Skip to main content

From Vulnerable Plaque to Vulnerable Patient

  • Chapter
  • First Online:

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Atherosclerotic cardiovascular disease results in millions of sudden deaths annually, and coronary artery disease accounts for the majority of this toll. Despite major advances in the treatment of coronary artery disease, a large number of victims of the disease who are apparently healthy die suddenly without prior symptoms. Available screening and diagnostic methods are insufficient to identify the victims before the event occurs. The recognition of the role of the vulnerable plaque has opened new avenues in the field of cardiovascular medicine. This consensus document concludes the following. (1) Rupture-prone plaques are not the only vulnerable plaques. All types of atherosclerotic plaques with high likelihood of thrombotic complications and rapid progression should be considered as vulnerable plaques. We propose a classification for clinical as well as pathological evaluation of vulnerable plaques. (2) Vulnerable plaques are not the only culprit factors for the development of acute coronary syndromes, myocardial infarction, and sudden cardiac death. Vulnerable blood (prone to thrombosis) and vulnerable myocardium (prone to fatal arrhythmia) play an important role in the outcome. Therefore, the term “vulnerable patient” may be more appropriate and is proposed now for the identification of subjects with a high likelihood of developing cardiac events in the near future. (3) A quantitative method for cumulative risk assessment of vulnerable patients needs to be developed that may include variables based on plaque, blood, and myocardial vulnerability. This chapter reports the consensus document created among experts on vulnerable plaque, vulnerable blood, and vulnerable myocardium, and provides an outline of the overall risk assessment of the vulnerable patient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yusuf S, Reddy S, Ounpuu S, et al. Global burden of cardiovascular diseases, I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation. 2001;104:2746–2753.

    PubMed  CAS  Google Scholar 

  2. American Heart Association. 2002 Heart and Stroke Statistical Update. Dallas, TX: American Heart Association; 2002.

    Google Scholar 

  3. Myerburg RJ, Interian A Jr, Mitrani RM, et al. Frequency of sudden cardiac death and profiles of risk. Am J Cardiol. 1997;80:10F–19F.

    PubMed  CAS  Google Scholar 

  4. Zipes DP, Wellens HJ. Sudden cardiac death. Circulation. 1998;98:2334–2351.

    PubMed  CAS  Google Scholar 

  5. Virmani R, Kolodgie FD, Burke AP, et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262–1275.

    PubMed  CAS  Google Scholar 

  6. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995;92:657–671.

    PubMed  CAS  Google Scholar 

  7. Davies MJ. A macro and micro view of coronary vascular insult in ischemic heart disease. Circulation. 1990;82(Suppl II):II-38–II-46.

    CAS  Google Scholar 

  8. Kolodgie FD, Burke AP, Farb A, et al. The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol. 2001;16:285–292.

    PubMed  CAS  Google Scholar 

  9. Farb A, Burke AP, Tang AL, et al. Coronary plaque erosion without rupture into a lipid core: a frequent cause of coronary thrombosis in sudden coronary death. Circulation. 1996;93:1354–1363.

    PubMed  CAS  Google Scholar 

  10. Ambrose JA, Tannenbaum MA, Alexopoulos D, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol. 1988;12:56–62.

    PubMed  CAS  Google Scholar 

  11. Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis: characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J. 1983;50:127–134.

    PubMed  CAS  Google Scholar 

  12. Friedman M, Van den Bovenkamp GJ. Role of thrombus in plaque formation in the human diseased coronary artery. Br J Exp Pathol. 1966;47:550–557.

    PubMed  CAS  Google Scholar 

  13. Constantinides P. Pathogenesis of cerebral artery thrombosis in man. Arch Pathol. 1967;83:422–428.

    PubMed  CAS  Google Scholar 

  14. Chapman I. Relationships of recent coronary artery occlusion and acute myocardial infarction. J Mt Sinai Hosp N Y. 1968;35:149–154.

    PubMed  CAS  Google Scholar 

  15. Davies MJ, Thomas AC. Plaque fissuring: the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J. 1985;53:363–373.

    PubMed  CAS  Google Scholar 

  16. Thim T, Hagensen MK, Bentzon JF, Falk E. From vulnerable plaque to atherothrombosis. J Intern Med. 2008;263(5):506–516.

    PubMed  CAS  Google Scholar 

  17. Willerson JT, Campbell WB, Winniford MD, et al. Conversion from chronic to acute coronary artery disease: speculation regarding mechanisms. Am J Cardiol. 1984;54:1349–1354.

    PubMed  CAS  Google Scholar 

  18. Muller J, Tofler G, Stone P. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation. 1989;79:733–743.

    PubMed  CAS  Google Scholar 

  19. Muller JE, Abela GS, Nesto RW, et al. Triggers, acute risk factors and vulnerable plaques: the lexicon of a new frontier. J Am Coll Cardiol. 1994;23:809–813.

    PubMed  CAS  Google Scholar 

  20. Vulnerable. In: Merriam-Webster’s Collegiate Dictionary & Thesaurus. 11th ed (e-book). Springfield, MA: Merriam-Webster, Inc. 2003.

    Google Scholar 

  21. Stary HC, Chandler AB, Dinsmore RE, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis : a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1995;92:1355–1374.

    PubMed  CAS  Google Scholar 

  22. Mann J, Davies MJ. Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart. 1999;82:265–268.

    PubMed  CAS  Google Scholar 

  23. Burke AP, Farb A, Malcom GT, et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336:1276–1282.

    PubMed  CAS  Google Scholar 

  24. Goldstein JA, Demetriou D, Grines CL, et al. Multiple complex coronary plaques in patients with acute myocardial infarction. N Engl J Med. 2000;343:915–922.

    PubMed  CAS  Google Scholar 

  25. Nissen SE. Who is at risk for atherosclerotic disease? Lessons from intravascular ultrasound. Am J Med. 2002;112(Suppl 8A):27S–33S

    PubMed  Google Scholar 

  26. Rioufol G, Finet G, Ginon I, et al. Multiple atherosclerotic plaque rupture in acute coronary syndrome. Circulation. 2002;106:804–808.

    PubMed  CAS  Google Scholar 

  27. Buffon A, Biasucci LM, Liuzzo G, et al. Widespread coronary inflammation in unstable angina. N Engl J Med. 2002;347:5–12.

    PubMed  Google Scholar 

  28. Casscells W, Naghavi M, Willerson JT. Vulnerable atherosclerotic plaque: a multifocal disease. Circulation. 2003;107:2072–2075.

    PubMed  Google Scholar 

  29. Maseri A, Fuster V. Is there a vulnerable plaque? Circulation. 2003;107:2068–2071.

    PubMed  Google Scholar 

  30. Kereiakes DJ. The emperor’s clothes: in search of the vulnerable plaque. Circulation. 2003;107:2076–2077.

    PubMed  Google Scholar 

  31. Davies MJ. Pathology of arterial thrombosis. Br Med Bull. 1994;50:789–802.

    PubMed  CAS  Google Scholar 

  32. Burke AP, Kolodgie FD, Farb A, et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation. 2001;103:934–940.

    PubMed  CAS  Google Scholar 

  33. Vallabhajosula S, Fuster V. Atherosclerosis: imaging techniques and the evolving role of nuclear medicine. J Nucl Med. 1997;38:1788–1796.

    PubMed  CAS  Google Scholar 

  34. Fayad ZA, Fuster V. Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circ Res. 2001;89:305–316.

    PubMed  CAS  Google Scholar 

  35. Naghavi M, Madjid M, Khan MR, et al. New developments in the detection of vulnerable plaque. Curr Atheroscler Rep. 2001;3:125–135.

    PubMed  CAS  Google Scholar 

  36. Stefanadis C, Diamantopoulos L, Vlachopoulos C, et al. Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo : a new method of detection by application of a special thermography catheter. Circulation. 1999;99:1965–1971.

    PubMed  CAS  Google Scholar 

  37. Stefanadis C, Toutouzas K, Tsiamis E, et al. Thermal heterogeneity in stable human coronary atherosclerotic plaques is underestimated in vivo: the “cooling effect” of blood flow. J Am Coll Cardiol. 2003;41:403–408.

    PubMed  Google Scholar 

  38. Schmitz SA, Coupland SE, Gust R, et al. Superparamagnetic iron oxideenhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol. 2000;35:460–471.

    PubMed  CAS  Google Scholar 

  39. Ruehm SG, Corot C, Vogt P, et al. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation. 2001;103:415–422.

    PubMed  CAS  Google Scholar 

  40. Lederman RJ, Raylman RR, Fisher SJ, et al. Detection of atherosclerosis using a novel positron-sensitive probe and 18-fluorodeoxyglucose (FDG). Nucl Med Commun. 2001;22:747–753.

    PubMed  CAS  Google Scholar 

  41. Ciavolella M, Tavolaro R, Taurino M, et al. Immunoscintigraphy of atherosclerotic uncomplicated lesions in vivo with a monoclonal antibody against D-dimers of insoluble fibrin. Atherosclerosis. 1999;143:171–175.

    PubMed  CAS  Google Scholar 

  42. Tearney GJ, Yabushita H, Houser SL, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003;107:113–119.

    PubMed  Google Scholar 

  43. Krinsky GA, Freedberg R, Lee VS, et al. Innominate artery atheroma: a lesion seen with gadolinium-enhanced MR angiography and often missed by transesophageal echocardiography. Clin Imaging. 2001;25:251–257.

    PubMed  CAS  Google Scholar 

  44. Bonk RT, Schmiedl UP, Yuan C, et al. Time-of-flight MR angiography with Gd-DTPA hexamethylene diamine co-polymer blood pool contrast agent: comparison of enhanced MRA and conventional angiography for arterial stenosis induced in rabbits. J Magn Reson Imaging. 2000;11:638–646.

    PubMed  CAS  Google Scholar 

  45. Yuan C, Kerwin WS, Ferguson MS, et al. Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson Imaging. 2002;15:62–67

    PubMed  Google Scholar 

  46. Patwari P, Weissman NJ, Boppart SA, et al. Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound. Am J Cardiol. 2000;85:641–644.

    PubMed  CAS  Google Scholar 

  47. Jang I-K, Bouma BE, Kang D-H, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol. 2002;39:604–609.

    PubMed  Google Scholar 

  48. Nissen SE. Clinical images from intravascular ultrasound: coronary disease, plaque rupture, and intervention – the inside view. Am J Cardiol. 2001;88:16–18.

    Google Scholar 

  49. Nissen SE, Yock P. Intravascular ultrasound : novel pathophysiological insights and current clinical applications. Circulation. 2001;103:604–616.

    PubMed  CAS  Google Scholar 

  50. de Korte CL, Cespedes EI, van der Steen AF, et al. Intravascular ultrasound elastography: assessment and imaging of elastic properties of diseased arteries and vulnerable plaque. Eur J Ultrasound. 1998;7:219–224.

    PubMed  Google Scholar 

  51. de Korte CL, Sierevogel MJ, Mastik F, et al. Identification of atherosclerotic plaque components with intravascular ultrasound elastography in vivo: a Yucatan pig study. Circulation. 2002;105:1627–1630.

    PubMed  Google Scholar 

  52. Corti R, Osende JI, Fuster V, et al. Artery dissection and arterial thrombus aging: the role of noninvasive magnetic resonance imaging. Circulation. 2001;103:2420–2421.

    PubMed  CAS  Google Scholar 

  53. Takano M, Mizuno K, Okamatsu K, et al. Mechanical and structural characteristics of vulnerable plaques: analysis by coronary angioscopy and intravascular ultrasound. J Am Coll Cardiol. 2001;38:99–104.

    PubMed  CAS  Google Scholar 

  54. Cassis LA, Lodder RA. Near-IR imaging of atheromas in living arterial tissue. Anal Chem. 1993;65:1247–1256.

    PubMed  CAS  Google Scholar 

  55. Moreno PR, Lodder RA, Purushothaman KR, et al. Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation. 2002;105:923–927.

    PubMed  Google Scholar 

  56. Wang J, Geng YJ, Guo B, et al. Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques. J Am Coll Cardiol. 2002;39:1305–1313.

    PubMed  Google Scholar 

  57. Jeremias A, Kolz ML, Ikonen TS, et al. Feasibility of in vivo intravascular ultrasound tissue characterization in the detection of early vascular transplant rejection. Circulation. 1999;100:2127–2130.

    PubMed  CAS  Google Scholar 

  58. Nair A, Kuban BD, Tuzcu EM, et al. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation. 2002;106:2200–2206.

    PubMed  Google Scholar 

  59. Helft G, Worthley SG, Fuster V, et al. Progression and regression of atherosclerotic lesions: monitoring with serial noninvasive magnetic resonance imaging. Circulation. 2002;105:993–998.

    PubMed  Google Scholar 

  60. Hatsukami TS, Ross R, Polissar NL, et al. Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation. 2000;102:959–964.

    PubMed  CAS  Google Scholar 

  61. Yuan C, Mitsumori LM, Ferguson MS, et al. In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation. 2001;104:2051–2056.

    PubMed  CAS  Google Scholar 

  62. Yuan C, Zhang S-X, Polissar NL, et al. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation. 2002;105:181–185.

    PubMed  Google Scholar 

  63. Uchida Y, Nakamura F, Tomaru T, et al. Prediction of acute coronary syndromes by percutaneous coronary angioscopy in patients with stable angina. Am Heart J. 1995;130:195–203.

    PubMed  CAS  Google Scholar 

  64. Flacke S, Fischer S, Scott MJ, et al. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation. 2001;104:1280–1285.

    PubMed  CAS  Google Scholar 

  65. Corti R, Osende JI, Fayad ZA, et al. In vivo noninvasive detection and age definition of arterial thrombus by MRI. J Am Coll Cardiol. 2002;39:1366–1373.

    PubMed  Google Scholar 

  66. Asakura M, Ueda Y, Yamaguchi O, et al. Extensive development of vulnerable plaques as a pan-coronary process in patients with myocardial infarction: an angioscopic study. J Am Coll Cardiol. 2001;37:1284–1288.

    PubMed  CAS  Google Scholar 

  67. Nieman K, Oudkerk M, Rensing BJ, et al. Coronary angiography with multi-slice computed tomography. Lancet. 2001;357:599–603.

    PubMed  CAS  Google Scholar 

  68. Giesler TBU, Ropers D, Ulzheimer S, et al. Noninvasive visualization of coronary arteries using contrast-enhanced multidetector CT: influence of heart rate on image quality and stenosis detection. AJR Am J Roentgenol. 2002;179:911–916.

    PubMed  Google Scholar 

  69. Duerinckx AJ. Imaging of coronary artery disease: MR. J Thorac Imaging. 2001;16:25–34.

    PubMed  CAS  Google Scholar 

  70. Hecht HS. New developments in atherosclerosis imaging: electron beam tomography. Curr Atheroscler Rep. 2001;3:417–424.

    PubMed  CAS  Google Scholar 

  71. Corti R, Fayad ZA, Fuster V, et al. Effects of lipid-lowering by simvastatin on human atherosclerotic lesions: a longitudinal study by high-resolution, noninvasive magnetic resonance imaging. Circulation. 2001;104:249–252.

    PubMed  CAS  Google Scholar 

  72. Rumberger JA. Tomographic (plaque) imaging: state of the art. Am J Cardiol. 2001;88:66E–69E.

    PubMed  CAS  Google Scholar 

  73. Achenbach S, Ropers D, Regenfus M, et al. Noninvasive coronary angiography by magnetic resonance imaging, electron-beam computed tomography, and multislice computed tomography. Am J Cardiol. 2001;88:70E–73E.

    PubMed  CAS  Google Scholar 

  74. Kodama K, Asakura M, Ueda Y, et al. The role of plaque rupture in the development of acute coronary syndrome evaluated by the coronary angioscope. Intern Med. 2000;39:333–335.

    PubMed  CAS  Google Scholar 

  75. Lehmann KG, van Suylen RJ, Stibbe J, et al. Composition of human thrombus assessed by quantitative colorimetric angioscopic analysis. Circulation. 1997;96:3030–3041.

    PubMed  CAS  Google Scholar 

  76. Moulton KS. Plaque angiogenesis and atherosclerosis. Curr Atheroscler Rep. 2001;3:225–233.

    PubMed  CAS  Google Scholar 

  77. Nasu K, Kawamoto A, Sasaki Y, et al. Measurement of vascular tissue blood flow of the atherosclerotic aorta in Watanabe heritable hypercholesterolemic (WHHL) rabbit by using laser Doppler flowmeter-equipped balloon catheter. Am J Cardiol. 1999;84:84P.

    Google Scholar 

  78. Drexler H, Zeiher AM, Wollschlager H, et al. Flow-dependent coronary artery dilatation in humans. Circulation. 1989;80:466–474.

    PubMed  CAS  Google Scholar 

  79. Vogel RA. Brachial artery ultrasound: a noninvasive tool in the assessment of triglyceride-rich lipoproteins. Clin Cardiol. 1999(6 Suppl);22:II34–II39.

    PubMed  CAS  Google Scholar 

  80. Varnava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability. Circulation. 2002;105:939–943.

    PubMed  Google Scholar 

  81. Smits PC, Pasterkamp G, Quarles van Ufford MA, et al. Coronary artery disease: arterial remodelling and clinical presentation. Heart. 1999;82:461–464.

    PubMed  CAS  Google Scholar 

  82. Kim WY, Stuber M, Bornert P, et al. Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation. 2002;106:296–299.

    PubMed  Google Scholar 

  83. Naghavi M, Madjid M, Gul K, et al. Thermography basket catheter: in vivo measurement of the temperature of atherosclerotic plaques for detection of vulnerable plaques. Catheter Cardiovasc Interv. 2003;59:52–59.

    PubMed  Google Scholar 

  84. Wissler RW, Strong JP. Risk factors and progression of atherosclerosis in youth. PDAY Research Group. Pathological Determinants of Atherosclerosis in Youth. Am J Pathol. 1998;153:1023–1033.

    PubMed  CAS  Google Scholar 

  85. Tuzcu EM, Kapadia SR, Tutar E, et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation. 2001;103:2705–2710.

    PubMed  CAS  Google Scholar 

  86. Pasterkamp G, Schoneveld AH, van der Wal AC, et al. Relation of arterial geometry to luminal narrowing and histologic markers for plaque vulnerability: the remodeling paradox. J Am Coll Cardiol. 1998;32:655–662.

    PubMed  CAS  Google Scholar 

  87. Becker CR, Nikolaou K, Muders M, et al. Ex vivo coronary atherosclerotic plaque characterization with multi-detector-row CT. Eur Radiol. 2003;12:12.

    Google Scholar 

  88. Vogel RA. Heads and hearts: the endothelial connection. Circulation. 2003;107:2766–2768.

    PubMed  Google Scholar 

  89. Targonski PV, Bonetti PO, Pumper GM, et al. Coronary endothelial dysfunction is associated with an increased risk of cerebrovascular events. Circulation. 2003;107:2805–2809.

    PubMed  Google Scholar 

  90. Cusack MR, Marber MS, Lambiase PD, et al. Systemic inflammation in unstable angina is the result of myocardial necrosis. J Am Coll Cardiol. 2002;39:1917–1923.

    PubMed  CAS  Google Scholar 

  91. Yamamoto H, Uemura S, Tomoda Y, et al. Transcardiac gradient of soluble adhesion molecules predicts progression of coronary artery disease. Int J Cardiol. 2002;84:249–257.

    PubMed  Google Scholar 

  92. Moreno PR, Purushothaman KR, Fuster V, et al. Intimomedial interface damage and adventitial inflammation is increased beneath disrupted atherosclerosis in the aorta: implications for plaque vulnerability. Circulation. 2002;105:2504–2511.

    PubMed  Google Scholar 

  93. Ridker PM, Cushman M, Stampfer MJ, et al. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336:973–979.

    PubMed  CAS  Google Scholar 

  94. Ridker PM, Hennekens CH, Buring JE, et al. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342:836–843.

    PubMed  CAS  Google Scholar 

  95. Ridker PM, Rifai N, Rose L, et al. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002;347:1557–1565.

    PubMed  CAS  Google Scholar 

  96. Pasceri VWJ, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation. 2000;102:2165–2168.

    PubMed  CAS  Google Scholar 

  97. Verma SLS, Badiwala MV, Weisel RD, et al. Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein. Circulation. 2002;105:1890–1896.

    PubMed  CAS  Google Scholar 

  98. Koukkunen H, Penttila K, Kemppainen A, et al. C-reactive protein, fibrinogen, interleukin-6 and tumour necrosis factor-alpha in the prognostic classification of unstable angina pectoris. Ann Med. 2001;33:37–47.

    PubMed  CAS  Google Scholar 

  99. Schonbeck U, Varo N, Libby P, et al. Soluble CD40L and cardiovascular risk in women. Circulation. 2001;104:2266–2268.

    PubMed  CAS  Google Scholar 

  100. Hwang SJ, Ballantyne CM, Sharrett AR, et al. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk In Communities (ARIC) study. Circulation. 1997;96:4219–4225.

    PubMed  CAS  Google Scholar 

  101. Kiechl S, Egger G, Mayr M, et al. Chronic infections and the risk of carotid atherosclerosis : prospective results from a large population study. Circulation. 2001;103:10641070.

    PubMed  CAS  Google Scholar 

  102. Bayes-Genis A, Conover CA, Overgaard MT, et al. Pregnancy-associated plasma protein A as a marker of acute coronary syndromes. N Engl J Med. 2001;345:1022–1029.

    PubMed  CAS  Google Scholar 

  103. Beaudeux JL, Burc L, Imbert-Bismut F, et al. Serum plasma pregnancyassociated protein A: a potential marker of echogenic carotid atherosclerotic plaques in asymptomatic hyperlipidemic subjects at high cardiovascular risk. Arterioscler Thromb Vasc Biol. 2003;23:e7–e10.

    PubMed  CAS  Google Scholar 

  104. Yamada Y, Izawa H, Ichihara S, et al. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N Engl J Med. 2002;347:1916–1923.

    PubMed  CAS  Google Scholar 

  105. Lange LA, Lange EM, Bielak LF, et al. Autosomal genome-wide scan for coronary artery calcification loci in sibships at high risk for hypertension. Arterioscler Thromb Vasc Biol. 2002;22:418–423.

    PubMed  CAS  Google Scholar 

  106. Ozaki K, Ohnishi Y, Iida A, et al. Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat Genet. 2002;32:650–654.

    PubMed  CAS  Google Scholar 

  107. Karnicki K, Owen WG, Miller RS, et al. Factors contributing to individual propensity for arterial thrombosis. Arterioscler Thromb Vasc Biol. 2002;22:1495–1499.

    PubMed  CAS  Google Scholar 

  108. Libby P, Simon DI. Inflammation and thrombosis: the clot thickens. Circulation. 2001;103:1718–1720.

    PubMed  CAS  Google Scholar 

  109. Barakat K, Kennon S, Hitman GA, et al. Interaction between smoking and the glycoprotein IIIa P1(A2) polymorphism in non-ST-elevation acute coronary syndromes. J Am Coll Cardiol. 2001;38:1639–1643.

    PubMed  CAS  Google Scholar 

  110. Douglas H, Michaelides K, Gorog DA, et al. Platelet membrane glycoprotein Ibα gene –5T/C Kozak sequence polymorphism as an independent risk factor for the occurrence of coronary thrombosis. Heart. 2002;87:70–74.

    PubMed  CAS  Google Scholar 

  111. Redondo M, Watzke HH, Stucki B, et al. Coagulation factors II, V, VII, and X, prothrombin gene 20210G3A transition, and factor V Leiden in coronary artery disease: high factor V clotting activity is an independent risk factor for myocardial infarction. Arterioscler Thromb Vasc Biol. 1999;19:1020–1025.

    PubMed  CAS  Google Scholar 

  112. Reiner AP, Siscovick DS, Rosendaal FR. Hemostatic risk factors and arterial thrombotic disease. Thromb Haemost. 2001;85:584–595.

    PubMed  CAS  Google Scholar 

  113. Sambola A, Osende J, Hathcock J, et al. Role of risk factors in the modulation of tissue factor activity and blood thrombogenicity. Circulation. 2003;107:973–977.

    PubMed  CAS  Google Scholar 

  114. Passoni F, Morelli B, Seveso G, et al. Comparative short-term prognostic value of hemostatic and inflammatory markers in patients with non-ST elevation acute coronary syndromes. Ital Heart J. 2002;3:28–33.

    PubMed  Google Scholar 

  115. Hoffmeister HM, Heller W, Seipel L. Activation markers of coagulation and fibrinolysis: alterations and predictive value in acute coronary syndromes. Thromb Haemost. 1999;82:76–79.

    PubMed  Google Scholar 

  116. Vaarala O, Puurunen M, Manttari M, et al. Antibodies to prothrombin imply a risk of myocardial infarction in middle-aged men. Thromb Haemost. 1996;75:456–459.

    PubMed  CAS  Google Scholar 

  117. Jouhikainen T, Pohjola-Sintonen S, Stephansson E. Lupus anticoagulant and cardiac manifestations in systemic lupus erythematosus. Lupus. 1994;3:167–172.

    PubMed  CAS  Google Scholar 

  118. Osula S, Bell GM, Hornung RS. Acute myocardial infarction in young adults: causes and management. Postgrad Med J. 2002;78:27–30.

    PubMed  CAS  Google Scholar 

  119. Burke AP, Kolodgie FD, Farb A, et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation. 2001;103:934–940.

    PubMed  CAS  Google Scholar 

  120. Mann J, Davies MJ. Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart. 1999;82:265–268.

    PubMed  CAS  Google Scholar 

  121. Servoss SJ, Januzzi JL, Muller JE. Triggers of acute coronary syndromes. Prog Cardiovasc Dis. 2002;44:369–380.

    PubMed  Google Scholar 

  122. Silveira A. Postprandial triglycerides and blood coagulation. Exp Clin Endocrinol Diabetes. 2001;109:S527–S532.

    PubMed  CAS  Google Scholar 

  123. McNagny SE, Wenger NK. Postmenopausal hormone-replacement therapy. N Engl J Med. 2002;346:63–65.

    PubMed  Google Scholar 

  124. Koenig W, Sund M, Filipiak B, et al. Plasma viscosity and the risk of coronary heart disease: results from the MONICA-Augsburg Cohort Study, 1984 to 1992. Arterioscler Thromb Vasc Biol. 1998;18:768–772.

    PubMed  CAS  Google Scholar 

  125. Junker R, Heinrich J, Ulbrich H, et al. Relationship between plasma viscosity and the severity of coronary heart disease. Arterioscler Thromb Vasc Biol. 1998;18:870–875.

    PubMed  CAS  Google Scholar 

  126. Myerburg RJ, Kessler KM, Castellanos A. Sudden cardiac death: structure, function, and time-dependence of risk. Circulation. 1992;85(Suppl I):I-2–I-10.

    CAS  Google Scholar 

  127. Kannel WB, Doyle JT, McNamara PM, et al. Precursors of sudden coronary death: factors related to the incidence of sudden death. Circulation. 1975;51:606–613.

    PubMed  CAS  Google Scholar 

  128. Schwartz PJ, Vanoli E, Zaza A, et al. The effect of antiarrhythmic drugs on life-threatening arrhythmias induced by the interaction between acute myocardial ischemia and sympathetic hyperactivity. Am Heart J. 1985;109:937–948.

    PubMed  CAS  Google Scholar 

  129. Vanoli E, De Ferrari GM, Stramba-Badiale M, et al. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res. 1991;68:1471–1481.

    PubMed  CAS  Google Scholar 

  130. Airaksinen KE. Autonomic mechanisms and sudden death after abrupt coronary occlusion. Ann Med. 1999;31:240–245.

    PubMed  CAS  Google Scholar 

  131. Airaksinen KE, Tahvanainen KU, Eckberg DL, et al. Arterial baroreflex impairment in patients during acute coronary occlusion. J Am Coll Cardiol. 1998;32:1641–1647.

    PubMed  CAS  Google Scholar 

  132. Billman GE, Schwartz PJ, Stone HL. The effects of daily exercise on susceptibility to sudden cardiac death. Circulation. 1984;69:1182–1189.

    PubMed  CAS  Google Scholar 

  133. Burke AP, Farb A, Malcom GT, et al. Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA. 1999;281:921–926.

    PubMed  CAS  Google Scholar 

  134. Jouven X, Desnos M, Guerot C, et al. Predicting sudden death in the population: the Paris Prospective Study I. Circulation. 1999;99:1978–1983.

    PubMed  CAS  Google Scholar 

  135. Singh JP, Larson MG, O’Donnell CJ, et al. Heritability of heart rate variability: the Framingham Heart Study. Circulation. 1999;99:2251–2254.

    PubMed  CAS  Google Scholar 

  136. Claessens C, Claessens P, Claessens M, et al. Changes in mortality of acute myocardial infarction as a function of a changing treatment during the last two decades. Jpn Heart J. 2000;41:683–695.

    PubMed  CAS  Google Scholar 

  137. Jouven X, Charles MA, Desnos M, et al. Circulating nonesterified fatty acid level as a predictive risk factor for sudden death in the population. Circulation. 2001;104:756–761.

    PubMed  CAS  Google Scholar 

  138. Priori SG, Aliot E, Blomstrom-Lundqvist C, et al. Task Force on Sudden Cardiac Death of the European Society of Cardiology. Eur Heart J. 2001;22:1374–1450.

    PubMed  CAS  Google Scholar 

  139. Magnus P, Beaglehole R. The real contribution of the major risk factors to the coronary epidemics: time to end the “only-50%” myth. Arch Intern Med. 2001;161:2657–2660.

    PubMed  CAS  Google Scholar 

  140. Lefkowitz RJ, Willerson JT. Prospects for cardiovascular research. JAMA. 2001;285:581–587.

    PubMed  CAS  Google Scholar 

  141. Nieto FJ. Cardiovascular disease and risk factor epidemiology: a look back at the epidemic of the 20th century. Am J Public Health. 1999;89:292–294.

    PubMed  CAS  Google Scholar 

  142. Anderson KM, Odell PM, Wilson PW, et al. Cardiovascular disease risk profiles. Am Heart J. 1991;121:293–298.

    PubMed  CAS  Google Scholar 

  143. Ramsay LE, Haq IU, Jackson PR, et al. Targeting lipid-lowering drug therapy for primary prevention of coronary disease: an updated Sheffield table. Lancet. 1996;348:387–388.

    PubMed  CAS  Google Scholar 

  144. Wallis EJ, Ramsay LE, Ul Haq I, et al. Coronary and cardiovascular risk estimation for primary prevention: validation of a new Sheffield table in the 1995 Scottish health survey population. BMJ. 2000;320:671–676.

    PubMed  CAS  Google Scholar 

  145. National Heart Foundation clinical guidelines for the assessment and management of dyslipidaemia. Dyslipidaemia Advisory Group on behalf of the Scientific Committee of the National Heart Foundation of New Zealand. N Z Med J. 1996;109:224–231.

    Google Scholar 

  146. Jackson R. Updated New Zealand cardiovascular disease risk-benefit prediction guide. BMJ. 2000;320:709–710.

    PubMed  CAS  Google Scholar 

  147. McCormack JP, Levine M, Rangno RE. Primary prevention of heart disease and stroke: a simplified approach to estimating risk of events and making drug treatment decisions. CMAJ. 1997;157:422–428.

    PubMed  CAS  Google Scholar 

  148. Joint British recommendations on prevention of coronary heart disease in clinical practice: summary. British Cardiac Society, British Hyperlipidaemia Association, British Hypertension Society, British Diabetic Association. BMJ. 2000;320:705–708.

    Google Scholar 

  149. Wood D, De Backer G, Faergeman O, et al. Prevention of coronary heart disease in clinical practice: recommendations of the Second Joint Task Force of European and other Societies on Coronary Prevention. Atherosclerosis. 1998;140:199–270.

    PubMed  CAS  Google Scholar 

  150. Tunstall-Pedoe H. The Dundee coronary risk-disk for management of change in risk factors. BMJ. 1991;303:744–747.

    PubMed  CAS  Google Scholar 

  151. Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation. 2002;105:310–315.

    PubMed  Google Scholar 

  152. Manhem K, Dotevall A, Wilhelmsen L, et al. Social gradients in cardiovascular risk factors and symptoms of Swedish men and women: the Goteborg MONICA Study 1995. J Cardiovasc Risk. 2000;7:359–368.

    PubMed  CAS  Google Scholar 

  153. Voss R, Cullen P, Schulte H, et al. Prediction of risk of coronary events in middle-aged men in the Prospective Cardiovascular Münster Study (PROCAM) using neural networks. Int J Epidemiol. 2002;31:1253–1264.

    PubMed  Google Scholar 

  154. Arad YSL, Goodman K, Newstein D, et al. Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol. 2000;36:1253–1260

    PubMed  CAS  Google Scholar 

  155. Friedman M, Van den Borenkamp G.J. The pathogenesis of a coronary thrombus. Am J Pathol. 1966;48:19–44.

    PubMed  CAS  Google Scholar 

  156. Friedman M. The pathogenesis of coronary plaques, thromboses, and hemorrhages: an evaluative review. Circulation. 1975;52(Suppl III):III34–III40.

    PubMed  CAS  Google Scholar 

  157. Halcox JP, Schenke WH, Zalos G, et al. Prognostic value of coronary vascular endothelial function. Circulation. 2002;106:653–658.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Naghavi, M., Falk, E. (2011). From Vulnerable Plaque to Vulnerable Patient. In: Naghavi, M. (eds) Asymptomatic Atherosclerosis. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-179-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-179-0_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-178-3

  • Online ISBN: 978-1-60327-179-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics