(3):833–841.

    Google Scholar 

  109. Wang Q, Liu L, Pei L, Ju W, Ahmadian G, Lu J, Wang Y, Liu F, Wang YT. Control of synaptic strength, a novel function of Akt. Neuron. 2003 Jun 19;38(6):915–928.

    Google Scholar 

  110. Mizuno M, Yamada K, Takei N, Tran MH, He J, Nakajima A, Nawa H, Nabeshima T. Phosphatidylinositol 3-kinase: a molecule mediating BDNF-dependent spatial memory formation. Mol Psychiatry. 2003 Feb;8(2):217–224.

    Google Scholar 

  111. Chen Q, Powell DW, Rane MJ, Singh S, Butt W, Klein JB, McLeish KR. Akt phosphorylates p47phox and mediates respiratory burst activity in human neutrophils. J Immunol. 2003 May 15;170(10):5302–5308.

    Google Scholar 

  112. Mizuki K, Kadomatsu K, Hata K, Ito T, Fan QW, Kage Y, Fukumaki Y, Sakaki Y, Takeshige K, Sumimoto H. Functional modules and expression of mouse p40(phox) and p67(phox), SH3-domain-containing proteins involved in the phagocyte NADPH oxidase complex. Eur J Biochem. 1998 Feb 1;251(3):573–582.

    Google Scholar 

  113. Serrano F, Kolluri NS, Wientjes FB, Card JP, Klann E. NADPH oxidase immunoreactivity in the mouse brain. Brain Res. 2003 Oct 24;988(1–2):193–198.

    Google Scholar 

  114. Tejada-Simon M, Serrano F., Villasana LE, Kanterewicz BI, Wu G-Y, Quinn MT, Klann E. Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol Cell Neurosci. 2005 May;29(1):97–106.

    Google Scholar 

  115. Banfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH. NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem. 2004 Oct 29;279(44):46065–46072.

    Google Scholar 

  116. Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD. Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene. 2001 May 16;269(1–2):131–140.

    Google Scholar 

  117. Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, Michel JP, Szanto I. Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience. 2005;132(2):233–238.

    Article  PubMed  CAS  Google Scholar 

  118. Rao PV, Maddala R, John F, Zigler JS, Jr. Expression of nonphagocytic NADPH oxidase system in the ocular lens. Mol Vis. 2004 Feb 19;10:112–121.

    Google Scholar 

  119. Diatchuk V, Lotan O, Koshkin V, Wikstroem P, Pick E. Inhibition of NADPH oxidase activation by 4-(2-aminoethyl)-benzenesulfonyl fluoride and related compounds. J Biol Chem. 1997 May 16;272(20):13292–13301.

    Google Scholar 

  120. Jackson SH, Gallin JI, Holland SM. The p47phox mouse knock-out model of chronic granulomatous disease. J Exp Med. 1995 Sep 1;182(3):751–758.

    Google Scholar 

  121. Pollock JD, Williams DA, Gifford MA, Li LL, Du X, Fisherman J, Orkin SH, Doerschuk CM, Dinauer MC. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet. 1995 Feb;9(2):202–209.

    Google Scholar 

  122. Pearse DB, Dodd JM. Ischemia-reperfusion lung injury is prevented by apocynin, a novel inhibitor of leukocyte NADPH oxidase. Chest. 1999 Jul;116(1 Suppl):55S–56S.

    Google Scholar 

  123. Kishida KT, Hoeffer CA, Hu D, Pao M, Holland SM, Klann E. Synaptic Plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Mol Cell Biol. 2006 Aug;26(15):5908–5920.

    Google Scholar 

  124. Atlante A, Calissano P, Bobba A, Giannattasio S, Marra E, Passarella S. Glutamate neurotoxicity, oxidative stress and mitochondria. FEBS Lett. 2001 May 18;497(1):1–5.

    Google Scholar 

  125. Levin ED, Brucato FH, Crapo JD. Molecular overexpression of extracellular superoxide dismutase increases the dependency of learning and memory performance on motivational state. Behav Genet. 2000 Mar;30(2):95–100.

    Google Scholar 

  126. Banfi B, Tirone F, Durussel I, Knisz J, Moskwa P, Molnar GZ, Krause KH, Cox JA. Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). J Biol Chem. 2004 Apr 30;279(18):18583–18591.

    Google Scholar 

  127. Thiels E, Norman ED, Barrionuevo G, Klann E. Transient and persistent increases in protein phosphatase activity during long-term depression in the adult hippocampus in vivo. Neuroscience. 1998 Oct;86(4):1023–1029.

    Google Scholar 

  128. Kostrzewa RM, Kostrzewa JP, Brus R. Neuroprotective and neurotoxic roles of levodopa (L-DOPA) in neurodegenerative disorders relating to Parkinson's disease. Amino Acids. 2002;23(1–3):57–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Klann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kishida, K.T., Klann, E. (2009). Reactive Oxygen Species, Synaptic Plasticity, and Memory. In: Veasey, S. (eds) Oxidative Neural Injury. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60327-342-8_1

Download citation

Publish with us

Policies and ethics