Skip to main content

CXCR4 and Cancer

  • Chapter
  • First Online:
Chemokine Receptors in Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The chemokine receptor CXCR4 belongs to the large superfamily of G-protein-coupled receptors, and is directly involved in a number of biological processes including organogenesis, hematopoiesis, and immunity. Recent evidence has highlighted the role of CXCR4 in a variety of diseases including cancer and WHIM syndrome. Expression of CXCR4 in cancer metastasis appears to be due to dysregulation of the receptor leading to enhanced signaling. CXCR4 was also found to be a prognostic marker in various types of cancer including leukemia and breast cancer. These observations reveal that CXCR4 is an important molecule involved in several aspects of cancer progression. The SDF-1-CXCR4 axis is also involved in normal stem cell homing. Interestingly, cancer stem cells also express CXCR4 suggesting that the SDF-1-CXCR4 axis directs their trafficking/metastasis to organs that highly express SDF-1 such as the lymph nodes, lungs, liver, and bones. Here, we review what is currently known regarding the regulation of CXCR4 and how dysregulation contributes to disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy P. M., Baggiolini M., Charo I. F., et al.(2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors.Pharmacol Rev, 52, 145–76.

    PubMed  CAS  Google Scholar 

  2. Zlotnik A and Yoshie O. (2000) Chemokines: A new classification system and their role in immunity. Immunity, 12, 121–7.

    Article  PubMed  CAS  Google Scholar 

  3. Loetscher P., Moser B., and Baggiolini M. (2000) Chemokines and their receptors in lymphocyte traffic and HIV infection. Adv Immunol, 74, 127–180.

    Article  PubMed  CAS  Google Scholar 

  4. Baggiolini M. (1998) Chemokines and leukocyte traffic. Nature, 392, 565–8.

    Article  PubMed  CAS  Google Scholar 

  5. Moser B. and Loetscher P. (2001) Lymphocyte traffic control by chemokines. Nat Immunol., 2, 123–8.

    Article  PubMed  CAS  Google Scholar 

  6. Feng Y., Broder C. C., Kennedy P. E., and Berger E. A. (1996. HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science, 272, 872–7.

    Article  PubMed  CAS  Google Scholar 

  7. Zlotnik A. (2006) Involvement of chemokine receptors in organ-specific metastasis. Contrib Microbiol., 13, 191–9.

    Article  PubMed  CAS  Google Scholar 

  8. Burger J. A.and Kipps T.J. (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood, 107, 1761–7.

    Article  PubMed  CAS  Google Scholar 

  9. Kucia M., Reca R., Miekus K., et al. (2005) Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: Pivotal role of the SDF-1-CXCR4 axis. Stem Cells, 23. 879–94.

    Article  PubMed  CAS  Google Scholar 

  10. Zlotnik A. (2006) Chemokines and cancer. Int J Cancer., 119, 2026–9.

    Article  PubMed  CAS  Google Scholar 

  11. Sun Y. X., Wang J., Shelburne C. E., et al. (2003). Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem., 89, 462–73.

    Article  PubMed  CAS  Google Scholar 

  12. Fredriksson R., Lagerström M.C., Lundin L.G., and Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol., 63, 1256–72.

    Article  PubMed  CAS  Google Scholar 

  13. Nagasawa T., Hirota S., Tachibana K., et al. (1996) Defects of B-cell lymphopoiesis and bone-marrowmyelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature, 382, 635–8.

    Article  PubMed  CAS  Google Scholar 

  14. Zou Y. R., Kottmann A.H., Kuroda M., et al. (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature, 393, 595–9.

    Article  PubMed  CAS  Google Scholar 

  15. Ma Q., Jones D., Borghesani P. R., Segal R. A., et al. (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci U S A., 95, 9448–53.

    Article  PubMed  CAS  Google Scholar 

  16. McGrath K. E., Koniski A. D., Maltby K. M., et al. (1999) Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol., 213, 442–56.

    Article  PubMed  CAS  Google Scholar 

  17. Nagasawa T., Tachibana K., and Kishimoto T. (1998) A novel CXC chemokine PBSF/SDF-1 and its receptor CXCR4: their functions in development, hematopoiesis and HIV infection. Semin Immunol., 10, 179–85.

    Article  PubMed  CAS  Google Scholar 

  18. Tachibana K., Hirota S., Iizasa H., et al. (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature., 393, 591–4.

    Article  PubMed  CAS  Google Scholar 

  19. Murphy P. M. (1994) The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol., 12, 593–633.

    Article  PubMed  CAS  Google Scholar 

  20. Lapidot T., Pflumio F., Doedens M., et al.(1992) Cytokine stimulation of multilineagehematopoiesis from immature human cells engrafted in SCID mice. Science, 255, 1137–41.

    Article  PubMed  CAS  Google Scholar 

  21. Tavor S., Petit I., Porozov S., et al. (2004) CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res., 64, 2817–24.

    Article  PubMed  CAS  Google Scholar 

  22. Pardal R., Clarke M. F., and Morrison S.J. (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer., 3, 895–902.

    Article  PubMed  CAS  Google Scholar 

  23. Reya T., Morrison S. J., Clarke M. F., and Weissman I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature. 414, 105–11.

    Article  PubMed  CAS  Google Scholar 

  24. Singh S. K , Hawkins C., Clarke I. D., et al. (2004) Identification of human brain tumour initiating cells. Nature 432, 396–401.

    Article  PubMed  CAS  Google Scholar 

  25. Dontu G., Al-Hajj M., Abdallah W. M., et al. (2003) Stem cells in normal breast development and breast cancer. Cell Prolif. 36, 59–72.

    Article  PubMed  CAS  Google Scholar 

  26. Collins A. T. and Maitland N. J. (2006) Prostate cancer stem cells. Eur J Cancer., 42, 1213–8.

    Article  PubMed  CAS  Google Scholar 

  27. Müller A., Homey B., Soto H., et al. (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–6.

    Article  PubMed  Google Scholar 

  28. Geminder H., Sagi-Assif O., Goldberg L., et al. (2001) A possible role for CXCR4 and its ligand, the CXC chemokinestromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol., 167, 4747–57.

    PubMed  CAS  Google Scholar 

  29. Porcile C., Bajetto A., Barbero S., et al. (2004) CXCR4 activation induces epidermal growth factor receptor transactivation in an ovarian cancer cell line. Ann N Y Acad Sci., 1030, 162–9.

    Article  PubMed  CAS  Google Scholar 

  30. Hall J. M. and Korach K. S. (2003) Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. Mol Endocrinol., 17, 792–803.

    Article  PubMed  CAS  Google Scholar 

  31. Libura J., Drukala J., Majka M., et al. (2002) CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood, 100, 2597–606.

    Article  PubMed  CAS  Google Scholar 

  32. Jankowski K., Kucia M., Wysoczynski M., et al. (2003) Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Res., 63, 7926–35.

    PubMed  CAS  Google Scholar 

  33. Petit I, Szyper-Kravitz M., Nagler A., Lahav M., et al. (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol., 3, 687–94.

    Article  PubMed  CAS  Google Scholar 

  34. Lapidot T and Petit I. (2002) Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol., 30, 973–81.

    Article  Google Scholar 

  35. Hattori K., Heissig B., Tashiro K., et al. (2001) Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood, 97:3354–60.

    Article  PubMed  CAS  Google Scholar 

  36. Scotton C. J., Wilson J. L., Milliken D., et al (2001) Epithelial cancer cell migration: A role for chemokine receptors? Cancer Res., 61, 4961–5.

    PubMed  CAS  Google Scholar 

  37. Hirota K. and Semenza G. L. (2006) Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol., 59, 15–26.

    Article  PubMed  Google Scholar 

  38. Schioppa T., Uranchimeg B., Saccani A., et al. (2003) Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med., 198, 1391–402.

    Article  PubMed  CAS  Google Scholar 

  39. Staller P., Sulitkova J., Lisztwan J., et al. (2003) Chemokine receptor CXCR4 downregulated by von Hippel-Lindautumour suppressor pVHL. Nature, 425, 307–11.

    Article  PubMed  CAS  Google Scholar 

  40. Zagzag D., Krishnamachary B., Yee H., et al.(2005) Stromal cell-derived factor-1alpha and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res., 65, 6178–88.

    Article  PubMed  CAS  Google Scholar 

  41. Bachelder R. E., Wendt M. A., and Mercurio A. M. (2002) Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res. 62, 7203–6.

    PubMed  CAS  Google Scholar 

  42. Helbig G., Christopherson K. W. 2nd, Bhat-Nakshatri P., et al. (2003) NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem., 278, 21631–8.

    Article  PubMed  CAS  Google Scholar 

  43. Tomescu O., Xia S. J., Strezlecki D., et al. (2004) Inducible short-term and stable long-term cell culture systems reveal that the PAX3-FKHR fusion oncoprotein regulates CXCR4, PAX3, and PAX7 expression. Lab Invest., 84, 1060–70.

    Article  PubMed  CAS  Google Scholar 

  44. Castellone M. D., Guarino V., De Falco V., et al. (2004) Functional expression of the CXCR4 chemokine receptor is induced by RET/PTC oncogenes and is a common event in human papillary thyroid carcinomas. Oncogene, 23, 5958–67.

    Article  PubMed  CAS  Google Scholar 

  45. Hartmann T. N., Burger J. A., Glodek A., et al. (2005) CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene,, 4462–71.

    Google Scholar 

  46. Fernandis A. Z., Prasad A., Band H., et al. (2004) Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene, 23, 157–67.

    Article  PubMed  CAS  Google Scholar 

  47. Janowska-Wieczorek A., Marquez L. A., Dobrowsky A., et al. (2000) Differential MMP and TIMP production by human marrow and peripheral blood CD34(+) cells in response to chemokines. Exp Hematol., 28, 1274–85.

    Article  PubMed  CAS  Google Scholar 

  48. Samara G. J., Lawrence D. M., Chiarelli C. J., et al. (2004) CXCR4-mediated adhesion and MMP-9 secretion in head and neck squamous cell carcinoma. Cancer Lett., 214, 231–41.

    Article  PubMed  CAS  Google Scholar 

  49. Spiegel A., Kollet O., Peled A., et al. (2004) Unique SDF-1-induced activation of human precursor-B all cells as a result of altered CXCR4 expression and signaling. Blood, 103, 2900–7.

    Article  PubMed  CAS  Google Scholar 

  50. Campbell J.J., Hedrick J., Zlotnik A., et al. (1998) Chemokines and the arrest of lymphocytes rolling under flow conditions. Science., 279, 381–4.

    Article  PubMed  CAS  Google Scholar 

  51. Glodek A. M., Honczarenko M., Le Y., et al. (2003) Sustained activation of cell adhesion is a differentially regulated process in B lymphopoiesis. J Exp Med., 197, 461–73.

    Article  PubMed  CAS  Google Scholar 

  52. Wright N., Hidalgo A., Rodríguez-Frade J. M., et al. (2002) The chemokinestromal cell-derived factor-1 alpha modulates alpha 4 beta 7 integrin-mediated lymphocyte adhesion to mucosal addressin cell adhesion molecule-1 and fibronectin. J Immunol., 168, 5268–77.

    PubMed  CAS  Google Scholar 

  53. Allinen M., Beroukhim R., Cai L., et al. (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 6, 17–32.

    Article  PubMed  CAS  Google Scholar 

  54. Lapteva N., Yang A. G., Sanders D. E., et al. (2005) CXCR4 knockdown by small interfering RNA abrogates breast tumor growth in vivo. Cancer Gene Ther., 12, 84–9.

    Article  PubMed  CAS  Google Scholar 

  55. Liang Z., Yoon Y., Votaw J., et al. (2005) Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res., 65, 967–71.

    PubMed  CAS  Google Scholar 

  56. Burger M., Glodek A., Hartmann T., et al. (2003) Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene., 22, 8093–101.

    Article  PubMed  CAS  Google Scholar 

  57. Hwang J. H., Hwang J. H., Chung H. K., et al. (2003) CXC chemokine receptor 4 expression and function in human anaplastic thyroid cancer cells. J Clin Endocrinol Metab., 88, 408–16.

    Article  PubMed  CAS  Google Scholar 

  58. Kijima T., Maulik G., Ma P. C., et al. ( 2002) Regulation of cellular proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in small cell lung cancer cells. Cancer Res., 62, 6304–11.

    PubMed  CAS  Google Scholar 

  59. Schimanski C. C., Bahre R., Gockel I., et al. (2006) Dissemination of hepatocellular carcinoma is mediated via chemokine receptor CXCR4. Br J Cancer., 95, 210–7.

    Article  PubMed  CAS  Google Scholar 

  60. Jones P. A. and Baylin S. B. (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet. 3, 415–28.

    Article  PubMed  CAS  Google Scholar 

  61. Wendt M. K., Johanesen P. A., Kang-Decker N., et al.(2006) Silencing of epithelial CXCL12 expression by DNA hypermethylation promotes colonic carcinoma metastasis. ., 25, 4986–97.

    Google Scholar 

  62. Sato N., Matsubayashi H., Fukushima N., and Goggins M. (2005) The chemokine receptor CXCR4 is regulated by DNA methylation in pancreatic cancer. Cancer Biol Ther., 4, 70–6.

    Article  PubMed  CAS  Google Scholar 

  63. Hernandez P. A., Gorlin R. J., Lukens J. N., et al. (2003) Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet., 34, 70–4.

    Article  PubMed  CAS  Google Scholar 

  64. Ueda Y., Neel N. F., Schutyser E., et al. (2006) Deletion of the COOH-terminal domain of CXC chemokine receptor 4 leads to the down-regulation of cell-to-cell contact, enhanced motility and proliferation in breast carcinoma cells. Cancer Res., 66, 5665–75.

    Article  PubMed  CAS  Google Scholar 

  65. Zhang W. B., Navenot J. M., Haribabu B., et al. (2002) A point mutation that confers constitutive activity to CXCR4 reveals that T140 is an inverse agonist and that AMD3100 and ALX40–4C are weak partial agonists. J Biol Chem., 277, 24515–21.

    Article  PubMed  CAS  Google Scholar 

  66. Ottaiano A., di Palma A., Napolitano M., et al. (2005) Inhibitory effects of anti-CXCR4 antibodies on human colon cancer cells. Cancer Immunol Immunother., 54, 781–91.

    Article  PubMed  CAS  Google Scholar 

  67. Zeelenberg I. S., Ruuls-Van Stalle L., and Roos E. (2003) The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Ries., 63, 3833–9.

    CAS  Google Scholar 

  68. Mitra P., Shibuta K., Mathai J., et al. (1999). CXCR4 mRNA expression in colon, esophageal and gastric cancers and hepatitis C infected liver. Int J Oncol., 14, 917–25.

    PubMed  CAS  Google Scholar 

  69. Chen Y., Stamatoyannopoulos G., and Song C. Z. (2003) Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res., 63, 4801–4.

    PubMed  CAS  Google Scholar 

  70. Benovic J. L. and Marchese A. (2004) A new key in breast cancer metastasis. Cancer Cell., 6, 429–30.

    Article  PubMed  CAS  Google Scholar 

  71. Epstein R. J. (2004) The CXCL12-CXCR4 chemotactic pathway as a target of adjuvant breast cancer therapies. Nat Rev Cancer., 4, 901–9.

    Article  PubMed  CAS  Google Scholar 

  72. Cabioglu N., Summy J., Miller C., et al. (2005) CXCL-12/stromal cell-derived factor-1alpha transactivates HER2-neu in breast cancer cells by a novel pathway involving Src kinase activation. Cancer Res., 65, 6493–7.

    Article  PubMed  CAS  Google Scholar 

  73. Orimo A., Gupta P. B., Sgroi D. C., et al. (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 121, 335–48.

    Article  PubMed  CAS  Google Scholar 

  74. Huang Y. C., Hsiao Y. C., Chen Y. J., et al. (2007) Stromal cell-derived factor-1 enhances motility and integrin up-regulation through CXCR4, ERK and NF-kappaB-dependent pathway in human lung cancer cells. Biochem Pharmacol., 74, 1702–12.

    Article  PubMed  CAS  Google Scholar 

  75. Phillips R. J., Burdick M. D., Lutz M., et al. (2003). The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med., 167, 1676–86.

    Article  PubMed  Google Scholar 

  76. Oonakahara K., Matsuyama W., Higashimoto I., et al.. (2004) Stromal-derived factor-1alpha/CXCL12-CXCR 4 axis is involved in the dissemination of NSCLC cells into pleural space. Am J Respir Cell Mol Biol., 3b0, 671–7.

    Article  CAS  Google Scholar 

  77. Spano J. P., Andre F., Morat L., et al. (2004) Chemokine receptor CXCR4 and early-stage non-small cell lung cancer: Pattern of expression and correlation with outcome. Ann Oncol., 15, 613–7.

    Article  PubMed  Google Scholar 

  78. Belperio J. A., Phillips R. J., Burdick M. D., et al.(2004) The SDF-1/CXCL 12/CXCR4 biological axis in non-small cell lung cancer metastases. Chest, 125, 156S.

    Article  PubMed  Google Scholar 

  79. Hartmann T. N., Burger M., and Burger J. A. (2004) The role of adhesion molecules and chemokine receptor CXCR4 (CD184) in small cell lung cancer. J Biol Regul Homeost Agents., 18, 126–30.

    PubMed  CAS  Google Scholar 

  80. Phillips R. J., Mestas J., Gharaee-Kermani M., et al. (2005) Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1alpha. J Biol Chem., 280, 22473–81.

    Article  PubMed  CAS  Google Scholar 

  81. Kajiyama H., Shibata K., Terauchi M., et al. (2008) Involvement of SDF-1alpha/CXCR4 axis in the enhanced peritoneal metastasis of epithelial ovarian carcinoma. Int J Cancer., 122, 91–9.

    Article  PubMed  CAS  Google Scholar 

  82. Furuya M., Suyama T., Usui H., et al. (2007) Up-regulation of CXC chemokines and their receptors: implications for proinflammatory microenvironments of ovarian carcinomas and endometriosis. Hum Pathol., 38, 1676–87.

    Article  PubMed  CAS  Google Scholar 

  83. Oda Y., Ohishi Y., Basaki Y., et al. (2007) Prognostic implications of the nuclear localization of Y-box-binding protein-1 and CXCR4 expression in ovarian cancer: their correlation with activated Akt, LRP/MVP and P-glycoprotein expression. Cancer Sci., 98, 1020–6.

    Article  PubMed  CAS  Google Scholar 

  84. Kulbe H., Hagemann T., Szlosarek P. W., et al. (2005) The inflammatory cytokine tumor necrosis factor-alpha regulates chemokine receptor expression on ovarian cancer cells. Cancer Res., 65, 10355–62.

    Article  PubMed  CAS  Google Scholar 

  85. Kryczek I., Lange A., Mottram P., et al. (2005) CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res., 65, 465–72.

    PubMed  CAS  Google Scholar 

  86. Scotton C. J., Wilson J. L., Scott K., et al. (2002) Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res., 62, 5930–8.

    PubMed  CAS  Google Scholar 

  87. Taichman R. S., Cooper C., Keller E. T., et al. (2002) Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res., 62, 1832–7.

    PubMed  CAS  Google Scholar 

  88. Chinni S. R., Sivalogan S., Dong Z., et al. (2006) CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: The role of bone microenvironment-associated CXCL12. Prostate, 66, 32–48.

    Article  PubMed  CAS  Google Scholar 

  89. Miwa S., Mizokami A., Keller E. T., et al. (2005) The bisphosphonate YM529 inhibits osteolytic and osteoblastic changes and CXCR-4-induced invasion in prostate cancer. Cancer Res., 65, 8818–25.

    Article  PubMed  CAS  Google Scholar 

  90. Engl T., Relja B., Marian D., et al. (2006) CXCR4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins. Neoplasia. 8, 290–301.

    Article  PubMed  CAS  Google Scholar 

  91. Miki J., Furusato B., Li H., et al. (2007) Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res., 67, 3153–61.

    Article  PubMed  CAS  Google Scholar 

  92. Hirata H., Hinoda Y., Kikuno N., et al. (2007) CXCL12 G801A polymorphism is a risk factor for sporadic prostate cancer susceptibility. Clin Cancer Res., 13, 5056–62.

    Article  PubMed  CAS  Google Scholar 

  93. Gerritsen M. E., Peale F. V. Jr, and Wu T. (2002) Gene expression profiling in silico: Relative expression of candidate angiogenesis associated genes in renal cell carcinomas. Exp Nephrol., 10, 114–9.

    Article  PubMed  CAS  Google Scholar 

  94. Schrader A. J., Lechner O., Templin M., et al. (2002) CXCR4/CXCL12 expression and signalling in kidney cancer. Br J Cancer., 86, 1250–6.

    Article  PubMed  CAS  Google Scholar 

  95. Haviv Y. S., van Houdt W. J., Lu B., et al. (2004) Transcriptional targeting in renal cancer cell lines via the human CXCR4 promoter. Mol Cancer Ther. 3, 687–91.

    PubMed  CAS  Google Scholar 

  96. Pan J., Mestas J., Burdick M. D., et al. (2006) Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis. Mol Cancer. 5, 56.

    Article  PubMed  CAS  Google Scholar 

  97. Jones J., Marian D., Weich E., et al. (2007) CXCR4 chemokine receptor engagement modifies integrin dependent adhesion of renal carcinoma cells. Exp Cell Res., 313, 4051–65.

    Article  PubMed  CAS  Google Scholar 

  98. Sehgal A., Keener C., Boynton A. L., et al. (1998) CXCR-4, a chemokine receptor, is overexpressed in and required for proliferationof glioblastoma tumor cells. J Surg Oncol., 69, 99–104.

    Article  PubMed  CAS  Google Scholar 

  99. Sehgal A., Ricks S., Boynton A. L., et al. (1998) Molecular characterization of CXCR-4: A potential brain tumor-associated gene. J Surg Oncol., 69, 239–48.

    Article  PubMed  CAS  Google Scholar 

  100. Rempel S. A., Dudas S., Ge S., and Gutiérrez J. A. (2000) Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin Cancer Res. 6, 102–11.

    PubMed  CAS  Google Scholar 

  101. Rubin J. B., Kung A. L., Klein R. S., et al. (2003) A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci U S A. 100, 13513–8.

    Article  PubMed  CAS  Google Scholar 

  102. Salmaggi A., Gelati M., Pollo B., et al. (2004) CXCL12 in malignant glial tumors: a possible role in angiogenesis and cross-talk between endothelial and tumoral cells. J Neurooncol. 67, 305–17.

    Article  PubMed  Google Scholar 

  103. Schüller U., Koch A., Hartmann W., et al. (2005) Subtype-specific expression and genetic alterations of the chemokinereceptor gene CXCR4 in medulloblastomas. Int J Cancer., 117, s82–9.

    Article  CAS  Google Scholar 

  104. Ping Y. F., Yao X. H., Chen J. H., et al. (2007) The anti-cancer compound Nordy inhibits CXCR4-mediated production of IL-8 and VEGF by malignant human glioma cells. J Neurooncol., 84, 21–9.

    Article  PubMed  CAS  Google Scholar 

  105. Bian X. W., Yang S. X., Chen J. H., et al. (2007) Preferential expression of chemokine receptor CXCR4 by highly malignant human gliomas and its association with poor patient survival. Neurosurgery, 61, 570–8.

    Article  PubMed  Google Scholar 

  106. Borrello M. G., Alberti L., Fischer A., et al. (2005) Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene. Proc Natl Acad Sci U S A. 102, 14825–30.

    Article  PubMed  CAS  Google Scholar 

  107. De Falco V., Guarino V., Avilla E., et al. (2007) Biological role and potential therapeutic targeting of the chemokine receptor CXCR4 in undifferentiated thyroid cancer. Cancer Res., 67, 11821–9.

    Article  PubMed  CAS  Google Scholar 

  108. Koshiba T., Hosotani R., Miyamoto Y., et al. (2000) Expression of stromal cell-derived factor 1 and CXCR4 ligand receptor system in pancreatic cancer: A possible role for tumor progression. Clin Cancer Res., 6, 3530–5.

    PubMed  CAS  Google Scholar 

  109. Mori T., Doi R., Koizumi M., et al. (2004) CXCR4 antagonist inhibits stromal cell-derived factor 1-induced migration and invasion of human pancreatic cancer. Mol Cancer Ther., 3, 29–37.

    Article  PubMed  CAS  Google Scholar 

  110. Sato N., Fukushima N., Maitra A., et al. (2004) Gene expression profiling identifies genes associated with invasive intraductal papillary mucinous neoplasms of the pancreas. Am J Pathol. 164, 903–14.

    Article  PubMed  CAS  Google Scholar 

  111. Marchesi F., Monti P., Leone B. E., et al. (2004) Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res., 64, 8420–7.

    Article  PubMed  CAS  Google Scholar 

  112. Wehler T., Wolfert F., Schimanski C. C., et al. (2006) Strong expression of chemokine receptor CXCR4 by pancreatic cancer correlates with advanced disease. Oncol Rep., 16, 1159–64.

    PubMed  CAS  Google Scholar 

  113. Billadeau D. D., Chatterjee S., Bramati P., et al. (2006) Characterization of the CXCR4 signaling in pancreatic cancer cells. Int J Gastrointest Cancer., 37, 110–9.

    PubMed  Google Scholar 

  114. Kaifi J. T., Yekebas E. F., Schurr P., et al. (2005) Tumor-cell homing to lymph nodes and bone marrow and CXCR4 expression in esophageal cancer. J Natl Cancer Inst 97, 1840–7.

    Article  PubMed  CAS  Google Scholar 

  115. Koishi K., Yoshikawa R., Tsujimura T., et al.. (2006) Persistent CXCR4 expression after preoperative chemoradiotherapy predicts early recurrence and poor prognosis in esophageal cancer. World J Gastroenterol., 12, 7585–90.

    PubMed  CAS  Google Scholar 

  116. Gockel I., Schimanski C. C., Heinrich C., et al. (2006) Expression of chemokine receptor CXCR4 in esophageal squamous cell and adenocarcinoma. BMC Cancer., 6, 290.

    Article  PubMed  CAS  Google Scholar 

  117. Kodama J., Hasengaowa, Kusumoto T., et al. (2007) Association of CXCR4 and CCR7 chemokine receptor expression and lymph node metastasis in human cervical cancer. Ann Oncol., 18, 70–6.

    Article  PubMed  CAS  Google Scholar 

  118. Zhang J. P., Lu W. G., Ye F., et al. (2007) Study on CXCR4/SDF-1alpha axis in lymph node metastasis of cervical squamous cell carcinoma. Int J Gynecol Cancer., 17, 478–83.

    Article  PubMed  Google Scholar 

  119. Yang Y. C., Lee Z. Y., Wu C. C., et al. (2007) CXCR4 expression is associated with pelvic lymph node metastasis in cervical adenocarcinoma. Int J Gynecol Cancer., 17, 676–86.

    Article  PubMed  Google Scholar 

  120. Almofti A., Uchida D., Begum N. M., et al. (2004) The clinicopathological significance of the expression of CXCR4 protein in oral squamous cell carcinoma. Int J Oncol., 25, 65–71.

    PubMed  CAS  Google Scholar 

  121. Uchida D., Begum N. M., Tomizuka Y., et al. (2004) Acquisition of lymph node, but not distant metastatic potentials, by the overexpression of CXCR4 in human oral squamous cell carcinoma. Lab Invest. b, 1538–46.

    Article  CAS  Google Scholar 

  122. Ishikawa T., Nakashiro K., Hara S., et al. (2006) CXCR4 expression is associated with lymph-node metastasis of oral squamous cell carcinoma. Int J Oncol. 28, 61–6.

    PubMed  CAS  Google Scholar 

  123. Onoue T., Uchida D., Begum N. M., et al.(2006) Epithelial-mesenchymal transition induced by the stromal cell-derived factor-1/CXCR4 system in oral squamous cell carcinoma cells. Int J Oncol., 29, 1133–8.

    PubMed  CAS  Google Scholar 

  124. Li H., Alizadeh H., and Niederkorn J. Y. (2008) Differential expression of chemokine receptors on uveal melanoma cells and their metastases. Invest Ophthalmol Vis Sci., 49, 636–43.

    Article  PubMed  Google Scholar 

  125. Di Cesare S., Marshall J. C., Fernandes B. F., et al. (2007) In vitro characterization and inhibition of the CXCR4/CXCL12 chemokine axis in human uveal melanoma cell lines. Cancer Cell Int., 7, 17.

    Article  PubMed  CAS  Google Scholar 

  126. Tucci M. G., Lucarini G., Brancorsini D., et al. (2007) Involvement of E-cadherin, beta-catenin, Cdc42 and CXCR4 in the progression and prognosis of cutaneous melanoma. Br J Dermatol. 157, 1212–6.

    Article  PubMed  CAS  Google Scholar 

  127. Schutyser E., Su Y., Yu Y., et al. (2007) Hypoxia enhances CXCR4 expression in human microvascular endothelial cells and human melanoma cells. Eur Cytokine Netw. 18, 59–70.

    PubMed  CAS  Google Scholar 

  128. Robledo M. M., Bartolome R. A., Longo N., et al. (2001) Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells. J Biol Chem. 276, 45098–105.

    Article  PubMed  CAS  Google Scholar 

  129. Payne A. S. and Cornelius L. A. (2002) The role of chemokines in melanoma tumor growth and metastasis. J Invest Dermatol., 118, 915–22.

    Article  PubMed  CAS  Google Scholar 

  130. Murakami T., Maki W., Cardones A. R., et al. (2002) Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells. Cancer Res., 62, 7328–34.

    PubMed  CAS  Google Scholar 

  131. Scala S., Ottaiano A., Ascierto P. A., et al. (2005) Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma. Clin Cancer Res. 11, 1835–41.

    Article  PubMed  CAS  Google Scholar 

  132. Longo-Imedio M. I., Longo N., Treviño I., et al.(2005) Clinical significance of CXCR3 and CXCR4 expression in primary melanoma. Int J Cancer., 117, 861–5.

    Article  PubMed  CAS  Google Scholar 

  133. Möhle R., Bautz F., Rafii S., et al. (1998) The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Bilood, 91, 4523–30.

    Google Scholar 

  134. Burger J. A., Burger M., and Kipps T. J. (1999) Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood, 94, 3658–67.

    PubMed  CAS  Google Scholar 

  135. Sipkins D. A., Wei X., Wu J. W., et al. (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature, 435, 969–73.

    Article  PubMed  CAS  Google Scholar 

  136. Monaco G., Belmont J. W., Konopleva M., et al. (2004) Correlation between CXCR4 and homing or engraftment of acute myelogenous leukemia. Cancer Res. 64, 6832.

    Article  PubMed  CAS  Google Scholar 

  137. Dommange F., Cartron G., Espanel C., et al. (2006) CXCL12 polymorphism and malignant cell dissemination/tissue infiltration in acute myeloid leukemia. FASEB J. 20, 1913–5.

    Article  PubMed  CAS  Google Scholar 

  138. Kalinkovich A., Tavor S., Avigdor A., et al. (2006) Functional CXCR4-expressing microparticles and SDF-1 correlate with circulating acute myelogenous leukemia cells. Cancer Ries. 66, 11013–20.

    Article  CAS  Google Scholar 

  139. Konoplev S., Rassidakis G. Z., Estey E., et al. (2007) Overexpression of CXCR4 predicts adverse overall and event-free survival in patients with unmutated FLT3 acute myeloid leukemia with normal karyotype. Cancer, 109, 1152–6.

    Article  PubMed  CAS  Google Scholar 

  140. Zeelenberg I. S., Ruuls-Van Stalle L., and Roos E. (2001) Retention of CXCR4 in the endoplasmic reticulum blocks dissemination of a T cell hybridoma. JClin Invest., 108, 269–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johng S. Rhim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Furusato, B., Rhim, J.S. (2009). CXCR4 and Cancer. In: Fulton, A. (eds) Chemokine Receptors in Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-267-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-267-4_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-266-7

  • Online ISBN: 978-1-60327-267-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics