Skip to main content

Use of Zebrafish to Dissect Gene Programs Regulating Hematopoietic Stem Cells

  • Chapter
Regulatory Networks in Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1291 Accesses

Abstract

Hematopoietic stem cells (HSCs) are responsible for creating each cellular component of the vertebrate blood system. However, HSCs must also self-renew to maintain their own population so that the blood system always has the capacity to be reconstituted. This balance of HSCs producing more HSCs as well as differentiated blood cells is regulated by several extrinsic pathways. The Cdx/Hox pathway has been shown to have a role in regulating embryonic stem cells, with the zebrafish caudal genes cdx4 and cdx1a acting upstream of the Hox clusters to aid in the formation of blood. The Notch pathway has been shown in mice and zebrafish to be a positive regulator of HSC self-renewal; experiments in fish revealed that this pathway signals through the HSC transcription factor runx1 to do so. Lastly, the action of prostaglandin E2 was found to positively regulate HSCs, and treatment with this compound leads to increased recovery kinetics of the hematopoietic system upon acute injury or transplantation. This knowledge is currently being applied in the clinic as a means to increase the success rates of umbilical cord blood transplantations in adult patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. deJong JLO, Zon LI. Use of the zebrafish system to study primitive and definitive hematopoiesis. Annu Rev Genet. 2005;39:481–501.

    Article  CAS  Google Scholar 

  2. Zon LI. Developmental biology of hematopoiesis. Blood. 1995;86:2876–91.

    PubMed  CAS  Google Scholar 

  3. Driever W, Fishman MC. The zebrafish: heritable disorders in transparent embryos. J Clin Invest. 1996;97:1788–94.

    Article  PubMed  CAS  Google Scholar 

  4. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nusslein-Volhard C. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development. 1996;123:1–36.

    PubMed  CAS  Google Scholar 

  5. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203:253–310.

    PubMed  CAS  Google Scholar 

  6. Davidson AJ, Zon LI. The definitive (and primitive) guide to zebrafish hematopoiesis. Oncogene. 2004;23:7233–46.

    Article  PubMed  CAS  Google Scholar 

  7. Galloway JL, Zon LI. Ontogeny of hematopoiesis: examining the emergence of hematopoietic cells in the vertebrate embryo. Curr Top Dev Biol. 2003;53:139–58.

    Article  PubMed  CAS  Google Scholar 

  8. Galloway JL, Wingert RA, Thisse C, Thisse B, Zon LI. Loss of gata1 but not gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos. Dev Cell. 2005;8:109–16.

    Article  PubMed  CAS  Google Scholar 

  9. Rhodes J, Hagen A, Hsu K, Deng M, Liu TX, Look AT, Kanki JP. Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Dev Cell. 2005;8:97–108.

    Article  PubMed  CAS  Google Scholar 

  10. Mikkola HK, Gekas C, Orkin SH, Dieterlen-Lievre F. Placenta as a site for hematopoietic stem cell development. Exp Hematol. 2005;33:1048–54.

    Article  PubMed  CAS  Google Scholar 

  11. Murayama E, Kissa K, Zapata A, Mordelet E, Briolat V, Lin HF, Handin RI, Herbomel P. Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity. 2006;25:963–75.

    Article  PubMed  CAS  Google Scholar 

  12. Burns CE, Zon LI. Homing sweet homing: odyssey of hematopoietic stem cells. Immunity. 2006;25:859–62.

    Article  PubMed  CAS  Google Scholar 

  13. Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, Zon LI. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol. 2003;4: 1238–46.

    Article  PubMed  CAS  Google Scholar 

  14. Bradley TR, Metcalf D. The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci. 1966;44:287–99.

    Article  PubMed  CAS  Google Scholar 

  15. Ichikawa Y, Pluznik DH, Sachs L. In vitro control of the development of macrophage and granulocyte colonies. Proc Natl Acad Sci U S A. 1966;56:488–95.

    Article  PubMed  CAS  Google Scholar 

  16. Magli MC, Iscove NN, Odartchenko N. Transient nature of early hematopoietic spleen colonies. Nature. 1982;295:527–9.

    Article  PubMed  CAS  Google Scholar 

  17. Shizuru JA, Negrin RS, Weissman IL. Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hepatolymphoid system. Annu Rev Med. 2005;56:509–38.

    Article  PubMed  CAS  Google Scholar 

  18. Traver D, Winzeler A, Stern HM, Mayhall EA, Langenau DM, Kutok JL, Look AT, Zon LI. Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation. Blood. 2004;104:1298–1305.

    Article  PubMed  CAS  Google Scholar 

  19. Krumlauf R. Hox genes in vertebrate development. Cell 1994;78:191–201.

    Article  PubMed  CAS  Google Scholar 

  20. Charite J, de Graaff W, Consten D, Reijnen MJ, Korving J, Deschamps J. Transducing positional information to the Hox genes: critical interaction of cdx gene products with position-sensitive regulatory elements. Development. 1998;125:4349–58.

    PubMed  CAS  Google Scholar 

  21. Subramanian V, Meyer BI, Gruss P. Disruption of the murine homeobox gene Cdx1 affects axial skeletal identities by altering the mesodermal expression domains of Hox genes. Cell. 1995;83: 641–53.

    Article  PubMed  CAS  Google Scholar 

  22. van den Akker E, Forlani S, Chawengsaksophak K, de Graaff W, Beck F, Meyer BI, Deschamps J. Cdx1 and Cdx2 have overlapping functions in anteroposterior patterning and posterior axis elongation. Development. 2002;129:2181–93.

    PubMed  Google Scholar 

  23. Davidson AJ, Ernst P, Wang Y, Dekens MP, Kingsley PD, Palis J, Korsmeyer SJ, Daley GQ, Zon LI. cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature. 2003;425:300–6.

    Article  PubMed  CAS  Google Scholar 

  24. Davidson AJ, Zon LI. The caudal-related homeobox genes cdx1a and cdx4 act redundantly to regulate hox gene expression and the formation of putative hematopoietic stem cells during zebrafish embryogenesis. Dev Biol. 2006;292:506–18.

    Article  PubMed  CAS  Google Scholar 

  25. Bansal D, Scholl C, Frohling S, McDowell E, Lee BH, Dohner K, Ernst P, Davidson AJ, Daley GQ, Zon LI, Gilliland DG, Huntly BJ. Cdx4 dysregulates Hox gene expression and generates acute myeloid leukemia alone and in cooperation with Meis1a in a murine model. Proc Natl Acad Sci U S A. 2006;103: 16924–9.

    Article  PubMed  Google Scholar 

  26. Wang Y, Yates F, Naveiras O, Ernst P, Daley GQ. Embryonic stem cell-derived hematopoietic stem cells. Proc Natl Acad Sci U S A. 2005;102:19081–6.

    Article  PubMed  CAS  Google Scholar 

  27. Lengerke C, McKinney-Freeman S, Naveiras O, Yates F, Wang Y, Bansal D, Daley GQ. The cdx-hox pathway in hematopoietic stem cell formation from embryonic stem cells. Ann N Y Acad Sci. 2007;1106:197–208.

    Article  PubMed  CAS  Google Scholar 

  28. Maillard I, Adler SH, Pear WS. Notch and the immune system. Immunity. 2003;19:781–91.

    Article  PubMed  CAS  Google Scholar 

  29. Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C, Yoon K, Cook JM, Willert K, Gaiano N, Reya T. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol. 2005;6:314–22.

    Article  PubMed  CAS  Google Scholar 

  30. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425: 841–6.

    Article  PubMed  CAS  Google Scholar 

  31. Stier S, Cheng T, Dombkowski D, Carlesso N, Scadden DT. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood. 2002;99:2369–78.

    Article  PubMed  CAS  Google Scholar 

  32. Burns CE, Traver D, Mayhall E, Shepard JL, Zon LI. Hematopoietic stem cell fate is established by the Notch-Runx pathway. Genes Dev. 2005;19:2331–42.

    Article  PubMed  CAS  Google Scholar 

  33. Kunisato A, Chiba S, Nakagami-Yamaguchi E, Kumano K, Saito T, Masuda S, Yamaguchi T, Osawa M, Kageyama R, Nakauchi H, Nishikawa M, Hirai H. HES-1 preserves purified hematopoietic stem cells ex vivo and accumulates side population cells in vivo. Blood. 2003;101:1777–83.

    Article  PubMed  CAS  Google Scholar 

  34. Kumano K, Chiba S, Kunisato A, Sata M, Saito T, Nakagami-Yamaguchi E, Yamaguchi T, Masuda S, Shimizu K, Takahashi T, Ogawa S, Hamada Y, Hirai H. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity. 2003;18:699–711.

    Article  PubMed  CAS  Google Scholar 

  35. Voet D, Voet JG. Lipid metabolism: eicosanoid metabolism. In: Biochemistry: Biomolecules, mechanisms of enzyme action, and metabolism, 3rd ed., vol. 1. Hoboken, NJ: John Wiley and Sons, Inc; 2004. pp. 959–63.

    Google Scholar 

  36. Feher I, Gidali J. Prostaglandin E2 as stimulator of haemopoietic stem cell proliferation. Nature. 1974;247:550–1.

    Article  PubMed  CAS  Google Scholar 

  37. Villablanca EJ, Pistocchi A, Court FA, Cotelli F, Bordignon C, Allende ML, Traversari C, Russo V. Abrogation of prostaglandin E2/EP4 signaling impairs the development of rag1+ lymphoid precursors in the thymus of zebrafish embryos. J Immunol. 2007;179:357–64.

    PubMed  CAS  Google Scholar 

  38. North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GJ, Bowman TV, Jang IH, Grosser T, Fitzgerald GA, Daley GQ, Orkin SH, Zon LI. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature. 2007;447:1007–11.

    Article  PubMed  CAS  Google Scholar 

  39. Lorenz M, Slaughter HS, Wescott DM, Carter SI, Schnyder B, Dinchuk JE, Car BD. Cyclooxygenase-2 is essential for normal recovery from 5-fluorouracil-induced myelotoxicity in mice. Exp Hematol. 1999;27:1494–502.

    Article  PubMed  CAS  Google Scholar 

  40. Hofmeister CC, Zhang J, Knight KL, Le P, Stiff PJ. Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche. Bone Marrow Transplant. 2007;39:11–23.

    Article  PubMed  CAS  Google Scholar 

  41. Tanaka H, Matsumura I, Itoh K, Hatsuyama A, Shikamura M, Satoh Y, Heike T, Nakahata T, Kanakura Y. HOX decoy peptide enhances the ex vivo expansion of human umbilical cord blood CD34+ hematopoietic stem cells/hematopoietic progenitor cells. Stem Cells. 2006;24:2592–2602.

    Article  PubMed  CAS  Google Scholar 

  42. Varnum-Finney B, Brashem-Stein C, Bernstein ID. Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood. 2003;101:1784–89.

    Article  PubMed  CAS  Google Scholar 

  43. Delaney C, Varnum-Finney B, Aoyama K, Brashem-Stein C, Bernstein ID. Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood. 2005;106:2693–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard I. Zon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Albacker, C.E., Zon, L.I. (2009). Use of Zebrafish to Dissect Gene Programs Regulating Hematopoietic Stem Cells. In: Rajasekhar, V.K., Vemuri, M.C. (eds) Regulatory Networks in Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-60327-227-8_9

Download citation

Publish with us

Policies and ethics