Skip to main content

Fatty Acids and Lipids

  • Chapter
  • First Online:
  • 1003 Accesses

Part of the book series: Infectious Disease ((ID))

Abstract

Lipids are an integral component of the bacterial membrane and show great structural diversity within the cell. While lipid composition has been an important signature of bacterial phylogeny for many decades, it also has the potential to provide information on the resources and procedures used to culture an organism. Chemical factors like nutritional substrates, temperature, and physical dynamics during growth all can influence the types of lipids and their relative ratios inside the cell and potentially leave diagnostic biosignatures that are unique to a specific production process.

In this chapter, we examine the structural diversity of lipids in the cell and the factors that affect lipid composition during laboratory culturing with particular emphasis on Bacillus organisms. Methods used to extract, separate, and detect fatty acids are reviewed. In addition, the potential utility of lipid profiles in forensic investigations is discussed in the context of specific examples from the literature. Lastly, validation considerations and quality assurance are highlighted as important aspects in the implementation of lipid analysis for microbial forensics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ratledge C, Wilkinson SG (1988) Microbial lipids. Academic, New York

    Google Scholar 

  2. Raetz CRH, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    Article  PubMed  CAS  Google Scholar 

  3. White DC, Ringelberg DB, Hedrick DB, Nivens DE (1994) Rapid identification of microbes from clinical and environmental matrices. In: Fenselau C (ed) Mass spectrometry for the characterization of microorganisms. American Chemical Society, Washington, DC, pp 8–17

    Google Scholar 

  4. White DC (1995) Chemical ecology: possible linkage between macro- and microbial ecology. Oikos 74: 174–181

    Article  Google Scholar 

  5. White DC, Gouffon JS, Peacock AD et al (2003) Forensic analysis by comprehensive rapid detection of pathogens and contamination concentrated in biofilms in drinking water systems for water resource protection and management. Environ Forensics 4:63–74

    Article  CAS  Google Scholar 

  6. MacGregor BJ, Boschker HTS, Amann R (2006) Comparison of rRNA and polar-lipid-derived fatty acid biomarkers for assessment of C-13-substrate incorporation by microorganisms in marine sediments. Appl Environ Microbiol 72:5246–5253

    Article  PubMed  CAS  Google Scholar 

  7. Welch DF (1991) Applications of cellular fatty-acid analysis. Clin Microbiol Rev 4:422–438

    PubMed  CAS  Google Scholar 

  8. Song Y, Yang R, Guo Z, Zhang M, Wang X, Zhou F (2000) Distinctness of spore and vegetative cellular fatty acid profiles of some aerobic endospore-forming bacilli. J Microbiol Methods 39:225–241

    Article  PubMed  CAS  Google Scholar 

  9. Vandamme P, Pot B, Gillis M, DeVos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407

    PubMed  CAS  Google Scholar 

  10. Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302

    PubMed  CAS  Google Scholar 

  11. Kaneda T (1967) Fatty acids in the genus Bacillus I. Iso- and Anteiso-fatty acids as characteristic constituents of lipids in 10 species. J Bacteriol 93: 894–903

    PubMed  CAS  Google Scholar 

  12. Whittaker P, Fry FS, Curtis SK et al (2005) Use of fatty acid profiles to identify food-borne bacterial pathogens and aerobic endospore-forming Bacilli. J Agric Food Chem 53:3735–3742

    Article  PubMed  CAS  Google Scholar 

  13. Scandella CJ, Kornberg A (1969) Biochemical studies of bacterial sporulation and germination XV. Fatty acids in growth, sporulation, and germination of Bacillus megaterium. J Bacteriol 98:82–86

    PubMed  CAS  Google Scholar 

  14. Kaneda T (1971) Factors affecting the relative ratio of fatty acids in Bacillus cereus. Can J Microbiol 17:269–275

    Article  PubMed  CAS  Google Scholar 

  15. Daron HH (1973) Nutritional alteration of the fatty acid composition of a thermophilic Bacillus species. J Bacteriol 116:1096–1099

    PubMed  CAS  Google Scholar 

  16. Weerkamp A, Heinen W (1972) The effect of nutrients and precursors on the fatty acid composition of two thermophilic bacteria. Arch Microbiol 81:350–360

    CAS  Google Scholar 

  17. Kaneda T (1963) Biosynthesis of branched chain fatty acids. 2. Microbial synthesis of branched long chain fatty acids from certain short chain fatty acid substrates. J Biol Chem 238:1229–1235

    CAS  Google Scholar 

  18. Kaneda T (1966) Biosynthesis of branched-chain fatty acids. IV. Factors affecting relative abundance of fatty acids produced by Bacillus subtilis. Can J Microbiol 12:501–514

    Article  PubMed  CAS  Google Scholar 

  19. Lawrence D, Heitefuss S, Seifert HS (1991) Differentiation of Bacillus anthracis from Bacillus cereus by gas chromatographic whole-cell fatty acid analysis. J Clin Microbiol 29:1508–1512

    PubMed  CAS  Google Scholar 

  20. Ehrhardt CJ, Chu V, Brown T et al (2010) Use of fatty acid methyl ester profiles for discrimination of Bacillus cereus T-strain spores grown on different media. Appl Environ Microbiol 76:1902–1912

    Article  PubMed  CAS  Google Scholar 

  21. Haack SK, Garchow H, Odelson DA, Forney LJ, Klug MJ (1994) Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl Environ Microbiol 60: 2483–2493

    PubMed  CAS  Google Scholar 

  22. Kaneda T (1968) Fatty acids in the genus Bacillus II. Similarity in the fatty acid compositions of Bacillus thuringiensis, Bacillus anthracis, and Bacillus cereus. J Bacteriol 95:2210–2216

    PubMed  CAS  Google Scholar 

  23. Daron HH (1970) Fatty acid composition of lipid extracts of a thermophilic Bacillus species. J Bacteriol 101:145–151

    PubMed  CAS  Google Scholar 

  24. Rose R, Setlow B, Monroe A, Mallozzi M, Driks A, Setlow P (2007) Comparison of the properties of Bacillus subtilis spores made in liquid or on agar plates. J Appl Microbiol 103:691–699

    Article  PubMed  CAS  Google Scholar 

  25. Harwood JL, Russell NJ (1984) Lipids in plants and microbes. George Allen and Unwin, London

    Google Scholar 

  26. Cole MJ, Enke CG (1994) Microbial characterization by phospholipid profiling. In: Fenselau C (ed) Mass spectrometry for the characterization of microorganisms. American Chemical Society, Washington, DC, pp 36–61

    Google Scholar 

  27. Mansilla MC, Cybulski LE, Albanesi D, de Mendoza D (2004) Control of membrane fluidity by molecular thermosensors. J Bacteriol 186:6681–6688

    Article  PubMed  CAS  Google Scholar 

  28. Cortezzo DE, Setlow P (2005) Analysis of factors that influence the sensitivity of spores of Bacillus subtilis to DNA damaging chemicals. J Appl Microbiol 98: 606–617

    Article  PubMed  CAS  Google Scholar 

  29. Miller LT (1982) Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586

    PubMed  CAS  Google Scholar 

  30. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note. MIDI, Newark

    Google Scholar 

  31. Schutter ME, Dick RP (2000) Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci Soc Am J 64: 1659–1668

    Article  CAS  Google Scholar 

  32. Gomez-Brandon M, Lores M, Dominguez J (2008) Comparison of extraction and derivatization methods for fatty acid analysis in solid environmental matrixes. Anal Bioanal Chem 392:505–514

    Article  PubMed  CAS  Google Scholar 

  33. Gharaibeh AA, Voorhees KJ (1996) Characterization of lipid fatty acids in whole-cell microorganisms using in situ supercritical fluid derivatization/extraction and gas chromatography mass spectrometry. Anal Chem 68:2805–2810

    Article  PubMed  CAS  Google Scholar 

  34. Kurkiewicz S, Dzierzewicz Z, Wilczok T, Dworzanski JP (2003) GC/MS determination of fatty acid picolinyl esters by direct curie-point pyrolysis of whole bacterial cells. J Am Soc Mass Spectrom 14:58–62

    Article  PubMed  CAS  Google Scholar 

  35. Basile F, Beverly MB, Abbas-Hawks C, Mowry CD, Voorhees KJ, Hadfield TL (1998) Direct mass spectrometric analysis of in situ thermally hydrolyzed and methylated lipids from whole bacterial cells. Anal Chem 70:1555–1562

    Article  PubMed  CAS  Google Scholar 

  36. Hendricker AD, Abbas-Hawks C, Basile F, Voorhees KJ, Hadfield TL (1999) Rapid chemotaxonomy of pathogenic bacteria using in situ thermal hydrolysis and methylation as a sample preparation step coupled with a field-portable membrane-inlet quadrupole ion trap mass spectrometer. Int J Mass Spectrom 190–191:331–342

    Google Scholar 

  37. Brondz I (2002) Development of fatty acid analysis by high-performance liquid chromatography, gas chromatography, and related techniques. Anal Chim Acta 465:1–37

    Article  CAS  Google Scholar 

  38. White DC, Lytle CA, Ying-Dong MG et al (2002) Flash detection/identification of pathogens, bacterial spores and bioterrorism agent biomarkers from clinical and environmental matrices. J Microbiol Methods 48:139–147

    Article  PubMed  CAS  Google Scholar 

  39. Banowetz GM, Whittaker GW, Dierksen KP et al (2006) Fatty acid methyl ester analysis to identify sources of soil in surface water. J Environ Qual 35:133–140

    Article  PubMed  CAS  Google Scholar 

  40. Quezada M, Buitron G, Moreno-Andrade I, Moreno G, Lopez-Marin LM (2007) The use of fatty acid methyl esters as biomarkers to determine aerobic, facultatively aerobic and anaerobic communities in wastewater treatment systems. FEMS Microbiol Lett 266:75–82

    Article  PubMed  CAS  Google Scholar 

  41. Duran M, Haznedaroglu BZ, Zitomer DH (2006) Microbial source tracking using host specific FAME profiles of fecal coliforms. Water Res 40:67–74

    Article  PubMed  CAS  Google Scholar 

  42. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  43. Drucker DB (1994) Fast atom bombardment mass spectrometry of phospholipids for bacterial chemotaxonomy. In: Fenselau C (ed) Mass spectrometry for the characterization of microorganisms. American Chemical Society, Washington, DC

    Google Scholar 

  44. Besra GS, Brennan PJ (1994) The glycolipids of mycobacteria. In: Fenselau C (ed) Mass spectrometry for the characterization of microorganisms. American Chemical Society, Washington, DC

    Google Scholar 

  45. Gibson BW, Phillips NJ, John CM, Melaugh W (1994) Lipooligosaccharides in pathogenic Haemophilus and Neisseria species: mass spectrometric techniques for identification and characterization. In: Fenselau C (ed) Mass spectrometry for the characterization of microorganisms. American Chemical Society, Washington, DC

    Google Scholar 

  46. Griffiths WJ, Jonsson AP, Liu S, Rai DK, Wang Y (2001) Electrospray and tandem mass spectrometry in biochemistry. Biochem J 355:545–561

    PubMed  CAS  Google Scholar 

  47. Carrasco-Pancorbo A, Navas-Iglesias N, Cuadros-Rodríguez L (2009) From lipid analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part I: modern lipid analysis. Trends Anal Chem 28:263–278

    Article  CAS  Google Scholar 

  48. Navas-Iglesias N, Carrasco-Pancorbo A, Cuadros-Rodríguez L (2009) From lipid analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part II: analytical lipidomics. Trends Anal Chem 28:393–403

    Article  CAS  Google Scholar 

  49. Stubiger G, Belgacem O (2007) Analysis of lipids using 2,4,6-trihydroxyacetophenone as a matrix for MALDI mass spectrometry. Anal Chem 79:3206–3213

    Article  PubMed  Google Scholar 

  50. Price NPJ, Rooney AP, Swezey JL, Perry E, Cohan FM (2007) Mass spectrometric analysis of lipopeptides from Bacillus strains isolated from diverse geographical locations. FEMS Microbiol Lett 271:83–89

    Article  PubMed  CAS  Google Scholar 

  51. Dodds ED, McCoy MR, Rea LD, Kennish JM (2005) Gas chromatographic quantification of fatty acid methyl esters: flame ionization detection vs. electron impact mass spectrometry. Lipids 40:419–428

    Article  PubMed  CAS  Google Scholar 

  52. Oursel D, Loutelier-Bourhis C, Orange N, Chevalier S, Norris V, Lange CM (2007) Identification and relative quantification of fatty acids in Escherichia coli membranes by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 21:3229–3233

    Article  PubMed  CAS  Google Scholar 

  53. Kellogg JA, Bankert DA, Withers GS, Sweimler W, Kiehn TE, Pfyffer GE (2001) Application of the Sherlock mycobacteria identification system using high-performance liquid chromatography in a clinical laboratory. J Clin Microbiol 39:964–970

    Article  PubMed  CAS  Google Scholar 

  54. Whittaker P, Mossoba MM, Al-Khaldi S et al (2003) Identification of foodborne bacteria by infrared spectroscopy using cellular fatty acid methyl esters. J Microbiol Methods 55:709–716

    Article  PubMed  CAS  Google Scholar 

  55. Evershed RP, Crossman ZM, Bull ID et al (2006) C-13-Labelling of lipids to investigate microbial communities in the environment. Curr Opin Biotechnol 17:72–82

    Article  PubMed  CAS  Google Scholar 

  56. Molkentin J, Giesemann A (2007) Differentiation of organically and conventionally produced milk by stable isotope and fatty acid analysis. Anal Bioanal Chem 388:297–305

    Article  PubMed  CAS  Google Scholar 

  57. Dallavenezia N, Minka S, Bruneteau M, Mayer H, Michel G (1985) Lipopolysaccharides from Yersinia pestis – studies on lipid-A of lipopolysaccharides-I and lipopolysaccharide-II. Eur J Biochem 151: 399–404

    Article  CAS  Google Scholar 

  58. Dworzanski JP, Tripathi A, Snyder AP, Maswdeh WM, Wick CH (2005) Novel biomarkers for Gram-type differentiation of bacteria by pyrolysis-gas chromatography-mass spectrometry. J Anal Appl Pyrolysis 73:29–38

    Article  CAS  Google Scholar 

  59. Boue SM, Cole RB (2000) Confirmation of the structure of lipid A from Enterobacter agglomerans by electrospray ionization tandem mass spectrometry. J Mass Spectrom 35:361–368

    Article  PubMed  CAS  Google Scholar 

  60. Kawahara K, Tsukano H, Watanabe H, Lindner B, Matsuura M (2002) Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect Immun 70: 4092–4098

    Article  PubMed  CAS  Google Scholar 

  61. Jones JW, Cohen IE, Turecek F, Goodlett DR, Ernst RK (2010) Comprehensive structure characterization of lipid A extracted from Yersinia pestis for determination of its phosphorylation configuration. J Am Soc Mass Spectrom 21:785–799

    Article  PubMed  CAS  Google Scholar 

  62. Skurnlk M, Toivanen P (1993) Yersinia enterocolitica lipopolysaccharide: genetics and virulence. Trends Microbiol 1:148–152

    Article  Google Scholar 

  63. Caroff M, Bundle DR, Perry MB (1984) Structure of the O-chain of the phenol-phase soluble cellular lipopolysaccharide of Yersinia enterocolitica Serotype O-9. Eur J Biochem 139:195–200

    Article  PubMed  CAS  Google Scholar 

  64. Aussel L, Chaby R, Le Blay K et al (2000) Chemical and serological characterization of the Bordetella hinzii lipopolysaccharides. FEBS Lett 485:40–46

    Article  PubMed  CAS  Google Scholar 

  65. Vinogradov E, Sidorczyk Z (2002) The structure of the carbohydrate backbone of the rough type lipopolysaccharides from Proteus penneri strains 12, 13, 37, and 44. Carbohydr Res 337:835–840

    Article  PubMed  CAS  Google Scholar 

  66. Schilling B, McLendon MK, Phillips NJ, Apicella MA, Gibson BW (2007) Characterization of lipid a acylation patterns in Francisella tularensis, Francisella novicida, and Francisella philomiragia using multiple-stage mass spectrometry and matrix-assisted laser desorption/ionization on an intermediate vacuum source linear ion trap. Anal Chem 79:1034–1042

    Article  PubMed  CAS  Google Scholar 

  67. Shaffer SA, Harvey MD, Goodlett DR, Ernst RK (2007) Structural heterogeneity and environmentally regulated remodeling of Francisella tularensis subspecies novicida lipid a characterized by tandem mass spectrometry. J Am Soc Mass Spectrom 18:1080–1092

    Article  PubMed  CAS  Google Scholar 

  68. Snyder AP, Thornton SN, Dworzanski JP, Meuzelaar HLC (1996) Detection of the picolinic acid biomarker in Bacillus spores using a potentially field-portable pyrolysis gas chromatography ion mobility spectrometry system. Field Anal Chem Technol 1:49–59

    Article  CAS  Google Scholar 

  69. Beverly MB, Basile F, Voorhees KJ, Hadfield TL (1996) A rapid approach for the detection of dipicolinic acid in bacterial spores using pyrolysis mass spectrometry. Rapid Commun Mass Spectrom 10:455–458

    Article  PubMed  CAS  Google Scholar 

  70. Watt BE, Morgan SL, Fox A (1991) 2-Butenoic acid, a chemical marker for poly-beta-hydroxybutyrate identified by pyrolysis-gas chromatography mass-spectrometry in analyses of whole microbial-cells. J Anal Appl Pyrolysis 19:237–249

    Article  CAS  Google Scholar 

  71. Lanoiselet VM, Cother EJ, Cother NJ, Ash GJ, Harper JDI (2005) Comparison of two total cellular fatty acid analysis protocols to differentiate Rhizoctonia oryzae and R. oryzae-sativae. Mycologia 97:77–83

    Article  PubMed  CAS  Google Scholar 

  72. Lim DV, Simpson JM, Kearns EA, Kramer MF (2005) Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin Microbiol Rev 18:583–607

    Article  PubMed  CAS  Google Scholar 

  73. Bavykin SG, Mikhailovich VM, Zakharyev VM et al (2008) Discrimination of Bacillus anthracis and closely related microorganisms by analysis of 16S and 23S rRNA with oligonucleotide microarray. Chem Biol Interact 171:212–235

    Article  PubMed  CAS  Google Scholar 

  74. Xu M, Voorhees KJ, Hadfield TL (2003) Repeatability and pattern recognition of bacterial fatty acid profiles generated by direct mass spectrometric analysis of in situ thermal hydrolysis/methylation of whole cells. Talanta 59:577–589

    Article  PubMed  CAS  Google Scholar 

  75. Sasser M, Kunitsky C, Jackoway G et al (2005) Identification of Bacillus anthracis from culture using gas chromatographic analysis of fatty acid methyl esters. J AOAC Int 88:178–181

    PubMed  CAS  Google Scholar 

  76. Teska JD, Coyne SR, Ezzell JW, Allan CM, Redus SL (2003) Identification of Bacillus anthracis using gas chromatographic analysis of cellular fatty acids and a commercially available database. Agilent Technologies Inc., pp 1–5

    Google Scholar 

  77. Hageman JH, Shankweiler GW, Wall PR et al (1984) Single, chemically defined sporulation medium for Bacillus-subtilis – growth, sporulation, and extracellular protease production. J Bacteriol 160:438–441

    PubMed  CAS  Google Scholar 

  78. Scherer C, Muller K-D, Rath P-M, Ansorg RAM (2003) Influence of culture conditions on the fatty acid profiles of laboratory-adapted and freshly isolated strains of Helicobacter pylori. J Clin Microbiol 41:1114–1117

    Article  PubMed  CAS  Google Scholar 

  79. Harwood CR, Cutting SM (1990) Molecular biological methods for Bacillus (modern microbiological methods). Wiley, Chichester

    Google Scholar 

  80. Adams DJ, Gurr S, Hogge J (2005) Cellular fatty-acid analysis of Bacillus thuringiensis var. kurstaki commercial preparations. J Agric Food Chem 53: 512–517

    Article  PubMed  CAS  Google Scholar 

  81. Muller KD, Weischer T, Schettler D, Ansorg R (1998) Characterization of the periodontal microflora by the fatty acid profile of the broth-grown microbial population. Zentralblatt Fur Bakteriologie-Int J Med Microbiol Virol Parasitol Infect Dis 288:441–449

    Google Scholar 

  82. Krejci E, Kroppenstedt RM (2006) Differentiation of species combined into the Burkholderia cepacia complex and related taxa on the basis of their fatty acid patterns. J Clin Microbiol 44:1159–1164

    Article  PubMed  CAS  Google Scholar 

  83. Leonard RB, Mayer J, Sasser M et al (1995) Comparison of MIDI Sherlock system and pulsed-field gel electrophoresis in characterizing strains of methicillin-resistant Staphylococcus aureus from a recent hospital outbreak. J Clin Microbiol 33: 2723–2727

    PubMed  CAS  Google Scholar 

  84. Lin S, Schraft H, Odumeru JA, Griffiths MW (1998) Identification of contamination sources of Bacillus cereus in pasteurized milk. Int J Food Microbiol 43: 159–171

    Article  PubMed  CAS  Google Scholar 

  85. Peak KK, Duncan KE, Veguilla W et al (2007) Bacillus acidiceler sp nov., isolated from a forensic specimen, containing Bacillus anthracis pX02 genes. Int J Syst Evol Microbiol 57:2031–2036

    Article  PubMed  CAS  Google Scholar 

  86. Buyer JS (2002) Identification of bacteria from single colonies by fatty acid analysis. J Microbiol Methods 48:259–265

    Article  PubMed  CAS  Google Scholar 

  87. Code of Federal Regulations 57 (1988) Clinical laboratory improvement amendments, pp 883–999

    Google Scholar 

  88. Budowle B, Schutzer SE, Einseln A et al (2003) Building microbial forensics as a response to bioterrorism. Science 301:1852–1853

    Article  PubMed  CAS  Google Scholar 

  89. Jarman KH, Cebula ST, Saenz AJ et al (2000) An algorithm for automated bacterial identification using matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 72:1217–1223

    Article  PubMed  CAS  Google Scholar 

Download references

Disclaimer

The views and conclusions contained in this document are those of the authors and should not be implied as necessarily representing the official policies, either expressed or implied, by the US Government. This is publication 08–07 of the Federal Bureau of Investigation. Names of commercial manufacturers are provided for identification only, and inclusion does not imply endorsement by the Federal Bureau of Investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Ehrhardt Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Robertson, J.M., Ehrhardt, C.J., Bannan, J. (2012). Fatty Acids and Lipids. In: Cliff, J., Kreuzer, H., Ehrhardt, C., Wunschel, D. (eds) Chemical and Physical Signatures for Microbial Forensics. Infectious Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-60327-219-3_3

Download citation

Publish with us

Policies and ethics