Skip to main content

The Genetics of Thrombosis

  • Chapter
  • First Online:
Book cover Antithrombotic Drug Therapy in Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1250 Accesses

Abstract

Coagulation and hemostasis are the result of a complex interplay of platelets, coagulation factors, and fibrinolytic proteins. Genetic variants underlying these factors may contribute to derangement of this coordinated system, resulting in abnormal coagulation or fibrinolysis and subsequent thrombosis. Human pathologic thrombosis remains a complex, heterogeneous disease. The advent of advanced genetic and molecular technologies has facilitated an explosion of studies of genetics of human thrombotic disease, resulting in several advances in our understanding of such disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  2. de Lange M, Snieder H, Ariens RA et al (2001) The genetics of haemostasis: a twin study. Lancet 357:101–105

    Article  PubMed  Google Scholar 

  3. Bladbjerg EM, de Maat MP, Christensen K et al (2006) Genetic influence on thrombotic risk markers in the elderly – a Danish twin study. J Thromb Haemost 4:599–607

    Article  PubMed  CAS  Google Scholar 

  4. Souto JC, Almasy L, Borrell M et al (2000) Genetic susceptibility to thrombosis and its relationship to physiological risk factors: the GAIT study. Genetic Analysis of Idiopathic Thrombophilia. Am J Hum Genet 67:1452–1459

    Article  PubMed  CAS  Google Scholar 

  5. Davidson CJ, Tuddenham EG, McVey JH (2003) 450 million years of hemostasis. J Thromb Haemost 1:1487–1494

    Article  PubMed  CAS  Google Scholar 

  6. Doolittle RF (1993) The evolution of vertebrate blood coagulation: a case of Yin and Yang. Thromb Haemost 70:24–28

    PubMed  CAS  Google Scholar 

  7. Krem MM, Di Cera E (2002) Evolution of enzyme cascades from embryonic development to blood coagulation. Trends Biochem Sci 27:67–74

    Article  PubMed  CAS  Google Scholar 

  8. Abi-Rached L, Gilles A, Shiina T et al (2002) Evidence of en bloc duplication in vertebrate genomes. Nat Genet 31:100–105

    Article  PubMed  CAS  Google Scholar 

  9. Hanumanthaiah R, Day K, Jagadeeswaran P (2002) Comprehensive analysis of blood coagulation pathways in teleostei: evolution of coagulation factor genes and identification of zebrafish factor VIIi. Blood Cells Mol Dis 29:57–68

    Article  PubMed  Google Scholar 

  10. Ginsburg D (2005) Identifying novel genetic determinants of hemostatic balance. J Thromb Haemost 3:1561–1568

    Article  PubMed  CAS  Google Scholar 

  11. Jiang Y, Doolittle RF (2003) The evolution of vertebrate blood coagulation as viewed from a comparison of puffer fish and sea squirt genomes. Proc Natl Acad Sci U S A 100:7527–7532

    Article  PubMed  CAS  Google Scholar 

  12. Collins FS, McKusick VA (2001) Implications of the Human Genome Project for medical science. JAMA 285:540–544

    Article  PubMed  CAS  Google Scholar 

  13. Cargill M, Altshuler D, Ireland J et al (1999) Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 22:231–238

    Article  PubMed  CAS  Google Scholar 

  14. Halushka MK, Fan J-B, Bentley K et al (1999) Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet 22:239–247

    Article  PubMed  CAS  Google Scholar 

  15. Broeckel U, Hengstenberg C, Mayer B et al (2002) A comprehensive linkage analysis for myocardial infarction and its related risk factors. Nat Genet 30:210–214

    Article  PubMed  CAS  Google Scholar 

  16. Hauser ER, Crossman DC, Granger C et al (2002) A genome-wide scan in 438 families with early-onset coronary artery disease. Am J Hum Genet 71:459

    Article  Google Scholar 

  17. Helgadottir A, Manolescu A, Thorleifsson G et al (2004) The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet 36:233–239

    Article  PubMed  CAS  Google Scholar 

  18. Wang Q, Rao S, Shen GQ et al (2004) Premature myocardial infarction novel susceptibility locus on chromosome 1P34-36 identified by genomewide linkage analysis. Am J Hum Genet 74:262–271

    Article  PubMed  CAS  Google Scholar 

  19. Connelly JJ, Wang T, Cox JE et al (2006) GATA2 is associated with familial early-onset coronary artery disease. PLoS Genet 2:e139

    Article  PubMed  CAS  Google Scholar 

  20. Wang L, Hauser ER, Shah SH et al (2006) Identification of kalirin gene as a novel coronary artery disease gene through peak-wide association mapping on chromosome 3q13-21. Circulation 114:887

    Article  Google Scholar 

  21. Blangero J, Williams JT, Almasy L (2003) Novel family-based approaches to genetic risk in thrombosis. J Thromb Haemost 1:1391–1397

    Article  PubMed  CAS  Google Scholar 

  22. Soria JM, Fontcuberta J (2005) New approaches and future prospects for evaluating genetic risk of thrombosis. Haema­tologica 90:1212–1222

    PubMed  CAS  Google Scholar 

  23. Roeder K, Bacanu SA, Wasserman L et al (2006) Using linkage genome scans to improve power of association in genome scans. Am J Hum Genet 78:243–252

    Article  PubMed  CAS  Google Scholar 

  24. Wacholder S, Rothman N, Caporaso N (2000) Population stratification in epidemiologic studies of common genetic variants and cancer: quantification of bias. J Natl Cancer Inst 92:1151–1158

    Article  PubMed  CAS  Google Scholar 

  25. Helgadottir A, Thorleifsson G, Manolescu A et al (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316:1491–1493

    Article  PubMed  CAS  Google Scholar 

  26. Allaart CF, Poort SR, Rosendaal FR et al (1993) Increased risk of venous thrombosis in carriers of hereditary protein C deficiency defect. Lancet 341:134–138

    Article  PubMed  CAS  Google Scholar 

  27. (1997) Inherited thrombophilia: memorandum from a joint WHO/International Society on Thrombosis and Haemostasis meeting. Bull World Health Organ 75:177–189.

    Google Scholar 

  28. Makris M, Rosendaal FR, Preston FE (1997) Familial thrombophilia: genetic risk factors and management. J Intern Med Suppl 740:9–15

    PubMed  CAS  Google Scholar 

  29. Mateo J, Oliver A, Borrell M et al (1997) Laboratory evaluation and clinical characteristics of 2,132 consecutive unselected patients with venous thromboembolism – results of the Spanish Multicentric Study on Thrombophilia (EMET-Study). Thromb Haemost 77:444–451

    PubMed  CAS  Google Scholar 

  30. Ridker PM, Goldhaber SZ, Danielson E et al (2003) Long-term, low-intensity warfarin therapy for the prevention of recurrent venous thromboembolism. N Engl J Med 348:1425–1434

    Article  PubMed  CAS  Google Scholar 

  31. Egeberg O (1965) Inherited antithrombin deficiency causing thrombophilia. Thromb Diath Haemorrh 13:516–530

    PubMed  CAS  Google Scholar 

  32. Lane DA, Olds RJ, Conard J et al (1992) Pleiotropic effects of antithrombin strand 1C substitution mutations. J Clin Invest 90:2422–2433

    Article  PubMed  CAS  Google Scholar 

  33. Lane DA, Olds RJ, Boisclair M et al (1993) Antithrombin III mutation database: first update. For the Thrombin and its Inhibitors Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost 70:361–369

    PubMed  CAS  Google Scholar 

  34. Finazzi G, Caccia R, Barbui T (1987) Different prevalence of thromboembolism in the subtypes of congenital antithrombin III deficiency: review of 404 cases. Thromb Haemost 58:1094

    PubMed  CAS  Google Scholar 

  35. Lane DA, Mannucci PM, Bauer KA et al (1996) Inherited thrombophilia: Part 1. Thromb Haemost 76:651–662

    PubMed  CAS  Google Scholar 

  36. Olds RJ, Lane DA, Caso R et al (1992) Antithrombin III Budapest: a single amino acid substitution (429Pro to Leu) in a region highly conserved in the serpin family. Blood 79:1206–1212

    PubMed  CAS  Google Scholar 

  37. Sas G, Blasko G, Banhegyi D et al (1974) Abnormal antithrombin III (antithrombin III “Budapest”) as a cause of a familial thrombophilia. Thromb Diath Haemorrh 32:105–115

    PubMed  CAS  Google Scholar 

  38. Odegard OR, Abildgaard U (1978) Antithrombin III: critical review of assay methods. Significance of variations in health and disease. Haemostasis 7:127–134

    PubMed  CAS  Google Scholar 

  39. Tait RC, Walker ID, Perry DJ et al (1994) Prevalence of antithrombin deficiency in the healthy population. Br J Haematol 87:106–112

    Article  PubMed  CAS  Google Scholar 

  40. Cosgriff TM, Bishop DT, Hershgold EJ et al (1983) Familial antithrombin III deficiency: its natural history, genetics, diagnosis and treatment. Medicine (Baltimore) 62:209–220

    CAS  Google Scholar 

  41. Demers C, Ginsberg JS, Hirsh J et al (1992) Thrombosis in antithrombin-III-deficient persons. Report of a large kindred and literature review. Ann Intern Med 116:754–761

    PubMed  CAS  Google Scholar 

  42. Martinelli I, Mannucci PM, De Stefano V et al (1998) Different risks of thrombosis in four coagulation defects associated with inherited thrombophilia: a study of 150 families. Blood 92:2353–2358

    PubMed  CAS  Google Scholar 

  43. De Stefano V, Leone G, Mastrangelo S et al (1994) Thrombosis during pregnancy and surgery in patients with congenital deficiency of antithrombin III, protein C, protein S. Thromb Haemost 71:799–800

    PubMed  Google Scholar 

  44. De Stefano V, Mastrangelo S, Paciaroni K et al (1995) Thrombotic risk during pregnancy and puerperium in women with APC-resistance-effective subcutaneous heparin prophylaxis in a pregnant patient. Thromb Haemost 74:793–794

    PubMed  Google Scholar 

  45. Chowdhury V, Lane DA, Mille B et al (1994) Homozygous antithrombin deficiency: report of two new cases (99 Leu to Phe) associated with arterial and venous thrombosis. Thromb Haemost 72:198–202

    PubMed  CAS  Google Scholar 

  46. Candrina R, Goppini A, Salvi A et al (1986) Arterial thrombosis in antithrombin III deficiency. Clin Lab Haematol 8:267–268

    Article  PubMed  CAS  Google Scholar 

  47. Michiels JJ, Hamulyak K (1998) Laboratory diagnosis of hereditary thrombophilia. Semin Thromb Hemost 24:309–320

    Article  PubMed  CAS  Google Scholar 

  48. Ranucci M, Isgro G, Cazzaniga A et al (1999) Predictors for heparin resistance in patients undergoing coronary artery bypass grafting. Perfusion 14:437–442

    Article  PubMed  CAS  Google Scholar 

  49. Ranucci M, Isgro G, Cazzaniga A et al (2002) Different patterns of heparin resistance: therapeutic implications. Perfusion 17:199–204

    Article  PubMed  Google Scholar 

  50. Menache D, O’malley JP, Schorr JB et al (1990) Evaluation of the safety, recovery, half-life, and clinical efficacy of antithrombin III (human) in patients with hereditary antithrombin III deficiency. Cooperative Study Group. Blood 75:33–39

    PubMed  CAS  Google Scholar 

  51. Schwartz RS, Bauer KA, Rosenberg RD et al (1989) Clinical experience with antithrombin III concentrate in treatment of congenital and acquired deficiency of antithrombin. The Antithrombin III Study Group. Am J Med 87:53S–60S

    Article  PubMed  CAS  Google Scholar 

  52. Bucur SZ, Levy JH, Despotis GJ et al (1998) Uses of antithrombin III concentrate in congenital and acquired deficiency states. Transfusion 38:481–498

    Article  PubMed  CAS  Google Scholar 

  53. Comp PC, Nixon RR, Cooper MR et al (1984) Familial protein S deficiency is associated with recurrent thrombosis. J Clin Invest 74:2082–2088

    Article  PubMed  CAS  Google Scholar 

  54. Griffin JH, Evatt B, Zimmerman TS et al (1981) Deficiency of protein C in congenital thrombotic disease. J Clin Invest 68:1370–1373

    Article  PubMed  CAS  Google Scholar 

  55. Walker FJ (1984) Regulation of vitamin K-dependent protein S. Inactivation by thrombin. J Biol Chem 259:10335–10339

    PubMed  CAS  Google Scholar 

  56. Rezende SM, Simmonds RE, Lane DA (2004) Coagulation, inflammation, and apoptosis: different roles for protein S and the protein S-C4b binding protein complex. Blood 103:1192–1201

    Article  PubMed  CAS  Google Scholar 

  57. Grandone E, Margaglione M, Colaizzo D et al (2002) Lower birth-weight in neonates of mothers carrying factor V G1691A and factor II A(20210) mutations. Haematologica 87:177–181

    PubMed  CAS  Google Scholar 

  58. Borgel D, Duchemin J, Alhenc-Gelas M et al (1996) Molecular basis for protein S hereditary deficiency: genetic defects observed in 118 patients with type I and type IIa deficiencies. The French Network on Molecular Abnormalities Responsible for Protein C and Protein S Deficiencies. J Lab Clin Med 128:218–227

    Article  PubMed  CAS  Google Scholar 

  59. Gomez E, Poort SR, Bertina RM et al (1995) Identification of eight point mutations in protein S deficiency type I – analysis of 15 pedigrees. Thromb Haemost 73:750–755

    PubMed  CAS  Google Scholar 

  60. Gandrille S, Borgel D, Eschwege-Gufflet V et al (1995) Identification of 15 different candidate causal point mutations and three polymorphisms in 19 patients with protein S deficiency using a scanning method for the analysis of the protein S active gene. Blood 85:130–138

    PubMed  CAS  Google Scholar 

  61. Hayashi T, Nishioka J, Shigekiyo T et al (1994) Protein S Tokushima: abnormal molecule with a substitution of Glu for Lys-155 in the second epidermal growth factor-like domain of protein S. Blood 83:683–690

    PubMed  CAS  Google Scholar 

  62. Simmonds RE, Zoller B, Ireland H et al (1997) Genetic and phenotypic analysis of a large (122-member) protein S-deficient kindred provides an explanation for the familial coexistence of type I and type III plasma phenotypes. Blood 89:4364–4370

    PubMed  CAS  Google Scholar 

  63. Zoller B, Garcia dF, Dahlback B (1995) Evaluation of the relationship between protein S and C4b-binding protein isoforms in hereditary protein S deficiency demonstrating type I and type III deficiencies to be phenotypic variants of the same genetic disease. Blood 85:3524–3531

    PubMed  CAS  Google Scholar 

  64. Bertina RM, Ploos van Amstel HK, van Wijngaarden A et al (1990) Heerlen polymorphism of protein S, an immunologic polymorphism due to dimorphism of residue 460. Blood 76:538–548

    PubMed  CAS  Google Scholar 

  65. Dykes AC, Walker ID, McMahon AD et al (2001) A study of Protein S antigen levels in 3788 healthy volunteers: influence of age, sex and hormone use, and estimate for prevalence of deficiency state. Br J Haematol 113:636–641

    Article  PubMed  CAS  Google Scholar 

  66. Mahasandana C, Suvatte V, Marlar RA et al (1990) Neonatal purpura fulminans associated with homozygous protein S deficiency. Lancet 335:61–62

    Article  PubMed  CAS  Google Scholar 

  67. Coller BS, Owen J, Jesty J et al (1987) Deficiency of plasma protein S, protein C, or antithrombin III and arterial thrombosis. Arteriosclerosis 7:456–462

    Article  PubMed  CAS  Google Scholar 

  68. Allaart CF, Aronson DC, Ruys T et al (1990) Hereditary protein S deficiency in young adults with arterial occlusive disease. Thromb Haemost 64:206–210

    PubMed  CAS  Google Scholar 

  69. Mosnier LO, Zlokovic BV, Griffin JH (2007) The cytoprotective protein C pathway. Blood 109:3161–3172

    Article  PubMed  CAS  Google Scholar 

  70. Aiach M, Gandrille S, Emmerich J (1995) A review of mutations causing deficiencies of antithrombin, protein C and protein S. Thromb Haemost 74:81–89

    PubMed  CAS  Google Scholar 

  71. Foster DC, Yoshitake S, Davie EW (1985) The nucleotide sequence of the gene for human protein C. Proc Natl Acad Sci U S A 82:4673–4677

    Article  PubMed  CAS  Google Scholar 

  72. Reitsma PH (1997) Protein C deficiency: from gene defects to disease. Thromb Haemost 78:344–350

    PubMed  CAS  Google Scholar 

  73. Reitsma PH, te Lintel HW, Koenhen E et al (1990) Application of two neutral MspI DNA polymorphisms in the analysis of hereditary protein C deficiency. Thromb Haemost 64:239–244

    PubMed  CAS  Google Scholar 

  74. Tait RC, Walker ID, Reitsma PH et al (1995) Prevalence of protein C deficiency in the healthy population. Thromb Haemost 73:87–93

    PubMed  CAS  Google Scholar 

  75. Preston FE, Rosendaal FR, Walker ID et al (1996) Increased fetal loss in women with heritable thrombophilia. Lancet 348:913–916

    Article  PubMed  CAS  Google Scholar 

  76. Grewal RP, Goldberg MA (1990) Stroke in protein C deficiency. Am J Med 89:538–539

    Article  PubMed  CAS  Google Scholar 

  77. Tripodi A, Franchi F, Krachmalnicoff A et al (1990) Asymptomatic homozygous protein C deficiency. Acta Haematol 83:152–155

    Article  PubMed  CAS  Google Scholar 

  78. Lensen RP, Rosendaal FR, Koster T et al (1996) Apparent different thrombotic tendency in patients with factor V Leiden and protein C deficiency due to selection of patients. Blood 88:4205–4208

    PubMed  CAS  Google Scholar 

  79. Koster T, Rosendaal FR, Briet E et al (1995) Protein C deficiency in a controlled series of unselected outpatients: an infrequent but clear risk factor for venous thrombosis (Leiden Thrombophilia Study). Blood 85:2756–2761

    PubMed  CAS  Google Scholar 

  80. Mustafa S, Mannhalter C, Rintelen C et al (1998) Clinical features of thrombophilia in families with gene defects in protein C or protein S combined with factor V Leiden. Blood Coagul Fibrinolysis 9:85–89

    Article  PubMed  CAS  Google Scholar 

  81. Miletich J, Sherman L, Broze G Jr (1987) Absence of thrombosis in subjects with heterozygous protein C deficiency. N Engl J Med 317:991–996

    Article  PubMed  CAS  Google Scholar 

  82. De Stefano V, Mastrangelo S, Schwarz HP et al (1993) Replacement therapy with a purified protein C concentrate during initiation of oral anticoagulation in severe protein C congenital deficiency. Thromb Haemost 70:247–249

    PubMed  Google Scholar 

  83. Dahlback B, Carlsson M, Svensson PJ (1993) Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc Natl Acad Sci U S A 90:1004–1008

    Article  PubMed  CAS  Google Scholar 

  84. Bertina RM, Koeleman BP, Koster T et al (1994) Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369:64–67

    Article  PubMed  CAS  Google Scholar 

  85. Castoldi E, Brugge JM, Nicolaes GA et al (2004) Impaired APC cofactor activity of factor V plays a major role in the APC resistance associated with the factor V Leiden (R506Q) and R2 (H1299R) mutations. Blood 103:4173–4179

    Article  PubMed  CAS  Google Scholar 

  86. Williamson D, Brown K, Luddington R et al (1998) Factor V Cambridge: a new mutation (Arg306→Thr) associated with resistance to activated protein C. Blood 91:1140–1144

    PubMed  CAS  Google Scholar 

  87. Chan WP, Lee CK, Kwong YL et al (1998) A novel mutation of Arg306 of factor V gene in Hong Kong Chinese. Blood 91:1135–1139

    PubMed  CAS  Google Scholar 

  88. Norstrom E, Thorelli E, Dahlback B (2002) Functional characterization of recombinant FV Hong Kong and FV Cambridge. Blood 100:524–530

    Article  PubMed  CAS  Google Scholar 

  89. Steen M, Norstrom EA, Tholander AL et al (2004) Functional characterization of factor V-Ile359Thr: a novel mutation associated with thrombosis. Blood 103:3381–3387

    Article  PubMed  CAS  Google Scholar 

  90. Rees DC, Cox M, Clegg JB (1995) World distribution of factor V Leiden. Lancet 346:1133–1134

    Article  PubMed  CAS  Google Scholar 

  91. Ridker PM, Miletich JP, Hennekens CH et al (1997) Ethnic distribution of factor V Leiden in 4047 men and women. Implications for venous thromboembolism screening. JAMA 277:1305–1307

    Article  PubMed  CAS  Google Scholar 

  92. Zivelin A, Griffin JH, Xu X et al (1997) A single genetic origin for a common Caucasian risk factor for venous thrombosis. Blood 89:397–402

    PubMed  CAS  Google Scholar 

  93. Rosendaal FR, Koster T, Vandenbroucke JP et al (1995) High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance). Blood 85:1504–1508

    PubMed  CAS  Google Scholar 

  94. Voorberg J, Roelse J, Koopman R et al (1994) Association of idiopathic venous thromboembolism with single point-mutation at Arg506 of factor V. Lancet 343:1535–1536

    Article  PubMed  CAS  Google Scholar 

  95. Lindqvist PG, Svensson PJ, Dahlback B et al (1998) Factor V Q506 mutation (activated protein C resistance) associated with reduced intrapartum blood loss – a possible evolutionary selection mechanism. Thromb Haemost 79:69–73

    PubMed  CAS  Google Scholar 

  96. Corral J, Iniesta JA, Gonzalez-Conejero R et al (2001) Polymorphisms of clotting factors modify the risk for primary intracranial hemorrhage. Blood 97:2979–2982

    Article  PubMed  CAS  Google Scholar 

  97. Donahue BS, Gailani D, Higgins MS et al (2003) Factor V Leiden protects against blood loss and transfusion after cardiac surgery. Circulation 107:1003–1008

    Article  PubMed  CAS  Google Scholar 

  98. Faioni EM, Franchi F, Bucciarelli P et al (1999) Coinheritance of the HR2 haplotype in the factor V gene confers an increased risk of venous thromboembolism to carriers of factor V R506Q (factor V Leiden). Blood 94:3062–3066

    PubMed  CAS  Google Scholar 

  99. Folsom AR, Cushman M, Tsai MY et al (2002) A prospective study of venous thromboembolism in relation to factor V Leiden and related factors. Blood 99:2720–2725

    Article  PubMed  CAS  Google Scholar 

  100. Liang R, Lee CK, Wat MS et al (1998) Clinical significance of Arg306 mutations of factor V gene. Blood 92:2599–2600

    PubMed  CAS  Google Scholar 

  101. de Moerloose P, Reber G, Perrier A et al (2000) Prevalence of factor V Leiden and prothrombin G20210A mutations in unselected patients with venous thromboembolism. Br J Haematol 110:125–129

    Article  PubMed  Google Scholar 

  102. Zuber M, Toulon P, Marnet L et al (1996) Factor V Leiden mutation in cerebral venous thrombosis. Stroke 27:1721–1723

    Article  PubMed  CAS  Google Scholar 

  103. Ridker PM, Miletich JP, Buring JE et al (1998) Factor V Leiden mutation as a risk factor for recurrent pregnancy loss. Ann Intern Med 128:1000–1003

    PubMed  CAS  Google Scholar 

  104. Kupferminc MJ, Eldor A, Steinman N et al (1999) Increased frequency of genetic thrombophilia in women with complications of pregnancy. N Engl J Med 340:9–13

    Article  PubMed  CAS  Google Scholar 

  105. Ho WK, Hankey GJ, Quinlan DJ et al (2006) Risk of recurrent venous thromboembolism in patients with common thrombophilia: a systematic review. Arch Intern Med 166:729–736

    Article  PubMed  CAS  Google Scholar 

  106. Juul K, Tybjaerg-Hansen A, Steffensen R et al (2002) Factor V Leiden: The Copenhagen City Heart Study and 2 meta-analyses. Blood 100:3–10

    Article  PubMed  CAS  Google Scholar 

  107. Ridker PM, Hennekens CH, Lindpaintner K et al (1995) Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men. N Engl J Med 332:912–917

    Article  PubMed  CAS  Google Scholar 

  108. Lalouschek W, Schillinger M, Hsieh K et al (2005) Matched case-control study on factor V Leiden and the prothrombin G20210A mutation in patients with ischemic stroke/transient ischemic attack up to the age of 60 years. Stroke 36:1405–1409

    Article  PubMed  Google Scholar 

  109. Rosendaal FR, Siscovick DS, Schwartz SM et al (1997) Factor V Leiden (resistance to activated protein C) increases the risk of myocardial infarction in young women. Blood 89:2817–2821

    PubMed  CAS  Google Scholar 

  110. Koeleman BP, van Rumpt D, Hamulyak K et al (1995) Factor V Leiden: an additional risk factor for thrombosis in protein S deficient families? Thromb Haemost 74:580–583

    PubMed  CAS  Google Scholar 

  111. Zöller B, Berntsdotter A, Garcia de Frutos P et al (1995) Resistance to activated protein C as an additional genetic risk factor in hereditary deficiency of protein S. Blood 85:3518–3523

    PubMed  Google Scholar 

  112. Emmerich J, Rosendaal FR, Cattaneo M et al (2001) Combined effect of factor V Leiden and prothrombin 20210A on the risk of venous thromboembolism – pooled analysis of 8 case-control studies including 2310 cases and 3204 controls. Study Group for Pooled-Analysis in Venous Thromboembolism. Thromb Haemost 86:809–816

    PubMed  CAS  Google Scholar 

  113. Lensen R, Bertina RM, Vandenbroucke JP et al (2001) High factor VIII levels contribute to the thrombotic risk in families with factor V Leiden. Br J Haematol 114:380–386

    Article  PubMed  CAS  Google Scholar 

  114. Simioni P, Castoldi E, Lunghi B et al (2005) An underestimated combination of opposites resulting in enhanced thrombotic tendency. Blood 106:2363–2365

    Article  PubMed  CAS  Google Scholar 

  115. Procare-GEHT Group (2006) ABO blood group but not haemostasis genetic polymorphisms significantly influence thrombotic risk: a study of 180 homozygotes for the Factor V Leiden mutation. Br J Haematol 135:697–702

    Article  CAS  Google Scholar 

  116. Ridker PM, Hennekens CH, Selhub J et al (1997) Interrelation of hyperhomocyst(e)inemia, factor V Leiden, and risk of future venous thromboembolism. Circulation 95:1777–1782

    Article  PubMed  CAS  Google Scholar 

  117. Hirsch DR, Mikkola KM, Marks PW et al (1996) Pulmonary embolism and deep venous thrombosis during pregnancy or oral contraceptive use: prevalence of factor V Leiden. Am Heart J 131:1145–1148

    Article  PubMed  CAS  Google Scholar 

  118. Rosendaal FR, Vessey M, Rumley A et al (2002) Hormonal replacement therapy, prothrombotic mutations and the risk of venous thrombosis. Br J Haematol 116:851–854

    Article  PubMed  CAS  Google Scholar 

  119. Juul K, Tybjaerg-Hansen A, Schnohr P et al (2004) Factor V Leiden and the risk for venous thromboembolism in the adult Danish population. Ann Intern Med 140:330–337

    PubMed  CAS  Google Scholar 

  120. Haim N, Lanir N, Hoffman R et al (2001) Acquired activated protein C resistance is common in cancer patients and is associated with venous thromboembolism. Am J Med 110:91–96

    Article  PubMed  CAS  Google Scholar 

  121. Post MS, Rosing J, Van Der Mooren MJ et al (2002) Increased resistance to activated protein C after short-term oral hormone replacement therapy in healthy post-menopausal women. Br J Haematol 119:1017–1023

    Article  PubMed  CAS  Google Scholar 

  122. Laszik Z, Mitro A, Taylor FB Jr et al (1997) Human protein C receptor is present primarily on endothelium of large blood vessels: implications for the control of the protein C pathway. Circulation 96:3633–3640

    Article  PubMed  CAS  Google Scholar 

  123. Stearns-Kurosawa DJ, Kurosawa S, Mollica JS et al (1996) The endothelial cell protein C receptor augments protein C activation by the thrombin-thrombomodulin complex. Proc Natl Acad Sci U S A 93:10212–10216

    Article  PubMed  CAS  Google Scholar 

  124. Medina P, Navarro S, Estelles A et al (2007) Polymorphisms in the endothelial protein C receptor gene and thrombophilia. Thromb Haemost 98:564–569

    PubMed  CAS  Google Scholar 

  125. Saposnik B, Reny JL, Gaussem P et al (2004) A haplotype of the EPCR gene is associated with increased plasma levels of sEPCR and is a candidate risk factor for thrombosis. Blood 103:1311–1318

    Article  PubMed  CAS  Google Scholar 

  126. Medina P, Navarro S, Estelles A et al (2004) Contribution of polymorphisms in the endothelial protein C receptor gene to soluble endothelial protein C receptor and circulating activated protein C levels, and thrombotic risk. Thromb Haemost 91:905–911

    PubMed  CAS  Google Scholar 

  127. Uitte de Willige S, Van Marion V, Rosendaal FR et al (2004) Haplotypes of the EPCR gene, plasma sEPCR levels and the risk of deep venous thrombosis. J Thromb Haemost 2:1305–1310

    Article  PubMed  CAS  Google Scholar 

  128. Medina P, Navarro S, Estelles A et al (2005) Influence of the 4600A/G and 4678G/C polymorphisms in the endothelial protein C receptor (EPCR) gene on the risk of venous thromboembolism in carriers of factor V Leiden. Thromb Haemost 94:389–394

    PubMed  CAS  Google Scholar 

  129. Grossmann R, Schwender S, Geisen U et al (2002) CBS 844ins68, MTHFR TT677 and EPCR 4031ins23 genotypes in patients with deep-vein thrombosis. Thromb Res 107:13–15

    Article  PubMed  CAS  Google Scholar 

  130. Van de Water NS, French JK, McDowell J et al (2001) The endothelial protein C receptor (EPCR) 23bp insert in patients with myocardial infarction. Thromb Haemost 85:749–751

    PubMed  Google Scholar 

  131. Poort SR, Rosendaal FR, Reitsma PH et al (1996) A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 88:3698–3703

    PubMed  CAS  Google Scholar 

  132. Soria JM, Almasy L, Souto JC et al (2000) Linkage analysis demonstrates that the prothrombin G20210A mutation jointly influences plasma prothrombin levels and risk of thrombosis. Blood 95:2780–2785

    PubMed  CAS  Google Scholar 

  133. Leroyer C, Mercier B, Oger E et al (1998) Prevalence of 20210 A allele of the prothrombin gene in venous thromboembolism patients. Thromb Haemost 80:49–51

    PubMed  CAS  Google Scholar 

  134. Rosendaal FR, Doggen CJ, Zivelin A et al (1998) Geographic distribution of the 20210 G to A prothrombin variant. Thromb Haemost 79:706–708

    PubMed  CAS  Google Scholar 

  135. Souto JC, Coll I, Llobet D et al (1998) The prothrombin 20210A allele is the most prevalent genetic risk factor for venous thromboembolism in the Spanish population. Thromb Haemost 80:366–369

    PubMed  CAS  Google Scholar 

  136. Brown K, Luddington R, Williamson D et al (1997) Risk of venous thromboembolism associated with a G to A transition at position 20210 in the 3′-untranslated region of the prothrombin gene. Br J Haematol 98:907–909

    Article  PubMed  CAS  Google Scholar 

  137. Corral J, Gonzalez-Conejero R, Lozano ML et al (1997) The venous thrombosis risk factor 20210 A allele of the prothrombin gene is not a major risk factor for arterial thrombotic disease. Br J Haematol 99:304–307

    Article  PubMed  CAS  Google Scholar 

  138. Cumming AM, Keeney S, Salden A et al (1997) The prothrombin gene G20210A variant: prevalence in a U.K. anticoagulant clinic population. Br J Haematol 98:353–355

    Article  PubMed  CAS  Google Scholar 

  139. Hessner MJ, Luhm RA, Pearson SL et al (1999) Prevalence of prothrombin G20210A, factor V G1691A (Leiden), and methylenetetrahydrofolate reductase (MTHFR) C677T in seven different populations determined by multiplex allele-specific PCR. Thromb Haemost 81:733–738

    PubMed  CAS  Google Scholar 

  140. Hillarp A, Zoller B, Svensson PJ et al (1997) The 20210 A allele of the prothrombin gene is a common risk factor among Swedish outpatients with verified deep venous thrombosis. Thromb Haemost 78:990–992

    PubMed  CAS  Google Scholar 

  141. Lindmarker P, Schulman S, Sten-Linder M et al (1999) The risk of recurrent venous thromboembolism in carriers and non-carriers of the G1691A allele in the coagulation factor V gene and the G20210A allele in the prothrombin gene. DURAC Trial Study Group. Duration of Anticoagulation. Thromb Haemost 81:684–689

    PubMed  CAS  Google Scholar 

  142. Grandone E, Margaglione M, Colaizzo D et al (1998) Genetic susceptibility to pregnancy-related venous thromboembolism: roles of factor V Leiden, prothrombin G20210A, and methylenetetrahydrofolate reductase C677T mutations. Am J Obstet Gynecol 179:1324–1328

    Article  PubMed  CAS  Google Scholar 

  143. Martinelli I, Sacchi E, Landi G et al (1998) High risk of cerebral-vein thrombosis in carriers of a prothrombin-gene mutation and in users of oral contraceptives. N Engl J Med 338:1793–1797

    Article  PubMed  CAS  Google Scholar 

  144. Makris M, Preston FE, Beauchamp NJ et al (1997) Co-inheritance of the 20210A allele of the prothrombin gene increases the risk of thrombosis in subjects with familial thrombophilia. Thromb Haemost 78:1426–1429

    PubMed  CAS  Google Scholar 

  145. Atasay B, Arsan S, Gunlemez A et al (2003) Factor V Leiden and prothrombin gene 20210A variant in neonatal thromboembolism and in healthy neonates and adults: a study in a single center. Pediatr Hematol Oncol 20:627–634

    PubMed  CAS  Google Scholar 

  146. De Stefano V, Martinelli I, Mannucci PM et al (1999) The risk of recurrent deep venous thrombosis among heterozygous carriers of both factor V Leiden and the G20210A prothrombin mutation. N Engl J Med 341:801–806

    Article  PubMed  Google Scholar 

  147. Margaglione M, Brancaccio V, Giuliani N et al (1998) Increased risk for venous thrombosis in carriers of the prothrombin G→A20210 gene variant. Ann Intern Med 129:89–93

    PubMed  CAS  Google Scholar 

  148. Arruda VR, Annichino-Bizzacchi JM, Goncalves MS et al (1997) Prevalence of the prothrombin gene variant (nt20210A) in venous thrombosis and arterial disease. Thromb Haemost 78:1430–1433

    PubMed  CAS  Google Scholar 

  149. Croft SA, Daly ME, Steeds RP et al (1999) The prothrombin 20210A allele and its association with myocardial infarction. Thromb Haemost 81:861–864

    PubMed  CAS  Google Scholar 

  150. Doggen CJ, Cats VM, Bertina RM et al (1998) Interaction of coagulation defects and cardiovascular risk factors: increased risk of myocardial infarction associated with factor V Leiden or prothrombin 20210A. Circulation 97:1037–1041

    Article  PubMed  CAS  Google Scholar 

  151. Eikelboom JW, Baker RI, Parsons R et al (1998) No association between the 20210 G/A prothrombin gene mutation and premature coronary artery disease. Thromb Haemost 80:878–880

    PubMed  CAS  Google Scholar 

  152. Ferraresi P, Marchetti G, Legnani C et al (1997) The heterozygous 20210 G/A prothrombin genotype is associated with early venous thrombosis in inherited thrombophilias and is not increased in frequency in artery disease. Arterioscler Thromb Vasc Biol 17:2418–2422

    Article  PubMed  CAS  Google Scholar 

  153. Franco RF, Trip MD, Ten Cate H et al (1999) The 20210 G→A mutation in the 3′-untranslated region of the prothrombin gene and the risk for arterial thrombotic disease. Br J Haematol 104:50–54

    Article  PubMed  CAS  Google Scholar 

  154. Ridker PM, Hennekens CH, Miletich JP (1999) G20210A mutation in prothrombin gene and risk of myocardial infarction, stroke, and venous thrombosis in a large cohort of US men. Circulation 99:999–1004

    Article  PubMed  CAS  Google Scholar 

  155. Rosendaal FR, Siscovick DS, Schwartz SM et al (1997) A common prothrombin variant (20210 G to A) increases the risk of myocardial infarction in young women. Blood 90:1747–1750

    PubMed  CAS  Google Scholar 

  156. Martinelli I, Franchi F, Akwan S et al (1997) The transition G to A at position 20210 in the 3′-untranslated region of the prothrombin gene is not associated with cerebral ischemia. Blood 90:3806

    PubMed  CAS  Google Scholar 

  157. De Stefano V, Chiusolo P, Paciaroni K et al (1998) Prothrombin G20210A mutant genotype is a risk factor for cerebrovascular ischemic disease in young patients. Blood 91:3562–3565

    PubMed  Google Scholar 

  158. Morange PE, Barthet MC, Henry M et al (1998) A three-generation family presenting five cases of homozygosity for the 20210 G to A prothrombin variant. Thromb Haemost 80:859–860

    PubMed  CAS  Google Scholar 

  159. Hooper WC, Roberts S, Dowling N et al (2006) The prevalence of the prothrombin gene variant C20209T in African-Americans and Caucasians and lack of association with venous thromboembolism. Thromb Res 118:767–768

    Article  PubMed  CAS  Google Scholar 

  160. Martinelli I, Battaglioli T, Tosetto A et al (2006) Prothrombin A19911G polymorphism and the risk of venous thromboembolism. J Thromb Haemost 4:2582–2586

    Article  PubMed  CAS  Google Scholar 

  161. Seligsohn U, Lubetsky A (2001) Genetic susceptibility to venous thrombosis. N Engl J Med 344:1222–1231

    Article  PubMed  CAS  Google Scholar 

  162. McCully KS (1996) Homocysteine and vascular disease. Nat Med 2:386–389

    Article  PubMed  CAS  Google Scholar 

  163. den Heijer M, Blom HJ, Gerrits WB et al (1995) Is hyperhomocysteinaemia a risk factor for recurrent venous thrombosis? Lancet 345:882–885

    Article  Google Scholar 

  164. Wilson KM, McCaw RB, Leo L et al (2007) Prothrombotic effects of hyperhomocysteinemia and hypercholesterolemia in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 27:233–240

    Article  PubMed  CAS  Google Scholar 

  165. Dayal S, Wilson KM, Leo L et al (2006) Enhanced susceptibility to arterial thrombosis in a murine model of hyperhomocysteinemia. Blood 108:2237–2243

    Article  PubMed  CAS  Google Scholar 

  166. Desouza C, Keebler M, McNamara DB et al (2002) Drugs affecting homocysteine metabolism: impact on cardiovascular risk. Drugs 62:605–616

    Article  PubMed  CAS  Google Scholar 

  167. Bazzano LA, He J, Muntner P et al (2003) Relationship between cigarette smoking and novel risk factors for cardiovascular disease in the United States. Ann Intern Med 138:891–897

    PubMed  Google Scholar 

  168. de Bree A, Verschuren WM, Bjorke-Monsen AL et al (2003) Effect of the methylenetetrahydrofolate reductase 677C→T mutation on the relations among folate intake and plasma folate and homocysteine concentrations in a general population sample. Am J Clin Nutr 77:687–693

    PubMed  Google Scholar 

  169. Gallagher PM, Meleady R, Shields DC et al (1996) Homocysteine and risk of premature coronary heart disease. Evidence for a common gene mutation. Circulation 94:2154–2158

    Article  PubMed  CAS  Google Scholar 

  170. Eichinger S, Stumpflen A, Hirschl M et al (1998) Hyperhomocysteinemia is a risk factor of recurrent venous thromboembolism. Thromb Haemost 80:566–569

    PubMed  CAS  Google Scholar 

  171. Ray JG, Shmorgun D, Chan WS (2002) Common C677T polymorphism of the methylenetetrahydrofolate reductase gene and the risk of venous thromboembolism: meta-analysis of 31 studies. Pathophysiol Haemost Thromb 32:51–58

    Article  PubMed  CAS  Google Scholar 

  172. Klerk M, Verhoef P, Clarke R et al (2002) MTHFR 677C→T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA 288:2023–2031

    Article  PubMed  CAS  Google Scholar 

  173. Lewis SJ, Ebrahim S, Davey SG (2005) Meta-analysis of MTHFR 677C→T polymorphism and coronary heart disease: does totality of evidence support causal role for homocysteine and preventive potential of folate? BMJ 331:1053

    Article  PubMed  CAS  Google Scholar 

  174. Love PE, Santoro SA (1990) Antiphospholipid antibodies: anticardiolipin and the lupus anticoagulant in systemic lupus erythematosus (SLE) and in non-SLE disorders. Prevalence and clinical significance. Ann Intern Med 112:682–698

    PubMed  CAS  Google Scholar 

  175. Goldberg SN, Conti-Kelly AM, Greco TP (1995) A family study of anticardiolipin antibodies and associated clinical conditions. Am J Med 99:473–479

    Article  PubMed  CAS  Google Scholar 

  176. Schur PH (1995) Genetics of systemic lupus erythematosus. Lupus 4:425–437

    Article  PubMed  CAS  Google Scholar 

  177. Bugert P, Pabinger I, Stamer K et al (2007) The risk for thromboembolic disease in lupus anticoagulant patients due to pathways involving P-selectin and CD154. Thromb Haemost 97:573–580

    PubMed  CAS  Google Scholar 

  178. Brouwer JL, Bijl M, Veeger NJ et al (2004) The contribution of inherited and acquired thrombophilic defects, alone or combined with antiphospholipid antibodies, to venous and arterial thromboembolism in patients with systemic lupus erythematosus. Blood 104:143–148

    Article  PubMed  CAS  Google Scholar 

  179. Nojima J, Kuratsune H, Suehisa E et al (2002) Acquired activated protein C resistance is associated with the co-existence of anti-prothrombin antibodies and lupus anticoagulant activity in patients with systemic lupus erythematosus. Br J Haematol 118:577–583

    Article  PubMed  CAS  Google Scholar 

  180. Broze GJ Jr (1995) Tissue factor pathway inhibitor and the current concept of blood coagulation. Blood Coagul Fibrinolysis 6(Suppl 1):S7–S13

    Article  PubMed  CAS  Google Scholar 

  181. Kleesiek K, Schmidt M, Gotting C et al (1999) The 536C→T transition in the human tissue factor pathway inhibitor (TFPI) gene is statistically associated with a higher risk for venous thrombosis. Thromb Haemost 82:1–5

    PubMed  CAS  Google Scholar 

  182. Gonzalez-Conejero R, Lozano ML, Corral J et al (2000) The TFPI 536C→T mutation is not associated with increased risk for venous or arterial thrombosis. Thromb Haemost 83:787–788

    PubMed  CAS  Google Scholar 

  183. Le Flem L, Picard V, Emmerich J et al (1999) Mutations in promoter region of thrombomodulin and venous thromboembolic disease. Arterioscler Thromb Vasc Biol 19:1098–1104

    Article  PubMed  Google Scholar 

  184. Le Flem L, Mennen L, Aubry ML et al (2001) Thrombomodulin promoter mutations, venous thrombosis, and varicose veins. Arterioscler Thromb Vasc Biol 21:445–451

    Article  PubMed  Google Scholar 

  185. Norlund L, Zoller B, Ohlin AK (1997) A novel thrombomodulin gene mutation in a patient suffering from sagittal sinus thrombosis. Thromb Haemost 78:1164–1166

    PubMed  CAS  Google Scholar 

  186. Ohlin AK, Norlund L, Marlar RA (1997) Thrombomodulin gene variations and thromboembolic disease. Thromb Haemost 78:396–400

    PubMed  CAS  Google Scholar 

  187. Doggen CJ, Kunz G, Rosendaal FR et al (1998) A mutation in the thrombomodulin gene, 127G to A coding for Ala25Thr, and the risk of myocardial infarction in men. Thromb Haemost 80:743–748

    PubMed  CAS  Google Scholar 

  188. Ireland H, Kunz G, Kyriakoulis K et al (1997) Thrombomodulin gene mutations associated with myocardial infarction. Circulation 96:15–18

    Article  PubMed  CAS  Google Scholar 

  189. Kunz G, Ireland HA, Stubbs PJ et al (2000) Identification and characterization of a thrombomodulin gene mutation coding for an elongated protein with reduced expression in a kindred with myocardial infarction. Blood 95:569–576

    PubMed  CAS  Google Scholar 

  190. Li YH, Chen JH, Wu HL et al (2000) G-33A mutation in the promoter region of thrombomodulin gene and its association with coronary artery disease and plasma soluble thrombomodulin levels. Am J Cardiol 85:8–12

    Article  PubMed  CAS  Google Scholar 

  191. Li YH, Chen CH, Yeh PS et al (2001) Functional mutation in the promoter region of thrombomodulin gene in relation to carotid atherosclerosis. Atherosclerosis 154:713–719

    Article  PubMed  CAS  Google Scholar 

  192. Norlund L, Holm J, Zoller B et al (1997) A common thrombomodulin amino acid dimorphism is associated with myocardial infarction. Thromb Haemost 77:248–251

    PubMed  CAS  Google Scholar 

  193. Norlund L, Holm J, Zoller B et al (1999) The Ala25-Thr mutation in the thrombomodulin gene is not frequent in Swedish patients suffering from ischemic heart disease. Thromb Haemost 82:1367–1368

    PubMed  CAS  Google Scholar 

  194. Warner D, Catto A, Kunz G et al (2000) The thrombomodulin gene mutation G(127)→A (Ala25Thr) and cerebrovascular disease. Cerebrovasc Dis 10:359–363

    Article  PubMed  CAS  Google Scholar 

  195. Wu KK, Aleksic N, Ahn C et al (2001) Thrombomodulin Ala455Val polymorphism and risk of coronary heart disease. Circulation 103:1386–1389

    Article  PubMed  CAS  Google Scholar 

  196. Bezemer ID, Bare LA, Doggen CJ et al (2008) Gene variants associated with deep vein thrombosis. JAMA 299:1306–1314

    Article  PubMed  CAS  Google Scholar 

  197. Zehnder JL, Benson RC (1996) Sensitivity and specificity of the APC resistance assay in detection of individuals with factor V Leiden. Am J Clin Pathol 106:107–111

    PubMed  CAS  Google Scholar 

  198. Zoller B, He X, Dahlback B (1995) Homozygous APC-resistance combined with inherited type I protein S deficiency in a young boy with severe thrombotic disease. Thromb Haemost 73:743–745

    PubMed  CAS  Google Scholar 

  199. Kang SS, Wong PW, Malinow MR (1992) Hyperhomocyst(e)inemia as a risk factor for occlusive vascular disease. Annu Rev Nutr 12:279–298

    Article  PubMed  CAS  Google Scholar 

  200. Ross R (1999) Atherosclerosis – an inflammatory disease. N Engl J Med 340:115–126

    Article  PubMed  CAS  Google Scholar 

  201. Kullo IJ, Gau GT, Tajik AJ (2000) Novel risk factors for atherosclerosis. Mayo Clin Proc 75:369–380

    Article  PubMed  CAS  Google Scholar 

  202. Voetsch B, Loscalzo J (2004) Genetic determinants of arterial thrombosis. Arterioscler Thromb Vasc Biol 24:216–229

    Article  PubMed  CAS  Google Scholar 

  203. Heinrich J, Balleisen L, Schulte H et al (1994) Fibrinogen and factor VII in the prediction of coronary risk. Results from the PROCAM study in healthy men. Arterioscler Thromb 14:54–59

    Article  PubMed  CAS  Google Scholar 

  204. Meade TW, Mellows S, Brozovic M et al (1986) Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet 2:533–537

    Article  PubMed  CAS  Google Scholar 

  205. Maresca G, Di Blasio A, Marchioli R et al (1999) Measuring plasma fibrinogen to predict stroke and myocardial infarction: an update. Arterioscler Thromb Vasc Biol 19:1368–1377

    Article  PubMed  CAS  Google Scholar 

  206. Brown ET, Fuller GM (1998) Detection of a complex that associates with the Bbeta fibrinogen G-455-A polymorphism. Blood 92:3286–3293

    PubMed  CAS  Google Scholar 

  207. Carter AM, Mansfield MW, Stickland MH et al (1996) Beta-fibrinogen gene-455 G/A polymorphism and fibrinogen levels. Risk factors for coronary artery disease in subjects with NIDDM. Diabetes Care 19:1265–1268

    Article  PubMed  CAS  Google Scholar 

  208. de Maat MP, Kastelein JJ, Jukema JW et al (1998) 455G/A polymorphism of the beta-fibrinogen gene is associated with the progression of coronary atherosclerosis in symptomatic men: proposed role for an acute-phase reaction pattern of fibrinogen. REGRESS group. Arterioscler Thromb Vasc Biol 18:265–271

    Article  PubMed  Google Scholar 

  209. Folsom AR, Aleksic N, Ahn C et al (2001) Beta-fibrinogen gene -455G/A polymorphism and coronary heart disease incidence: the Atherosclerosis Risk in Communities (ARIC) Study. Ann Epidemiol 11:166–170

    Article  PubMed  CAS  Google Scholar 

  210. Gardemann A, Schwartz O, Haberbosch W et al (1997) Positive association of the beta fibrinogen H1/H2 gene variation to basal fibrinogen levels and to the increase in fibrinogen concentration during acute phase reaction but not to coronary artery disease and myocardial infarction. Thromb Haemost 77:1120–1126

    PubMed  CAS  Google Scholar 

  211. Wang XL, Wang J, McCredie RM et al (1997) Polymorphisms of factor V, factor VII, and fibrinogen genes. Relevance to severity of coronary artery disease. Arterioscler Thromb Vasc Biol 17:246–251

    Article  PubMed  CAS  Google Scholar 

  212. Zito F, Di Castelnuovo A, Amore C et al (1997) Bcl I polymorphism in the fibrinogen beta-chain gene is associated with the risk of familial myocardial infarction by increasing plasma fibrinogen levels. A case-control study in a sample of GISSI-2 patients. Arterioscler Thromb Vasc Biol 17:3489–3494

    Article  PubMed  CAS  Google Scholar 

  213. Endler G, Mannhalter C (2003) Polymorphisms in coagulation factor genes and their impact on arterial and venous thrombosis. Clin Chim Acta 330:31–55

    Article  PubMed  CAS  Google Scholar 

  214. Boekholdt SM, Bijsterveld NR, Moons AH et al (2001) Genetic variation in coagulation and fibrinolytic proteins and their relation with acute myocardial infarction: a systematic review. Circulation 104:3063–3068

    Article  PubMed  CAS  Google Scholar 

  215. Martiskainen M, Pohjasvaara T, Mikkelsson J et al (2003) Fibrinogen gene promoter -455 A allele as a risk factor for lacunar stroke. Stroke 34:886–891

    Article  PubMed  CAS  Google Scholar 

  216. Standeven KF, Grant PJ, Carter AM et al (2003) Functional analysis of the fibrinogen Aalpha Thr312Ala polymorphism: effects on fibrin structure and function. Circulation 107:2326–2330

    Article  PubMed  CAS  Google Scholar 

  217. Carter AM, Catto AJ, Grant PJ (1999) Association of the alpha-fibrinogen Thr312Ala polymorphism with poststroke mortality in subjects with atrial fibrillation. Circulation 99:2423–2426

    Article  PubMed  CAS  Google Scholar 

  218. Carter AM, Catto AJ, Kohler HP et al (2000) alpha-fibrinogen Thr312Ala polymorphism and venous thromboembolism. Blood 96:1177–1179

    PubMed  CAS  Google Scholar 

  219. Curran JM, Evans A, Arveiler D et al (1998) The alpha fibrinogen T/A312 polymorphism in the ECTIM study. Thromb Haemost 79:1057–1058

    PubMed  CAS  Google Scholar 

  220. Kim RJ, Becker RC (2003) Association between factor V Leiden, prothrombin G20210A, and methylenetetrahydrofolate reductase C677T mutations and events of the arterial circulatory system: a meta-analysis of published studies. Am Heart J 146:948–957

    Article  PubMed  CAS  Google Scholar 

  221. Reiner AP, Siscovick DS, Rosendaal FR (2001) Hemostatic risk factors and arterial thrombotic disease. Thromb Haemost 85:584–595

    PubMed  CAS  Google Scholar 

  222. Margaglione M, D’Andrea G, Giuliani N et al (1999) Inherited prothrombotic conditions and premature ischemic stroke: sex difference in the association with factor V Leiden. Arterioscler Thromb Vasc Biol 19:1751–1756

    Article  PubMed  CAS  Google Scholar 

  223. Nowak-Gottl U, Strater R, Heinecke A et al (1999) Lipoprotein (a) and genetic polymorphisms of clotting factor V, prothrombin, and methylenetetrahydrofolate reductase are risk factors of spontaneous ischemic stroke in childhood. Blood 94:3678–3682

    PubMed  CAS  Google Scholar 

  224. Inbal A, Freimark D, Modan B et al (1999) Synergistic effects of prothrombotic polymorphisms and atherogenic factors on the risk of myocardial infarction in young males. Blood 93:2186–2190

    PubMed  CAS  Google Scholar 

  225. Thomas DP (1988) Overview of venous thrombogenesis. Semin Thromb Hemost 14:1–8

    Article  PubMed  CAS  Google Scholar 

  226. Mustard JF, Packham MA, Kinlough-Rathbone RL (1990) Platelets, blood flow, and the vessel wall. Circulation 81:I24–I27

    PubMed  CAS  Google Scholar 

  227. Lane DA, Grant PJ (2000) Role of hemostatic gene polymorphisms in venous and arterial thrombotic disease. Blood 95:1517–1532

    PubMed  CAS  Google Scholar 

  228. Iacoviello L, Di Castelnuovo A, de Knijff P et al (1998) Polymorphisms in the coagulation factor VII gene and the risk of myocardial infarction. N Engl J Med 338:79–85

    Article  PubMed  CAS  Google Scholar 

  229. Doggen CJ, Manger CV, Bertina RM et al (1998) A genetic propensity to high factor VII is not associated with the risk of myocardial infarction in men. Thromb Haemost 80:281–285

    PubMed  CAS  Google Scholar 

  230. Folsom AR, Wu KK, Rosamond WD et al (1997) Prospective study of hemostatic factors and incidence of coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 96:1102–1108

    Article  PubMed  CAS  Google Scholar 

  231. Smith FB, Lee AJ, Fowkes FG et al (1997) Hemostatic factors as predictors of ischemic heart disease and stroke in the Edinburgh Artery Study. Arterioscler Thromb Vasc Biol 17:3321–3325

    Article  PubMed  CAS  Google Scholar 

  232. Ariens RA, Philippou H, Nagaswami C et al (2000) The factor XIII V34L polymorphism accelerates thrombin activation of factor XIII and affects cross-linked fibrin structure. Blood 96:988–995

    PubMed  CAS  Google Scholar 

  233. Kangsadalampai S, Board PG (1998) The Val34Leu polymorphism in the A subunit of coagulation factor XIII contributes to the large normal range in activity and demonstrates that the activation peptide plays a role in catalytic activity. Blood 92:2766–2770

    PubMed  CAS  Google Scholar 

  234. Salomaa V, Matei C, Aleksic N et al (1999) Soluble thrombomodulin as a predictor of incident coronary heart disease and symptomless carotid artery atherosclerosis in the Atherosclerosis Risk in Communities (ARIC) Study: a case-cohort study. Lancet 353:1729–1734

    Article  PubMed  CAS  Google Scholar 

  235. Arnaud E, Barbalat V, Nicaud V et al (2000) Polymorphisms in the 5′ regulatory region of the tissue factor gene and the risk of myocardial infarction and venous thromboembolism: the ECTIM and PATHROS studies. Etude Cas-Temoins de l’Infarctus du Myocarde. Paris Thrombosis case-control Study. Arterioscler Thromb Vasc Biol 20:892–898

    Article  PubMed  CAS  Google Scholar 

  236. Vijayan KV, Bray PF (2006) Molecular mechanisms of prothrombotic risk due to genetic variations in platelet genes: Enhanced outside-in signaling through the Pro33 variant of integrin beta3. Exp Biol Med (Maywood) 231:505–513

    CAS  Google Scholar 

  237. Weiss EJ, Bray PF, Tayback M et al (1996) A polymorphism of a platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis. N Engl J Med 334:1090–1094

    Article  PubMed  CAS  Google Scholar 

  238. Carter AM, Ossei-Gerning N, Wilson IJ et al (1997) Association of the platelet Pl(A) polymorphism of glycoprotein IIb/IIIa and the fibrinogen Bbeta 448 polymorphism with myocardial infarction and extent of coronary artery disease. Circulation 96:1424–1431

    Article  PubMed  CAS  Google Scholar 

  239. Wagner KR, Giles WH, Johnson CJ et al (1998) Platelet glycoprotein receptor IIIa polymorphism P1A2 and ischemic stroke risk: the Stroke Prevention in Young Women Study. Stroke 29:581–585

    Article  PubMed  CAS  Google Scholar 

  240. Herrmann SM, Poirier O, Marques-Vidal P et al (1997) The Leu33/Pro polymorphism (PlA1/PlA2) of the glycoprotein IIIa (GPIIIa) receptor is not related to myocardial infarction in the ECTIM Study. Etude Cas-Temoins de l’Infarctus du Myocarde. Thromb Haemost 77:1179–1181

    PubMed  CAS  Google Scholar 

  241. Ridker PM, Hennekens CH, Schmitz C et al (1997) PIA1/A2 polymorphism of platelet glycoprotein IIIa and risks of myocardial infarction, stroke, and venous thrombosis. Lancet 349:385–388

    Article  PubMed  CAS  Google Scholar 

  242. Ardissino D, Mannucci PM, Merlini PA et al (1999) Prothrombotic genetic risk factors in young survivors of myocardial infarction. Blood 94:46–51

    PubMed  CAS  Google Scholar 

  243. Michelson AD, Furman MI, Goldschmidt-Clermont P et al (2000) Platelet GP IIIa Pl(A) polymorphisms display different sensitivities to agonists. Circulation 101:1013–1018

    Article  PubMed  CAS  Google Scholar 

  244. Szczeklik A, Undas A, Sanak M et al (2000) Relationship between bleeding time, aspirin and the PlA1/A2 polymorphism of platelet glycoprotein IIIa. Br J Haematol 110:965–967

    Article  PubMed  CAS  Google Scholar 

  245. Undas A, Brummel K, Musial J et al (2001) Pl(A2) polymorphism of beta(3) integrins is associated with enhanced thrombin generation and impaired antithrombotic action of aspirin at the site of microvascular injury. Circulation 104:2666–2672

    Article  PubMed  CAS  Google Scholar 

  246. Feng D, Lindpaintner K, Larson MG et al (1999) Increased platelet aggregability associated with platelet GPIIIa PlA2 polymorphism: the Framingham Offspring Study. Arterioscler Thromb Vasc Biol 19:1142–1147

    Article  PubMed  CAS  Google Scholar 

  247. Reiner AP, Schwartz SM, Kumar PN et al (2001) Platelet glycoprotein IIb polymorphism, traditional risk factors and non-fatal myocardial infarction in young women. Br J Haematol 112:632–636

    Article  PubMed  CAS  Google Scholar 

  248. Bottiger C, Kastrati A, Koch W et al (2000) HPA-1 and HPA-3 polymorphisms of the platelet fibrinogen receptor and coronary artery disease and myocardial infarction. Thromb Haemost 83:559–562

    PubMed  CAS  Google Scholar 

  249. Hato T, Minamoto Y, Fukuyama T et al (1997) Polymorphisms of HPA-1 through 6 on platelet membrane glycoprotein receptors are not a genetic risk factor for myocardial infarction in the Japanese population. Am J Cardiol 80:1222–1224

    Article  PubMed  CAS  Google Scholar 

  250. Franco RF, Reitsma PH (2001) Gene polymorphisms of the haemostatic system and the risk of arterial thrombotic disease. Br J Haematol 115:491–506

    Article  PubMed  CAS  Google Scholar 

  251. Carlsson LE, Greinacher A, Spitzer C et al (1997) Polymorphisms of the human platelet antigens HPA-1, HPA-2, HPA-3, and HPA-5 on the platelet receptors for fibrinogen (GPIIb/IIIa), von Willebrand factor (GPIb/IX), and collagen (GPIa/IIa) are not correlated with an increased risk for stroke. Stroke 28:1392–1395

    Article  PubMed  CAS  Google Scholar 

  252. Carter AM, Catto AJ, Bamford JM et al (1998) Platelet GP IIIa PlA and GP Ib variable number tandem repeat polymorphisms and markers of platelet activation in acute stroke. Arterioscler Thromb Vasc Biol 18:1124–1131

    Article  PubMed  CAS  Google Scholar 

  253. Gonzalez-Conejero R, Lozano ML, Rivera J et al (1998) Polymorphisms of platelet membrane glycoprotein Ib associated with arterial thrombotic disease. Blood 92:2771–2776

    PubMed  CAS  Google Scholar 

  254. Mercier B, Munier S, Bertault V et al (2000) Myocardial infarction: absence of association with VNTR polymorphism of GP Ibalpha. Thromb Haemost 84:921–922

    PubMed  CAS  Google Scholar 

  255. Murata M, Matsubara Y, Kawano K et al (1997) Coronary artery disease and polymorphisms in a receptor mediating shear stress-dependent platelet activation. Circulation 96:3281–3286

    Article  PubMed  CAS  Google Scholar 

  256. Sonoda A, Murata M, Ito D et al (2000) Association between platelet glycoprotein Ibalpha genotype and ischemic cerebrovascular disease. Stroke 31:493–497

    Article  PubMed  CAS  Google Scholar 

  257. Afshar-Kharghan V, Li CQ, Khoshnevis-Asl M et al (1999) Kozak sequence polymorphism of the glycoprotein (GP) Ibalpha gene is a major determinant of the plasma membrane levels of the platelet GP Ib-IX-V complex. Blood 94:186–191

    PubMed  CAS  Google Scholar 

  258. Frank MB, Reiner AP, Schwartz SM et al (2001) The Kozak sequence polymorphism of platelet glycoprotein Ibalpha and risk of nonfatal myocardial infarction and nonfatal stroke in young women. Blood 97:875–879

    Article  PubMed  CAS  Google Scholar 

  259. Kunicki TJ, Kritzik M, Annis DS et al (1997) Hereditary variation in platelet integrin alpha 2 beta 1 density is associated with two silent polymorphisms in the alpha 2 gene coding sequence. Blood 89:1939–1943

    PubMed  CAS  Google Scholar 

  260. Kritzik M, Savage B, Nugent DJ et al (1998) Nucleotide polymorphisms in the alpha2 gene define multiple alleles that are associated with differences in platelet alpha2 beta1 density. Blood 92:2382–2388

    PubMed  CAS  Google Scholar 

  261. Angiolillo DJ, Fernandez-Ortiz A, Bernardo E et al (2004) 807 C/T Polymorphism of the glycoprotein Ia gene and pharmacogenetic modulation of platelet response to dual antiplatelet treatment. Blood Coagul Fibrinolysis 15:427–433

    Article  PubMed  CAS  Google Scholar 

  262. Santoso S, Kunicki TJ, Kroll H et al (1999) Association of the platelet glycoprotein Ia C807T gene polymorphism with nonfatal myocardial infarction in younger patients. Blood 93:2449–2453

    PubMed  CAS  Google Scholar 

  263. Carlsson LE, Santoso S, Spitzer C et al (1999) The alpha2 gene coding sequence T807/A873 of the platelet collagen receptor integrin alpha2beta1 might be a genetic risk factor for the development of stroke in younger patients. Blood 93:3583–3586

    PubMed  CAS  Google Scholar 

  264. Moshfegh K, Wuillemin WA, Redondo M et al (1999) Association of two silent polymorphisms of platelet glycoprotein Ia/IIa receptor with risk of myocardial infarction: a case-control study. Lancet 353:351–354

    Article  PubMed  CAS  Google Scholar 

  265. Reiner AP, Kumar PN, Schwartz SM et al (2000) Genetic variants of platelet glycoprotein receptors and risk of stroke in young women. Stroke 31:1628–1633

    Article  PubMed  CAS  Google Scholar 

  266. Corral J, Gonzalez-Conejero R, Rivera J et al (1999) Role of the 807 C/T polymorphism of the alpha2 gene in platelet GP Ia collagen receptor expression and function – effect in thromboembolic diseases. Thromb Haemost 81:951–956

    PubMed  CAS  Google Scholar 

  267. Croft SA, Hampton KK, Sorrell JA et al (1999) The GPIa C807T dimorphism associated with platelet collagen receptor density is not a risk factor for myocardial infarction. Br J Haematol 106:771–776

    Article  PubMed  CAS  Google Scholar 

  268. Burzotta F, Di Castelnuovo A, Amore C et al (1998) 4G/5G promoter PAI-1 gene polymorphism is associated with plasmatic PAI-1 activity in Italians: a model of gene-environment interaction. Thromb Haemost 79:354–358

    PubMed  CAS  Google Scholar 

  269. Dawson SJ, Wiman B, Hamsten A et al (1993) The two allele sequences of a common polymorphism in the promoter of the plasminogen activator inhibitor-1 (PAI-1) gene respond differently to interleukin-1 in HepG2 cells. J Biol Chem 268:10739–10745

    PubMed  CAS  Google Scholar 

  270. Eriksson P, Kallin B, van ’t Hooft FM et al (1995) Allele-specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction. Proc Natl Acad Sci U S A 92:1851–1855

    Article  PubMed  CAS  Google Scholar 

  271. Gardemann A, Lohre J, Katz N et al (1999) The 4G4G genotype of the plasminogen activator inhibitor 4G/5G gene polymorphism is associated with coronary atherosclerosis in patients at high risk for this disease. Thromb Haemost 82:1121–1126

    PubMed  CAS  Google Scholar 

  272. Iwai N, Shimoike H, Nakamura Y et al (1998) The 4G/5G polymorphism of the plasminogen activator inhibitor gene is associated with the time course of progression to acute coronary syndromes. Atherosclerosis 136:109–114

    Article  PubMed  CAS  Google Scholar 

  273. Mansfield MW, Stickland MH, Grant PJ (1995) Plasminogen activator inhibitor-1 (PAI-1) promoter polymorphism and coronary artery disease in non-insulin-dependent diabetes. Thromb Haemost 74:1032–1034

    PubMed  CAS  Google Scholar 

  274. Margaglione M, Cappucci G, Colaizzo D et al (1998) The PAI-1 gene locus 4G/5G polymorphism is associated with a family history of coronary artery disease. Arterioscler Thromb Vasc Biol 18:152–156

    Article  PubMed  CAS  Google Scholar 

  275. Catto AJ, Carter AM, Stickland M et al (1997) Plasminogen activator inhibitor-1 (PAI-1) 4G/5G promoter polymorphism and levels in subjects with cerebrovascular disease. Thromb Haemost 77:730–734

    PubMed  CAS  Google Scholar 

  276. Ridker PM, Hennekens CH, Lindpaintner K et al (1997) Arterial and venous thrombosis is not associated with the 4G/5G polymorphism in the promoter of the plasminogen activator inhibitor gene in a large cohort of US men. Circulation 95:59–62

    Article  PubMed  CAS  Google Scholar 

  277. Ye S, Green FR, Scarabin PY et al (1995) The 4G/5G genetic polymorphism in the promoter of the plasminogen activator inhibitor-1 (PAI-1) gene is associated with differences in plasma PAI-1 activity but not with risk of myocardial infarction in the ECTIM study. Etude CasTemoins de I’nfarctus du Mycocarde. Thromb Haemost 74:837–841

    PubMed  CAS  Google Scholar 

  278. Iacoviello L, Burzotta F, Di Castelnuovo A et al (1998) The 4G/5G polymorphism of PAI-1 promoter gene and the risk of myocardial infarction: a meta-analysis. Thromb Haemost 80:1029–1030

    PubMed  CAS  Google Scholar 

  279. Jern C, Ladenvall P, Wall U et al (1999) Gene polymorphism of t-PA is associated with forearm vascular release rate of t-PA. Arterioscler Thromb Vasc Biol 19:454–459

    Article  PubMed  CAS  Google Scholar 

  280. van der Bom JG, de Knijff P, Haverkate F et al (1997) Tissue plasminogen activator and risk of myocardial infarction. The Rotterdam Study. Circulation 95:2623–2627

    Article  PubMed  Google Scholar 

  281. Ridker PM, Baker MT, Hennekens CH et al (1997) Alu-repeat polymorphism in the gene coding for tissue-type plasminogen activator (t-PA) and risks of myocardial infarction among middle-aged men. Arterioscler Thromb Vasc Biol 17:1687–1690

    PubMed  CAS  Google Scholar 

  282. Steeds R, Adams M, Smith P et al (1998) Distribution of tissue plasminogen activator insertion/deletion polymorphism in myocardial infarction and control subjects. Thromb Haemost 79:980–984

    PubMed  CAS  Google Scholar 

  283. Ladenvall P, Wall U, Jern S et al (2000) Identification of eight novel single-nucleotide polymorphisms at human tissue-type plasminogen activator (t-PA) locus: association with vascular t-PA release in vivo. Thromb Haemost 84:150–155

    PubMed  CAS  Google Scholar 

  284. Kathiresan S, Yang Q, Larson MG et al (2006) Common genetic variation in five thrombosis genes and relations to plasma hemostatic protein level and cardiovascular disease risk. Arterioscler Thromb Vasc Biol 26:1405–1412

    Article  PubMed  CAS  Google Scholar 

  285. Ladenvall P, Johansson L, Jansson JH et al (2002) Tissue-type plasminogen activator -7, 351C/T enhancer polymorphism is associated with a first myocardial infarction. Thromb Haemost 87:105–109

    PubMed  CAS  Google Scholar 

  286. Jannes J, Hamilton-Bruce MA, Pilotto L et al (2004) Tissue plasminogen activator -7351C/T enhancer polymorphism is a risk factor for lacunar stroke. Stroke 35:1090–1094

    Article  PubMed  CAS  Google Scholar 

  287. Sakharov DV, Plow EF, Rijken DC (1997) On the mechanism of the antifibrinolytic activity of plasma carboxypeptidase B. J Biol Chem 272:14477–14482

    Article  PubMed  CAS  Google Scholar 

  288. van Tilburg NH, Rosendaal FR, Bertina RM (2000) Thrombin activatable fibrinolysis inhibitor and the risk for deep vein thrombosis. Blood 95:2855–2859

    PubMed  Google Scholar 

  289. Morange PE, Juhan-Vague I, Scarabin PY et al (2003) Association between TAFI antigen and Ala147Thr polymorphism of the TAFI gene and the angina pectoris incidence. The PRIME Study (Prospective Epidemiological Study of MI). Thromb Haemost 89:554–560

    PubMed  CAS  Google Scholar 

  290. Juhan-Vague I, Morange PE, Aubert H et al (2002) Plasma thrombin-activatable fibrinolysis inhibitor antigen concentration and genotype in relation to myocardial infarction in the north and south of Europe. Arterioscler Thromb Vasc Biol 22:867–873

    Article  PubMed  CAS  Google Scholar 

  291. Homocysteine Studies Collaboration (2002) Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 288:2015–2022

    Article  Google Scholar 

  292. Fletcher O, Kessling AM (1998) MTHFR association with arteriosclerotic vascular disease? Hum Genet 103:11–21

    Article  PubMed  CAS  Google Scholar 

  293. Brattstrom L, Wilcken DE, Ohrvik J et al (1998) Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: the result of a meta-analysis. Circulation 98:2520–2526

    Article  PubMed  CAS  Google Scholar 

  294. Jacques PF, Bostom AG, Williams RR et al (1996) Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation 93:7–9

    Article  PubMed  CAS  Google Scholar 

  295. Cooke JP, Dzau VJ (1997) Nitric oxide synthase: role in the genesis of vascular disease. Annu Rev Med 48:489–509

    Article  PubMed  CAS  Google Scholar 

  296. Wang XL, Sim AS, Badenhop RF et al (1996) A smoking-dependent risk of coronary artery disease associated with a polymorphism of the endothelial nitric oxide synthase gene. Nat Med 2:41–45

    Article  PubMed  CAS  Google Scholar 

  297. Sigusch HH, Surber R, Lehmann MH et al (2000) Lack of association between 27-bp repeat polymorphism in intron 4 of the endothelial nitric oxide synthase gene and the risk of coronary artery disease. Scand J Clin Lab Invest 60:229–235

    Article  PubMed  CAS  Google Scholar 

  298. Stangl K, Cascorbi I, Laule M et al (2000) High CA repeat numbers in intron 13 of the endothelial nitric oxide synthase gene and increased risk of coronary artery disease. Pharmacogenetics 10:133–140

    Article  PubMed  CAS  Google Scholar 

  299. Nakayama M, Yasue H, Yoshimura M et al (1999) T-786→C mutation in the 5′-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation 99:2864–2870

    Article  PubMed  CAS  Google Scholar 

  300. Rossi GP, Cesari M, Zanchetta M et al (2003) The T-786C endothelial nitric oxide synthase genotype is a novel risk factor for coronary artery disease in Caucasian patients of the GENICA study. J Am Coll Cardiol 41:930–937

    Article  PubMed  CAS  Google Scholar 

  301. Rossi GP, Taddei S, Virdis A et al (2003) The T-786C and Glu298Asp polymorphisms of the endothelial nitric oxide gene affect the forearm blood flow responses of Caucasian hypertensive patients. J Am Coll Cardiol 41:938–945

    Article  PubMed  CAS  Google Scholar 

  302. Yamada M, Huang Z, Dalkara T et al (2000) Endothelial nitric oxide synthase-dependent cerebral blood flow augmentation by L-arginine after chronic statin treatment. J Cereb Blood Flow Metab 20:709–717

    Article  PubMed  CAS  Google Scholar 

  303. Durrington PN, Mackness B, Mackness MI (2001) Paraoxonase and atherosclerosis. Arterioscler Thromb Vasc Biol 21:473–480

    Article  PubMed  CAS  Google Scholar 

  304. Humbert R, Adler DA, Disteche CM et al (1993) The molecular basis of the human serum paraoxonase activity polymorphism. Nat Genet 3:73–76

    Article  PubMed  CAS  Google Scholar 

  305. Garin MC, James RW, Dussoix P et al (1997) Paraoxonase polymorphism Met-Leu54 is associated with modified serum concentrations of the enzyme. A possible link between the paraoxonase gene and increased risk of cardiovascular disease in diabetes. J Clin Invest 99:62–66

    Article  PubMed  CAS  Google Scholar 

  306. Heijmans BT, Westendorp RG, Lagaay AM et al (2000) Common paraoxonase gene variants, mortality risk and fatal cardiovascular events in elderly subjects. Atherosclerosis 149:91–97

    Article  PubMed  CAS  Google Scholar 

  307. Ombres D, Pannitteri G, Montali A et al (1998) The gln-Arg192 polymorphism of human paraoxonase gene is not associated with coronary artery disease in italian patients. Arterioscler Thromb Vasc Biol 18:1611–1616

    Article  PubMed  CAS  Google Scholar 

  308. Yamada Y, Metoki N, Yoshida H et al (2006) Genetic risk for ischemic and hemorrhagic stroke. Arterioscler Thromb Vasc Biol 26:1920–1925

    Article  PubMed  CAS  Google Scholar 

  309. McPherson R, Pertsemlidis A, Kavaslar N et al (2007) A common allele on chromosome 9 associated with coronary heart disease. Science 316:1488–1491

    Article  PubMed  CAS  Google Scholar 

  310. Fuster V, Badimon L, Badimon JJ et al (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N Engl J Med 326:242–250

    Article  PubMed  CAS  Google Scholar 

  311. Ageno W, Prandoni P, Romualdi E et al (2006) The metabolic syndrome and the risk of venous thrombosis: a case-control study. J Thromb Haemost 4:1914–1918

    Article  PubMed  CAS  Google Scholar 

  312. Tsai AW, Cushman M, Rosamond WD et al (2002) Cardiovascular risk factors and venous thromboembolism incidence: the longitudinal investigation of thromboembolism etiology. Arch Intern Med 162:1182–1189

    Article  PubMed  Google Scholar 

  313. Hansson PO, Eriksson H, Welin L et al (1999) Smoking and abdominal obesity: risk factors for venous thromboembolism among middle-aged men: “the study of men born in 1913”. Arch Intern Med 159:1886–1890

    Article  PubMed  CAS  Google Scholar 

  314. Squizzato A, Romualdi E, Ageno W (2006) Why should statins prevent venous thromboembolism? A systematic literature search and a call for action. J Thromb Haemost 4:1925–1927

    Article  PubMed  CAS  Google Scholar 

  315. Prandoni P, Bilora F, Marchiori A et al (2003) An association between atherosclerosis and venous thrombosis. N Engl J Med 348:1435–1441

    Article  PubMed  Google Scholar 

  316. Hong C, Zhu F, Du D et al (2005) Coronary artery calcification and risk factors for atherosclerosis in patients with venous thromboembolism. Atherosclerosis 183:169–174

    Article  PubMed  CAS  Google Scholar 

  317. Reich LM, Folsom AR, Key NS et al (2006) Prospective study of subclinical atherosclerosis as a risk factor for venous thromboembolism. J Thromb Haemost 4:1909–1913

    Article  PubMed  CAS  Google Scholar 

  318. van der Hagen PB, Folsom AR, Jenny NS et al (2006) Subclinical atherosclerosis and the risk of future venous thrombosis in the Cardiovascular Health Study. J Thromb Haemost 4:1903–1908

    Article  PubMed  Google Scholar 

  319. Becattini C, Agnelli G, Prandoni P et al (2005) A prospective study on cardiovascular events after acute pulmonary embolism. Eur Heart J 26:77–83

    Article  PubMed  Google Scholar 

  320. Schulman S, Lindmarker P, Holmstrom M et al (2006) Post-thrombotic syndrome, recurrence, and death 10 years after the first episode of venous thromboembolism treated with warfarin for 6 weeks or 6 months. J Thromb Haemost 4:734–742

    Article  PubMed  CAS  Google Scholar 

  321. Prandoni P, Ghirarduzzi A, Prins MH et al (2006) Venous thromboembolism and the risk of subsequent symptomatic atherosclerosis. J Thromb Haemost 4:1891–1896

    Article  PubMed  CAS  Google Scholar 

  322. Oscarson M (2003) Pharmacogenetics of drug metabolising enzymes: importance for personalised medicine. Clin Chem Lab Med 41:573–580

    Article  PubMed  CAS  Google Scholar 

  323. Weinshilboum R (2003) Inheritance and drug response. N Engl J Med 348:529–537

    Article  PubMed  Google Scholar 

  324. Marin F, Roldan V, Gonzalez-Conejero R et al (2005) Pharmacogenetics in cardiovascular antithrombotic therapy. Curr Med Chem Cardiovasc Hematol Agents 3:357–364

    Article  PubMed  CAS  Google Scholar 

  325. Gum PA, Kottke-Marchant K, Poggio ED et al (2001) Profile and prevalence of aspirin resistance in patients with cardiovascular disease. Am J Cardiol 88:230–235

    Article  PubMed  CAS  Google Scholar 

  326. Patrono C (2003) Aspirin resistance: definition, mechanisms and clinical read-outs. J Thromb Haemost 1:1710–1713

    Article  PubMed  CAS  Google Scholar 

  327. Cooke GE, Bray PF, Hamlington JD et al (1998) PlA2 polymorphism and efficacy of aspirin. Lancet 351:1253

    Article  PubMed  CAS  Google Scholar 

  328. Macchi L, Christiaens L, Brabant S et al (2003) Resistance in vitro to low-dose aspirin is associated with platelet PlA1 (GP IIIa) polymorphism but not with C807T(GP Ia/IIa) and C-5T Kozak (GP Ibalpha) polymorphisms. J Am Coll Cardiol 42:1115–1119

    Article  PubMed  CAS  Google Scholar 

  329. Cambria-Kiely JA, Gandhi PJ (2002) Aspirin resistance and genetic polymorphisms. J Thromb Thrombolysis 14:51–58

    Article  PubMed  CAS  Google Scholar 

  330. Kastrati A, Schomig A, Seyfarth M et al (1999) PlA polymorphism of platelet glycoprotein IIIa and risk of restenosis after coronary stent placement. Circulation 99:1005–1010

    Article  PubMed  CAS  Google Scholar 

  331. Laule M, Cascorbi I, Stangl V et al (1999) A1/A2 polymorphism of glycoprotein IIIa and association with excess procedural risk for coronary catheter interventions: a case-controlled study. Lancet 353:708–712

    Article  PubMed  CAS  Google Scholar 

  332. Walter DH, Schachinger V, Elsner M et al (1997) Platelet glycoprotein IIIa polymorphisms and risk of coronary stent thrombosis. Lancet 350:1217–1219

    Article  PubMed  CAS  Google Scholar 

  333. Angiolillo DJ, Fernandez-Ortiz A, Bernardo E et al (2004) PlA polymorphism and platelet reactivity following clopidogrel loading dose in patients undergoing coronary stent implantation. Blood Coagul Fibrinolysis 15:89–93

    Article  PubMed  Google Scholar 

  334. Januzzi JL, Cannon CP, Theroux P et al (2003) Optimizing glycoprotein IIb/IIIa receptor antagonist use for the non-ST-segment elevation acute coronary syndromes: risk stratification and therapeutic intervention. Am Heart J 146:764–774

    Article  PubMed  CAS  Google Scholar 

  335. Wheeler GL, Braden GA, Bray PF et al (2002) Reduced inhibition by abciximab in platelets with the PlA2 polymorphism. Am Heart J 143:76–82

    Article  PubMed  CAS  Google Scholar 

  336. Stewart JT, French JK, Theroux P et al (1998) Early noninvasive identification of failed reperfusion after intravenous thrombolytic therapy in acute myocardial infarction. J Am Coll Cardiol 31:1499–1505

    Article  PubMed  CAS  Google Scholar 

  337. Montaner J, Fernandez-Cadenas I, Molina CA et al (2003) Safety profile of tissue plasminogen activator treatment among stroke patients carrying a common polymorphism (C-1562T) in the promoter region of the matrix metalloproteinase-9 gene. Stroke 34:2851–2855

    Article  PubMed  CAS  Google Scholar 

  338. Weber AA, Meila D, Jacobs C et al (2002) Low incidence of paradoxical platelet activation by glycoprotein IIb/IIIa inhibitors. Thromb Res 106:25–29

    Article  PubMed  CAS  Google Scholar 

  339. Marin F, Gonzalez-Conejero R, Lee KW et al (2005) A pharmacogenetic effect of factor XIII valine 34 leucine polymorphism on fibrinolytic therapy for acute myocardial infarction. J Am Coll Cardiol 45:25–29

    Article  PubMed  CAS  Google Scholar 

  340. Roldan V, Corral J, Marin F et al (2004) Effect of factor VII -323 Del/Ins polymorphism on the daily variability of factor VIIc and INR in steady anticoagulated patients with acenocoumarol. J Thromb Haemost 2:2264–2265

    Article  PubMed  CAS  Google Scholar 

  341. James AH, Britt RP, Raskino CL et al (1992) Factors affecting the maintenance dose of warfarin. J Clin Pathol 45:704–706

    Article  PubMed  CAS  Google Scholar 

  342. Hirsh J, Fuster V, Ansell J et al (2003) American Heart Association/American College of Cardiology Foundation guide to warfarin therapy. Circulation 107:1692–1711

    Article  PubMed  Google Scholar 

  343. Aithal GP, Day CP, Kesteven PJ et al (1999) Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 353:717–719

    Article  PubMed  CAS  Google Scholar 

  344. Tabrizi AR, Zehnbauer BA, Borecki IB et al (2002) The frequency and effects of cytochrome P450 (CYP) 2C9 polymorphisms in patients receiving warfarin. J Am Coll Surg 194:267–273

    Article  PubMed  Google Scholar 

  345. Taube J, Halsall D, Baglin T (2000) Influence of cytochrome P-450 CYP2C9 polymorphisms on warfarin sensitivity and risk of over-anticoagulation in patients on long-term treatment. Blood 96:1816–1819

    PubMed  CAS  Google Scholar 

  346. Yamazaki H, Inoue K, Chiba K et al (1998) Comparative studies on the catalytic roles of cytochrome P450 2C9 and its Cys- and Leu-variants in the oxidation of warfarin, flurbiprofen, and diclofenac by human liver microsomes. Biochem Pharmacol 56:243–251

    Article  PubMed  CAS  Google Scholar 

  347. Hermida J, Zarza J, Alberca I et al (2002) Differential effects of 2C9*3 and 2C9*2 variants of cytochrome P-450 CYP2C9 on sensitivity to acenocoumarol. Blood 99:4237–4239

    Article  PubMed  CAS  Google Scholar 

  348. Margaglione M, Colaizzo D, D’Andrea G et al (2000) Genetic modulation of oral anticoagulation with warfarin. Thromb Haemost 84:775–778

    PubMed  CAS  Google Scholar 

  349. Tassies D, Freire C, Pijoan J et al (2002) Pharmacogenetics of acenocoumarol: cytochrome P450 CYP2C9 polymorphisms influence dose requirements and stability of anticoagulation. Haematologica 87:1185–1191

    PubMed  CAS  Google Scholar 

  350. Schwarz UI, Ritchie MD, Bradford Y et al (2008) Genetic determinants of response to warfarin during initial anticoagulation. N Engl J Med 358:999–1008

    Article  PubMed  CAS  Google Scholar 

  351. Anderson JL, Horne BD, Stevens SM et al (2007) Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation 116:2563–2570

    Article  PubMed  CAS  Google Scholar 

  352. Gonzalez-Porras JR, Garcia-Sanz R, Alberca I et al (2006) Risk of recurrent venous thrombosis in patients with G20210A mutation in the prothrombin gene or factor V Leiden mutation. Blood Coagul Fibrinolysis 17:23–28

    Article  PubMed  CAS  Google Scholar 

  353. Yoon PW, Scheuner MT, Khoury MJ (2003) Research priorities for evaluating family history in the prevention of common chronic diseases. Am J Prev Med 24:128–135

    Article  PubMed  Google Scholar 

  354. Coppens M, van de Poel MH, Bank I et al (2006) A prospective cohort study on the absolute incidence of venous thromboembolism and arterial cardiovascular disease in asymptomatic carriers of the prothrombin 20210A mutation. Blood 108:2604–2607

    Article  PubMed  CAS  Google Scholar 

  355. Middeldorp S, Henkens CM, Koopman MM et al (1998) The incidence of venous thromboembolism in family members of patients with factor V Leiden mutation and venous thrombosis. Ann Intern Med 128:15–20

    PubMed  CAS  Google Scholar 

  356. Middeldorp S, Meinardi JR, Koopman MM et al (2001) A prospective study of asymptomatic carriers of the factor V Leiden mutation to determine the incidence of venous thromboembolism. Ann Intern Med 135:322–327

    PubMed  CAS  Google Scholar 

  357. Federici C, Gianetti J, Andreassi MG (2006) Genomic medicine and thrombotic risk: who, when, how and why? Int J Cardiol 106:3–9

    Article  PubMed  Google Scholar 

  358. Andreotti F, Becker RC (2005) Atherothrombotic disorders: new insights from hematology. Circulation 111:1855–1863

    Article  PubMed  Google Scholar 

  359. Sarasin FP, Bounameaux H (1998) Decision analysis model of prolonged oral anticoagulant treatment in factor V Leiden carriers with first episode of deep vein thrombosis. BMJ 316:95–99

    Article  PubMed  CAS  Google Scholar 

  360. Eckman MH, Singh SK, Erban JK et al (2002) Testing for factor V Leiden in patients with pulmonary or venous thromboembolism: a cost-effectiveness analysis. Med Decis Making 22:108–124

    PubMed  Google Scholar 

  361. Marchetti M, Pistorio A, Barosi G (2000) Extended anticoagulation for prevention of recurrent venous thromboembolism in carriers of factor V Leiden – cost-effectiveness analysis. Thromb Haemost 84:752–757

    PubMed  CAS  Google Scholar 

  362. Marchetti M, Quaglini S, Barosi G (2001) Cost-effectiveness of screening and extended anticoagulation for carriers of both factor V Leiden and prothrombin G20210A. QJM 94:365–372

    Article  PubMed  CAS  Google Scholar 

  363. Baglin C, Brown K, Luddington R et al (1998) Risk of recurrent venous thromboembolism in patients with the factor V Leiden (FVR506Q) mutation: effect of warfarin and prediction by precipitating factors. East Anglian Thrombophilia Study Group. Br J Haematol 100:764–768

    Article  PubMed  CAS  Google Scholar 

  364. Christiansen SC, Cannegieter SC, Koster T et al (2005) Thrombophilia, clinical factors, and recurrent venous thrombotic events. JAMA 293:2352–2361

    Article  PubMed  CAS  Google Scholar 

  365. Bauer KA (2001) The thrombophilias: well-defined risk factors with uncertain therapeutic implications. Ann Intern Med 135:367–373

    PubMed  CAS  Google Scholar 

  366. Brenner B, Hoffman R, Blumenfeld Z et al (2000) Gestational outcome in thrombophilic women with recurrent pregnancy loss treated by enoxaparin. Thromb Haemost 83:693–697

    PubMed  CAS  Google Scholar 

  367. Younis JS, Ohel G, Brenner B et al (2000) The effect of thrombophylaxis on pregnancy outcome in patients with recurrent pregnancy loss associated with factor V Leiden mutation. BJOG 107:415–419

    Article  PubMed  CAS  Google Scholar 

  368. Gris JC, Mercier E, Quere I et al (2004) Low-molecular-weight heparin versus low-dose aspirin in women with one fetal loss and a constitutional thrombophilic disorder. Blood 103:3695–3699

    Article  PubMed  CAS  Google Scholar 

  369. van Vlijmen EF, Brouwer JL, Veeger NJ et al (2007) Oral contraceptives and the absolute risk of venous thromboembolism in women with single or multiple thrombophilic defects: results from a retrospective family cohort study. Arch Intern Med 167:282–289

    Article  PubMed  Google Scholar 

  370. Nichols WC, Seligsohn U, Zivelin A et al (1997) Linkage of combined factors V and VIII deficiency to chromosome 18q by homozygosity mapping. J Clin Invest 99:596–601

    Article  PubMed  CAS  Google Scholar 

  371. Nichols WC, Seligsohn U, Zivelin A et al (1998) Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 93:61–70

    Article  PubMed  CAS  Google Scholar 

  372. Levy GG, Nichols WC, Lian EC et al (2001) Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 413:488–494

    Article  PubMed  CAS  Google Scholar 

  373. Salomon O, Steinberg DM, Zivelin A et al (1999) Single and combined prothrombotic factors in patients with idiopathic venous thromboembolism: prevalence and risk assessment. Arterioscler Thromb Vasc Biol 19:511–518

    Article  PubMed  CAS  Google Scholar 

  374. Psaty BM, Smith NL, Lemaitre RN et al (2001) Hormone replacement therapy, prothrombotic mutations, and the risk of incident nonfatal myocardial infarction in postmenopausal women. JAMA 285:906–913

    Article  PubMed  CAS  Google Scholar 

  375. Edelberg JM, Christie PD, Rosenberg RD (2001) Regulation of vascular bed-specific prothrombotic potential. Circ Res 89:117–124

    Article  PubMed  CAS  Google Scholar 

  376. Chang YS, Munn LL, Hillsley MV et al (2000) Effect of vascular endothelial growth factor on cultured endothelial cell monolayer transport properties. Microvasc Res 59:265–277

    Article  PubMed  CAS  Google Scholar 

  377. Beekhuizen H, van Furth R (1994) Growth characteristics of cultured human macrovascular venous and arterial and microvascular endothelial cells. J Vasc Res 31:230–239

    Article  PubMed  CAS  Google Scholar 

  378. Rupnick MA, Carey A, Williams SK (1988) Phenotypic diversity in cultured cerebral microvascular endothelial cells. In Vitro Cell Dev Biol 24:435–444

    Article  PubMed  CAS  Google Scholar 

  379. Christie PD, Edelberg JM, Picard MH et al (1999) A murine model of myocardial microvascular thrombosis. J Clin Invest 104:533–539

    Article  PubMed  CAS  Google Scholar 

  380. Edelberg JM, Aird WC, Wu W et al (1998) PDGF mediates cardiac microvascular communication. J Clin Invest 102:837–843

    Article  PubMed  CAS  Google Scholar 

  381. Guillot PV, Liu L, Kuivenhoven JA et al (2000) Targeting of human eNOS promoter to the Hprt locus of mice leads to tissue-restricted transgene expression. Physiol Genomics 2:77–83

    PubMed  CAS  Google Scholar 

  382. Rosenberg RD, Aird WC (1999) Vascular-bed – specific hemostasis and hypercoagulable states. N Engl J Med 340:1555–1564

    Article  PubMed  CAS  Google Scholar 

  383. Nishida M, Springhorn JP, Kelly RA et al (1993) Cell-cell signaling between adult rat ventricular myocytes and cardiac microvascular endothelial cells in heterotypic primary culture. J Clin Invest 91:1934–1941

    Article  PubMed  CAS  Google Scholar 

  384. Tabrizi P, Wang L, Seeds N et al (1999) Tissue plasminogen activator (tPA) deficiency exacerbates cerebrovascular fibrin deposition and brain injury in a murine stroke model: studies in tPA-deficient mice and wild-type mice on a matched genetic background. Arterioscler Thromb Vasc Biol 19:2801–2806

    Article  PubMed  CAS  Google Scholar 

  385. Koeleman BP, Reitsma PH, Bertina RM (1997) Familial thrombophilia: a complex genetic disorder. Semin Hematol 34:256–264

    PubMed  CAS  Google Scholar 

  386. van Boven HH, Reitsma PH, Rosendaal FR et al (1996) Factor V Leiden (FV R506Q) in families with inherited antithrombin deficiency. Thromb Haemost 75:417–421

    PubMed  Google Scholar 

  387. Seligsohn U, Zivelin A (1997) Thrombophilia as a multigenic disorder. Thromb Haemost 78:297–301

    PubMed  CAS  Google Scholar 

  388. Auro K, Alanne M, Kristiansson K et al (2007) Combined effects of thrombosis pathway gene variants predict cardiovascular events. PLoS Genet 3:e120

    Article  PubMed  CAS  Google Scholar 

  389. Roldan V, Gonzalez-Conejero R, Marin F et al (2005) Five prothrombotic polymorphisms and the prevalence of premature myocardial infarction. Haematologica 90:421–423

    PubMed  CAS  Google Scholar 

  390. Hudson M, Herr AL, Rauch J et al (2003) The presence of multiple prothrombotic risk factors is associated with a higher risk of thrombosis in individuals with anticardiolipin antibodies. J Rheumatol 30:2385–2391

    PubMed  CAS  Google Scholar 

  391. Potti A, Bild A, Dressman HK et al (2006) Gene-expression patterns predict phenotypes of immune-mediated thrombosis. Blood 107:1391–1396

    Article  PubMed  CAS  Google Scholar 

  392. Nurden AT (2006) Polymorphisms and platelet genotyping: the shape of things to come. J Thromb Haemost 4:1194–1196

    Article  PubMed  CAS  Google Scholar 

  393. Van Hylckama Vlieg A, Callas PW, Cushman M et al (2003) Inter-relation of coagulation factors and d-dimer levels in healthy individuals. J Thromb Haemost 1:516–522

    Article  PubMed  Google Scholar 

  394. Nesheim M (2001) Myocardial infarction and the balance between fibrin deposition and removal. Ital Heart J 2:641–645

    PubMed  CAS  Google Scholar 

  395. Vlassara H, Fuh H, Donnelly T et al (1995) Advanced glycation endproducts promote adhesion molecule (VCAM-1, ICAM-1) expression and atheroma formation in normal rabbits. Mol Med 1:447–456

    PubMed  CAS  Google Scholar 

  396. De Cristofaro R, Picozzi M, Morosetti R et al (1996) Effect of sodium on the energetics of thrombin-thrombomodulin interaction and its relevance for protein C hydrolysis. J Mol Biol 258:190–200

    Article  PubMed  Google Scholar 

  397. Ginsburg GS, Shah SH, McCarthy JJ (2007) Taking cardiovascular genetic association studies to the next level. J Am Coll Cardiol 50:930–932

    Article  PubMed  CAS  Google Scholar 

  398. Soria JM, Almasy L, Souto JC et al (2002) A quantitative-trait locus in the human factor XII gene influences both plasma factor XII levels and susceptibility to thrombotic disease. Am J Hum Genet 70:567–574

    Article  PubMed  CAS  Google Scholar 

  399. Soria JM, Almasy L, Souto JC et al (2003) A new locus on chromosome 18 that influences normal variation in activated protein C resistance phenotype and factor VIII activity and its relation to thrombosis susceptibility. Blood 101:163–167

    Article  PubMed  CAS  Google Scholar 

  400. Hennis BC, Van Boheemen PA, Koeleman BP et al (1995) A specific allele of the histidine-rich glycoprotein (HRG) locus is linked with elevated plasma levels of HRG in a Dutch family with thrombosis. Br J Haematol 89:845–852

    Article  PubMed  CAS  Google Scholar 

  401. Almasy L, Soria JM, Souto JC et al (2003) A quantitative trait locus influencing free plasma protein S levels on human chromosome 1q: results from the Genetic Analysis of Idiopathic Thrombophilia (GAIT) project. Arterioscler Thromb Vasc Biol 23:508–511

    Article  PubMed  CAS  Google Scholar 

  402. Hixson JE, Blangero J (2000) Genomic searches for genes that influence atherosclerosis and its risk factors. Ann N Y Acad Sci 902:1–7

    Article  PubMed  CAS  Google Scholar 

  403. Souto JC, Almasy L, Soria JM et al (2003) Genome-wide linkage analysis of von Willebrand factor plasma levels: results from the GAIT project. Thromb Haemost 89:468–474

    PubMed  CAS  Google Scholar 

  404. Souto JC, Almasy L, Muniz-Diaz E et al (2000) Functional effects of the ABO locus polymorphism on plasma levels of von Willebrand factor, factor VIII, and activated partial thromboplastin time. Arterioscler Thromb Vasc Biol 20:2024–2028

    Article  PubMed  CAS  Google Scholar 

  405. Buil A, Soria JM, Souto JC et al (2004) Protein C levels are regulated by a quantitative trait locus on chromosome 16: results from the Genetic Analysis of Idiopathic Thrombophilia (GAIT) Project. Arterioscler Thromb Vasc Biol 24:1321–1325

    Article  PubMed  CAS  Google Scholar 

  406. Berger M, Mattheisen M, Kulle B et al (2005) High factor VIII levels in venous thromboembolism show linkage to imprinted loci on chromosomes 5 and 11. Blood 105:638–644

    Article  PubMed  CAS  Google Scholar 

  407. Scott BT, Hasstedt SJ, Bovill EG et al (2002) Characterization of the human prostaglandin H synthase 1 gene (PTGS1): exclusion by genetic linkage analysis as a second modifier gene in familial thrombosis. Blood Coagul Fibrinolysis 13:519–531

    Article  PubMed  CAS  Google Scholar 

  408. Almasy L, Soria JM, Souto JC et al (2005) A locus on chromosome 2 influences levels of tissue factor pathway inhibitor: results from the GAIT study. Arterioscler Thromb Vasc Biol 25:1489–1492

    Article  PubMed  CAS  Google Scholar 

  409. Rey E, Kahn SR, David M et al (2003) Thrombophilic disorders and fetal loss: a meta-analysis. Lancet 361:901–908

    Article  PubMed  Google Scholar 

  410. Balta G, Altay C, Gurgey A (2002) PAI-1 gene 4G/5G genotype: A risk factor for thrombosis in vessels of internal organs. Am J Hematol 71:89–93

    Article  PubMed  CAS  Google Scholar 

  411. Alessio AM, Hoehr NF, Siqueira LH et al (2007) Association between estrogen receptor alpha and beta gene polymorphisms and deep vein thrombosis. Thromb Res 120:639–645

    Article  PubMed  CAS  Google Scholar 

  412. Colaizzo D, Amitrano L, Tiscia GL et al (2007) A new JAK2 gene mutation in patients with polycythemia vera and splanchnic vein thrombosis. Blood 110:2768–2769

    Article  PubMed  CAS  Google Scholar 

  413. McMahon C, Abu-Elmagd K, Bontempo FA et al (2007) JAK2 V617F mutation in patients with catastrophic intra-abdominal thromboses. Am J Clin Pathol 127:736–743

    Article  PubMed  CAS  Google Scholar 

  414. Remacha AF, Estivill C, Sarda MP et al (2007) The V617F mutation of JAK2 is very uncommon in patients with thrombosis. Haematologica 92:285–286

    Article  PubMed  Google Scholar 

  415. Elbaz A, Poirier O, Canaple S et al (2000) The association between the Val34Leu polymorphism in the factor XIII gene and brain infarction. Blood 95:586–591

    PubMed  CAS  Google Scholar 

  416. Franco RF, Pazin-Filho A, Tavella MH et al (2000) Factor XIII val34leu and the risk of myocardial infarction. Haematologica 85:67–71

    PubMed  CAS  Google Scholar 

  417. Palkimas MP Jr, Skinner HM, Gandhi PJ et al (2003) Polymorphism induced sensitivity to warfarin: a review of the literature. J Thromb Thrombolysis 15:205–212

    Article  PubMed  CAS  Google Scholar 

  418. Honda S, Honda Y, Bauer B et al (1995) The impact of three-dimensional structure on the expression of PlA alloantigens on human integrin beta 3. Blood 86:234–242

    PubMed  CAS  Google Scholar 

  419. Lazo-Langner A, Knoll GA, Wells PS et al (2006) The risk of dialysis access thrombosis is related to the transforming growth factor-beta1 production haplotype and is modified by polymorphisms in the plasminogen activator inhibitor-type 1 gene. Blood 108:4052–4058

    Article  PubMed  CAS  Google Scholar 

  420. Saito K, Nakayama T, Sato N et al (2006) Haplotypes of the plasminogen activator gene associated with ischemic stroke. Thromb Haemost 96:331–336

    PubMed  CAS  Google Scholar 

  421. Kelly PJ, Rosand J, Kistler JP et al (2002) Homocysteine, MTHFR 677C→T polymorphism, and risk of ischemic stroke: results of a meta-analysis. Neurology 59:529–536

    Article  PubMed  CAS  Google Scholar 

  422. Ozben B, Diz-Kucukkaya R, Bilge AK et al (2007) The association of P-selectin glycoprotein ligand-1 VNTR polymorphisms with coronary stent restenosis. J Thromb Thrombolysis 23:181–187

    Article  PubMed  CAS  Google Scholar 

  423. Humphries SE, Luong LA, Ogg MS et al (2001) The interleukin-6 – 174 G/C promoter polymorphism is associated with risk of coronary heart disease and systolic blood pressure in healthy men. Eur Heart J 22:2243–2252

    Article  PubMed  CAS  Google Scholar 

  424. O’Leary DH, Polak JF, Kronmal RA et al (1999) Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med 340:14–22

    Article  PubMed  Google Scholar 

  425. Pola R, Flex A, Gaetani E et al (2003) Synergistic effect of -174 G/C polymorphism of the interleukin-6 gene promoter and 469 E/K polymorphism of the intercellular adhesion molecule-1 gene in Italian patients with history of ischemic stroke. Stroke 34:881–885

    Article  PubMed  CAS  Google Scholar 

  426. van der Meer I, Brouwers GJ, Bulk S et al (2004) Genetic variability of von Willebrand factor and risk of coronary heart disease: the Rotterdam Study. Br J Haematol 124:343–347

    Article  PubMed  Google Scholar 

  427. Durante-Mangoni E, Davies GJ, Ahmed N et al (2002) The prothrombin G20210A polymorphism in patients with myocardial infarction. Blood Coagul Fibrinolysis 13:603–608

    Article  PubMed  CAS  Google Scholar 

  428. Belvis R, Santamaria A, Marti-Fabregas J et al (2006) Diagnostic yield of prothrombotic state studies in cryptogenic stroke. Acta Neurol Scand 114:250–253

    Article  PubMed  CAS  Google Scholar 

  429. Djousse L, Karamohamed S, Herbert AG et al (2007) Fucosyltransferase 3 polymorphism and atherothrombotic disease in the Framingham Offspring Study. Am Heart J 153:636–639

    Article  PubMed  CAS  Google Scholar 

  430. Helgadottir A, Manolescu A, Helgason A et al (2006) A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction 1. Nat Genet 38:68–74

    Article  PubMed  CAS  Google Scholar 

  431. Kastrati A, Koch W, Gawaz M et al (2000) PlA polymorphism of glycoprotein IIIa and risk of adverse events after coronary stent placement. J Am Coll Cardiol 36:84–89

    Article  PubMed  CAS  Google Scholar 

  432. Bennett JS, Catella-Lawson F, Rut AR et al (2001) Effect of the Pl(A2) alloantigen on the function of beta(3)-integrins in platelets. Blood 97:3093–3099

    Article  PubMed  CAS  Google Scholar 

  433. Gorchakova O, Koch W, Mehilli J et al (2004) PlA polymorphism of the glycoprotein IIIa and efficacy of reperfusion therapy in patients with acute myocardial infarction. Thromb Haemost 91:141–145

    PubMed  Google Scholar 

  434. Chew DP, Bhatt DL, Topol EJ (2001) Oral glycoprotein IIb/IIIa inhibitors: why don’t they work? Am J Cardiovasc Drugs 1:421–428

    Article  PubMed  CAS  Google Scholar 

  435. Gonzalez-Conejero R, Rivera J, Corral J et al (2005) Biological assessment of aspirin efficacy on healthy individuals: heterogeneous response or aspirin failure? Stroke 36:276–280

    Article  PubMed  CAS  Google Scholar 

  436. Quinn MJ, Topol EJ (2001) Common variations in platelet glycoproteins: pharmacogenomic implications. Pharma­cogenomics 2:341–352

    Article  PubMed  CAS  Google Scholar 

  437. Jefferson BK, Foster JH, McCarthy JJ et al (2005) Aspirin resistance and a single gene. Am J Cardiol 95:805–808

    Article  PubMed  CAS  Google Scholar 

  438. Arepally G, McKenzie SE, Jiang XM et al (1997) Fc gamma RIIA H/R 131 polymorphism, subclass-specific IgG anti-heparin/platelet factor 4 antibodies and clinical course in patients with heparin-induced thrombocytopenia and thrombosis. Blood 89:370–375

    PubMed  CAS  Google Scholar 

  439. Carlsson LE, Santoso S, Baurichter G et al (1998) Heparin-induced thrombocytopenia: new insights into the impact of the FcgammaRIIa-R-H131 polymorphism. Blood 92:1526–1531

    PubMed  CAS  Google Scholar 

  440. Sacchi E, Tagliabue L, Scoglio R et al (1996) Plasma factor VII levels are influenced by a polymorphism in the promoter region of the FVII gene. Blood Coagul Fibrinolysis 7:114–117

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svati H. Shah MD, MHS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shah, S.H., Becker, R.C. (2010). The Genetics of Thrombosis. In: Askari, A., Lincoff, A. (eds) Antithrombotic Drug Therapy in Cardiovascular Disease. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-235-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-235-3_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-234-6

  • Online ISBN: 978-1-60327-235-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics