Skip to main content

Modeling Parkinson’s Disease: 50 Years Later

  • Chapter
  • First Online:
  • 741 Accesses

Part of the book series: Contemporary Neuroscience ((CNEURO))

The aromatic amino acid l-3,4-dihydroxyphenylalamine (also known as l-dopa or levodopa) was first synthesized by Casimir Funk (Berne, Switzerland) in 1911 and 2 years later, it was isolated from legumes (Vicia faba) by Marcus Guggenheim (a Hoffmann-La Roche biochemist, 1913). However, it was not until the discovery of the enzyme “l-dopa decarboxylase” by Peter Holtz in Germany in 1938 that the formulation of the “catecholamine pathway” could be introduced by Hermann Blaschko (Physiological Laboratory at Cambridge, UK) in 1939: l-tyrosine → l-dopa → dopamine (DA) → noradrenaline → adrenaline. A new direction in the research of catecholamine pharmacology was initiated by Hotlz’s experiment in mammalian kidney homogenates showing that a decarboxylation of l-dopa yields to the formation of 3,4-dihydroxyphenylethylamine, a biologically active amine also known as “dopamine”, a short version of the full chemical name introduced by Henry Dale years later in 1952.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Raab W, Gigee W. Concentration and distribution of “encephalin” in the brain of humans and animals. Proc Soc Exp Biol Med 1951;76(1):97–100.

    PubMed  CAS  Google Scholar 

  2. Montagu KA. Catechol compounds in rat tissues and in brains of different animals. Nature 1957;180(4579):244–5.

    Article  PubMed  CAS  Google Scholar 

  3. Weil-Malherbe H, Bone AD. Intracellular distribution of catecholamines in the brain. Nature 1957;180(4594):1050–1.

    Article  PubMed  CAS  Google Scholar 

  4. Carlsson A, Lindqvist M, Magnusson T. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 1957;180(4596):1200.

    Article  PubMed  CAS  Google Scholar 

  5. Carlsson A, Lindqvist M, Magnusson T, Waldeck B. On the presence of 3-hydroxytyramine in brain. Science 1958;127(3296):471.

    Article  PubMed  CAS  Google Scholar 

  6. Degkwitz R, Frowein R, Kulenkampff C, Mohs U. On the effects of L-dopa in man and their modification by reserpine, chlorpromazine, iproniazid and vitamin B6. Klin Wochenschr 1960;38:120–3.

    Article  PubMed  CAS  Google Scholar 

  7. Monnier M, Tissot R. Effect of reserpine-serotonin preparation on the brain and their suppression by reserpine antagonists: Iproniazid (marsilid) and LSD. Schweiz Arch Neurol Psychiatr 1958;82(1–2):218–28.

    PubMed  CAS  Google Scholar 

  8. Bertler A, Rosengren E. Occurrence and distribution of dopamine in brain and other tissues. Experientia 1959;15(1):10–1.

    Article  PubMed  CAS  Google Scholar 

  9. Sano I, Gamo T, Kakimoto Y, Taniguchi K, Takesada M, Nishinuma K. Distribution of catechol compounds in human brain. Biochim Biophys Acta 1959;32:586–7.

    Article  PubMed  CAS  Google Scholar 

  10. Ehringer H, Hornykiewicz O. Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Klin Wochenschr 1960;38:1236–9.

    Article  PubMed  CAS  Google Scholar 

  11. Birkmayer W, Hornykiewicz O. The L-3,4-dioxyphenylalanine (DOPA)-effect in Parkinson-akinesia. Wien Klin Wochenschr 1961;73:787–8.

    PubMed  CAS  Google Scholar 

  12. Barbeau A. The pathogenesis of Parkinson's disease: a new hypothesis. Can Med Assoc J 1962;87:802–7.

    PubMed  CAS  Google Scholar 

  13. Cotzias GC, Van Woert MH, Schiffer LM. Aromatic amino acids and modification of parkinsonism. N Engl J Med 1967;276(7):374–9.

    Article  PubMed  CAS  Google Scholar 

  14. Yahr MD, Duvoisin RC, Schear MJ, Barrett RE, Hoehn MM. Treatment of parkinsonism with levodopa. Arch Neurol 1969;21(4):343–54.

    Article  PubMed  CAS  Google Scholar 

  15. Halliday GM, Del Tredici K, Braak H. Critical appraisal of brain pathology staging related to presymptomatic and symptomatic cases of sporadic Parkinson's disease. J Neural Transm Suppl 2006(70):99–103.

    Google Scholar 

  16. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 1973;20(4):415–55.

    Article  PubMed  CAS  Google Scholar 

  17. Zigmond MJ, Hastings TG, Perez RG. Increased dopamine turnover after partial loss of dopaminergic neurons: compensation or toxicity? Parkinsonism Relat Disord 2002;8(6):389–93.

    Article  PubMed  Google Scholar 

  18. Meredith GE, Totterdell S, Petroske E, Santa Cruz K, Callison RC, Jr., Lau YS. Lysosomal malfunction accompanies alpha-synuclein aggregation in a progressive mouse model of Parkinson's disease. Brain Res 2002;956(1):156–65.

    Article  PubMed  CAS  Google Scholar 

  19. Zgaljardic DJ, Borod JC, Foldi NS, Mattis P. A review of the cognitive and behavioral sequelae of Parkinson's disease: relationship to frontostriatal circuitry. Cogn Behav Neurol 2003;16(4):193–210.

    Article  PubMed  Google Scholar 

  20. Brown RG, Marsden CD. How common is dementia in Parkinson's disease? Lancet 1984;2(8414):1262–5.

    Article  PubMed  CAS  Google Scholar 

  21. Brown RG, Marsden CD. Internal versus external cues and the control of attention in Parkinson's disease. Brain 1988;111 ( Pt 2):323–45.

    Article  PubMed  Google Scholar 

  22. Brown RG, Marsden CD. 'Subcortical dementia': the neuropsychological evidence. Neuroscience 1988;25(2):363–87.

    Google Scholar 

  23. Cooper JA, Sagar HJ, Jordan N, Harvey NS, Sullivan EV. Cognitive impairment in early, untreated Parkinson's disease and its relationship to motor disability. Brain 1991;114 (Pt 5):2095–122.

    Article  PubMed  Google Scholar 

  24. Dubois B, Pillon B. Cognitive deficits in Parkinson's disease. J Neurol 1997;244(1):2–8.

    Article  PubMed  CAS  Google Scholar 

  25. Lees AJ, Smith E. Cognitive deficits in the early stages of Parkinson's disease. Brain 1983;106 (Pt 2):257–70.

    Article  PubMed  Google Scholar 

  26. Owen AM, James M, Leigh PN, et al. Fronto-striatal cognitive deficits at different stages of Parkinson's disease. Brain 1992;115 (Pt 6):1727–51.

    Article  PubMed  Google Scholar 

  27. Owen AM, Roberts AC, Hodges JR, Summers BA, Polkey CE, Robbins TW. Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson's disease. Brain 1993;116 (Pt 5):1159–75.

    Article  PubMed  Google Scholar 

  28. Partiot A, Verin M, Pillon B, Teixeira-Ferreira C, Agid Y, Dubois B. Delayed response tasks in basal ganglia lesions in man: further evidence for a striato-frontal cooperation in behavioural adaptation. Neuropsychologia 1996;34(7):709–21.

    Article  PubMed  CAS  Google Scholar 

  29. Taylor AE, Saint-Cyr JA. The neuropsychology of Parkinson's disease. Brain Cogn 1995;28(3):281–96.

    Article  PubMed  CAS  Google Scholar 

  30. Taylor AE, Saint-Cyr JA, Lang AE. Frontal lobe dysfunction in Parkinson's disease. The cortical focus of neostriatal outflow. Brain 1986;109 (Pt 5):845–83.

    Article  PubMed  Google Scholar 

  31. Jellinger KA. The pathology of Parkinson's disease. Adv Neurol 2001;86:55–72.

    PubMed  CAS  Google Scholar 

  32. Lewis SJ, Cools R, Robbins TW, Dove A, Barker RA, Owen AM. Using executive heterogeneity to explore the nature of working memory deficits in Parkinson's disease. Neuropsychologia 2003;41(6):645–54.

    Article  PubMed  Google Scholar 

  33. Lewis SJ, Dove A, Robbins TW, Barker RA, Owen AM. Cognitive impairments in early Parkinson's disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci 2003;23(15):6351–6.

    PubMed  CAS  Google Scholar 

  34. Pillon B, Czernecki V, Dubois B. Dopamine and cognitive function. Curr Opin Neurol 2003;16 Suppl 2:S17–22.

    Article  PubMed  CAS  Google Scholar 

  35. Cenci MA, Whishaw IQ, Schallert T. Animal models of neurological deficits: how relevant is the rat? Nat Rev Neurosci 2002;3(7):574–9.

    Article  PubMed  CAS  Google Scholar 

  36. Meredith GE, Sonsalla PK, Chesselet MF. Animal models of Parkinson's disease progression. Acta Neuropathol 2008;115(4):385–98.

    Article  PubMed  Google Scholar 

  37. Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. J Neurochem 2002;81(6):1285–97.

    Article  PubMed  CAS  Google Scholar 

  38. Herrera AJ, Castano A, Venero JL, Cano J, Machado A. The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis 2000;7(4):429–47.

    Article  PubMed  CAS  Google Scholar 

  39. Kim BG, Shin DH, Jeon GS, et al. Relative sparing of calretinin containing neurons in the substantia nigra of 6-OHDA treated rat Parkinsonian model. Brain Res 2000;855(1):162–5.

    Article  PubMed  CAS  Google Scholar 

  40. Creveling CR, Rotman A. Mechanism of action of dihydroxytryptamines. Ann N Y Acad Sci 1978;305:57–73.

    Article  PubMed  CAS  Google Scholar 

  41. Saner A, Thoenen H. Model experiments on the molecular mechanism of action of 6-hydroxydopamine. Mol Pharmacol 1971;7(2):147–54.

    PubMed  CAS  Google Scholar 

  42. Javoy F, Sotelo C, Herbet A, Agid Y. Specificity of dopaminergic neuronal degeneration induced by intracerebral injection of 6-hydroxydopamine in the nigrostriatal dopamine system. Brain Res 1976;102(2):201–15.

    Article  PubMed  CAS  Google Scholar 

  43. Jeon BS, Jackson-Lewis V, Burke RE. 6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death. Neurodegeneration 1995;4(2):131–7.

    Article  PubMed  CAS  Google Scholar 

  44. Zahm DS. Compartments in rat dorsal and ventral striatum revealed following injection of 6-hydroxydopamine into the ventral mesencephalon. Brain Res 1991;552(1):164–9.

    Article  PubMed  CAS  Google Scholar 

  45. Tseng KY, Kargieman L, Gacio S, Riquelme LA, Murer MG. Consequences of partial and severe dopaminergic lesion on basal ganglia oscillatory activity and akinesia. Eur J Neurosci 2005;22(10):2579–86.

    Article  PubMed  Google Scholar 

  46. Grant RJ, Clarke PB. Susceptibility of ascending dopamine projections to 6-hydroxydopamine in rats: effect of hypothermia. Neuroscience 2002;115(4):1281–94.

    Article  PubMed  CAS  Google Scholar 

  47. Truong L, Allbutt H, Kassiou M, Henderson JM. Developing a preclinical model of Parkinson's disease: a study of behaviour in rats with graded 6-OHDA lesions. Behav Brain Res 2006;169(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  48. Finkelstein DI, Stanic D, Parish CL, Tomas D, Dickson K, Horne MK. Axonal sprouting following lesions of the rat substantia nigra. Neuroscience 2000;97(1):99–112.

    Article  PubMed  CAS  Google Scholar 

  49. Przedborski S, Levivier M, Jiang H, et al. Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience 1995;67(3):631–47.

    Article  PubMed  CAS  Google Scholar 

  50. Stanic D, Finkelstein DI, Bourke DW, Drago J, Horne MK. Timecourse of striatal re-innervation following lesions of dopaminergic SNpc neurons of the rat. Eur J Neurosci 2003;18(5):1175–88.

    Article  PubMed  CAS  Google Scholar 

  51. Fleming SM, Delville Y, Schallert T. An intermittent, controlled-rate, slow progressive degeneration model of Parkinson's disease: antiparkinson effects of Sinemet and protective effects of methylphenidate. Behav Brain Res 2005;156(2):201–13.

    Article  PubMed  CAS  Google Scholar 

  52. Ungerstedt U, Arbuthnott GW. Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 1970;24(3):485–93.

    Article  PubMed  CAS  Google Scholar 

  53. Olsson M, Nikkhah G, Bentlage C, Bjorklund A. Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J Neurosci 1995;15(5 Pt 2):3863–75.

    PubMed  CAS  Google Scholar 

  54. Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 2000;39(5):777–87.

    Article  PubMed  CAS  Google Scholar 

  55. Schwarting RK, Huston JP. Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Prog Neurobiol 1996;49(3):215–66.

    Google Scholar 

  56. Schwarting RK, Huston JP. The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol 1996;50(2–3):275–331.

    Article  PubMed  CAS  Google Scholar 

  57. Whishaw IQ, Coles BL, Pellis SM, Miklyaeva EI. Impairments and compensation in mouth and limb use in free feeding after unilateral dopamine depletions in a rat analog of human Parkinson's disease. Behav Brain Res 1997;84(1–2):167–77.

    PubMed  CAS  Google Scholar 

  58. Lau YS, Meredith GE. From drugs of abuse to parkinsonism. The MPTP mouse model of Parkinson's disease. Methods Mol Med 2003;79:103–16.

    PubMed  CAS  Google Scholar 

  59. Schapira AH. Mitochondrial complex I deficiency in Parkinson's disease. Adv Neurol 1993;60:288–91.

    PubMed  CAS  Google Scholar 

  60. Hallman H, Lange J, Olson L, Stromberg I, Jonsson G. Neurochemical and histochemical characterization of neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on brain catecholamine neurones in the mouse. J Neurochem 1985;44(1):117–27.

    Article  PubMed  CAS  Google Scholar 

  61. Petroske E, Meredith GE, Callen S, Totterdell S, Lau YS. Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 2001;106(3):589–601.

    Article  PubMed  CAS  Google Scholar 

  62. Jackson-Lewis V, Vila M, Djaldetti R, et al. Developmental cell death in dopaminergic neurons of the substantia nigra of mice. J Comp Neurol 2000;424(3):476–88.

    Article  PubMed  CAS  Google Scholar 

  63. Przedborski S, Jackson-Lewis V, Djaldetti R, et al. The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci 2000;16(2):135–42.

    PubMed  CAS  Google Scholar 

  64. Yazdani U, German DC, Liang CL, Manzino L, Sonsalla PK, Zeevalk GD. Rat model of Parkinson's disease: chronic central delivery of 1-methyl-4-phenylpyridinium (MPP+). Exp Neurol 2006;200(1):172–83.

    Article  PubMed  CAS  Google Scholar 

  65. Zeevalk GD, Manzino L, Sonsalla PK, Bernard LP. Characterization of intracellular elevation of glutathione (GSH) with glutathione monoethyl ester and GSH in brain and neuronal cultures: relevance to Parkinson's disease. Exp Neurol 2007;203(2):512–20.

    Article  PubMed  CAS  Google Scholar 

  66. Xu Z, Cawthon D, McCastlain KA, Slikker W Jr, Ali SF. Selective alterations of gene expression in mice induced by MPTP. Synapse. 2005;55(1):45–51.

    Google Scholar 

  67. Chan P, Di Monte DA, Langston JW, Janson AM. (+)MK-801 does not prevent MPTP-induced loss of nigral neurons in mice. J Pharmacol Exp Ther 1997;280(1):439–46.

    PubMed  CAS  Google Scholar 

  68. Du Y, Ma Z, Lin S, et al. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. Proc Natl Acad Sci U S A 2001;98(25):14669–74.

    Article  PubMed  CAS  Google Scholar 

  69. Joyce JN, Woolsey C, Ryoo H, Borwege S, Hagner D. Low dose pramipexole is neuroprotective in the MPTP mouse model of Parkinson's disease, and downregulates the dopamine transporter via the D3 receptor. BMC Biol 2004;2:22.

    Article  PubMed  Google Scholar 

  70. Meredith GE, Kang UJ. Behavioral models of Parkinson's disease in rodents: a new look at an old problem. Mov Disord 2006;21(10):1595–606.

    Article  PubMed  Google Scholar 

  71. Ascherio A, Chen H, Weisskopf MG, et al. Pesticide exposure and risk for Parkinson's disease. Ann Neurol 2006;60(2):197–203.

    Article  PubMed  CAS  Google Scholar 

  72. Dick S, Semple S, Dick F, Seaton A. Occupational titles as risk factors for Parkinson's disease. Occup Med (Lond) 2007;57(1):50–6.

    Article  Google Scholar 

  73. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 2000;3(12):1301–6.

    Article  PubMed  CAS  Google Scholar 

  74. Hoglinger GU, Carrard G, Michel PP, et al. Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson's disease. J Neurochem 2003;86(5):1297–307.

    Article  PubMed  Google Scholar 

  75. Fleming SM, Zhu C, Fernagut PO, et al. Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone. Exp Neurol 2004;187(2):418–29.

    Article  PubMed  CAS  Google Scholar 

  76. Alam M, Schmidt WJ. Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 2002;136(1):317–24.

    Article  PubMed  CAS  Google Scholar 

  77. Przedborski S, Ischiropoulos H. Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson's disease. Antioxid Redox Signal 2005;7(5–6):685–93.

    Article  PubMed  CAS  Google Scholar 

  78. Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ. Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res 1999;823(1–2):1–10.

    Article  PubMed  CAS  Google Scholar 

  79. Kuter K, Smialowska M, Wieronska J, et al. Toxic influence of subchronic paraquat administration on dopaminergic neurons in rats. Brain Res 2007;1155:196–207.

    Article  PubMed  CAS  Google Scholar 

  80. McCormack AL, Thiruchelvam M, Manning-Bog AB, et al. Environmental risk factors and Parkinson's disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 2002;10(2):119–27.

    Article  PubMed  CAS  Google Scholar 

  81. Peng J, Stevenson FF, Doctrow SR, Andersen JK. Superoxide dismutase/catalase mimetics are neuroprotective against selective paraquat-mediated dopaminergic neuron death in the substantial nigra: implications for Parkinson disease. J Biol Chem 2005;280(32):29194–8.

    Article  PubMed  CAS  Google Scholar 

  82. Fernagut PO, Hutson CB, Fleming SM, et al. Behavioral and histopathological consequences of paraquat intoxication in mice: effects of alpha-synuclein over-expression. Synapse 2007;61(12):991–1001.

    Article  PubMed  CAS  Google Scholar 

  83. Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA. The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J Biol Chem 2002;277(3):1641–4.

    Article  PubMed  CAS  Google Scholar 

  84. Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA. The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined –paraquat and maneb: implications for Parkinson's disease. J Neurosci 2000;20(24):9207–14.

    PubMed  CAS  Google Scholar 

  85. Vaccari A, Ruiu S, Mocci I, Saba P. Selected pyrethroid insecticides stimulate glutamate uptake in brain synaptic vesicles. Neuroreport 1998;9(15):3519–23.

    Article  PubMed  CAS  Google Scholar 

  86. Vaccari A, Saba PL, Ruiu S, Collu M, Devoto P. Disulfiram and diethyldithiocarbamate intoxication affects the storage and release of striatal dopamine. Toxicol Appl Pharmacol 1996;139(1):102–8.

    Article  PubMed  CAS  Google Scholar 

  87. Thiruchelvam M, McCormack A, Richfield EK, et al. Age-related irreversible progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson's disease phenotype. Eur J Neurosci 2003;18(3):589–600.

    Article  PubMed  Google Scholar 

  88. Hwang DY, Fleming SM, Ardayfio P, et al. 3,4-dihydroxyphenylalanine reverses the motor deficits in Pitx3-deficient aphakia mice: behavioral characterization of a novel genetic model of Parkinson's disease. J Neurosci 2005;25(8):2132–7.

    Article  PubMed  CAS  Google Scholar 

  89. Sgado P, Alberi L, Gherbassi D, et al. Slow progressive degeneration of nigral dopaminergic neurons in postnatal Engrailed mutant mice. Proc Natl Acad Sci U S A 2006;103(41):15242–7.

    Article  PubMed  CAS  Google Scholar 

  90. Sonnier L, Le Pen G, Hartmann A, et al. Progressive loss of dopaminergic neurons in the ventral midbrain of adult mice heterozygote for Engrailed1. J Neurosci 2007;27(5):1063–71.

    Article  PubMed  CAS  Google Scholar 

  91. Brown P. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson's disease. Mov Disord 2003;18(4):357–63.

    Article  PubMed  Google Scholar 

  92. DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch Neurol 2007;64(1):20–4.

    Article  PubMed  Google Scholar 

  93. Tseng KY, Kasanetz F, Kargieman L, Riquelme LA, Murer MG. Cortical slow oscillatory activity is reflected in the membrane potential and spike trains of striatal neurons in rats with chronic nigrostriatal lesions. J Neurosci 2001;21(16):6430–9.

    PubMed  CAS  Google Scholar 

  94. Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y. Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson's disease. Brain Res 1983;275(2):321–8.

    Article  PubMed  CAS  Google Scholar 

  95. Scatton B, Rouquier L, Javoy-Agid F, Agid Y. Dopamine deficiency in the cerebral cortex in Parkinson disease. Neurology 1982;32(9):1039–40.

    PubMed  CAS  Google Scholar 

  96. Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain 1999;122 (Pt 8):1437–48.

    Article  PubMed  Google Scholar 

  97. Fearnley JM, Lees AJ. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 1991;114 (Pt 5):2283–301.

    Article  PubMed  Google Scholar 

  98. Gibb WR, Lees AJ. Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson's disease. J Neurol Neurosurg Psychiatry 1991;54(5):388–96.

    Article  PubMed  CAS  Google Scholar 

  99. Gupta M, Gupta BK, Thomas R, Bruemmer V, Sladek JR, Jr., Felten DL. Aged mice are more sensitive to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment than young adults. Neurosci Lett 1986;70(3):326–31.

    Article  PubMed  CAS  Google Scholar 

  100. Backman L, Nyberg L, Lindenberger U, Li SC, Farde L. The correlative triad among aging, dopamine, and cognition: current status and future prospects. Neurosci Biobehav Rev 2006;30(6):791–807.

    Article  PubMed  Google Scholar 

  101. Barili P, De Carolis G, Zaccheo D, Amenta F. Sensitivity to ageing of the limbic dopaminergic system: a review. Mech Ageing Dev 1998;106(1–2):57–92.

    Article  PubMed  CAS  Google Scholar 

  102. Stark AK, Pakkenberg B. Histological changes of the dopaminergic nigrostriatal system in aging. Cell Tissue Res 2004;318(1):81–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria E Meredith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Meredith, G.E., Tseng, K.Y. (2009). Modeling Parkinson’s Disease: 50 Years Later. In: Tseng, KY. (eds) Cortico-Subcortical Dynamics in Parkinson's Disease. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60327-252-0_2

Download citation

Publish with us

Policies and ethics